Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Cell Sci ; 136(9)2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-37051862

RESUMO

Macrophage-derived extracellular vesicles (EVs) play key roles in intercellular communication. Within the liver, they have been linked to several inflammatory diseases including nonalcoholic fatty liver disease (NAFLD). In this study, we found that inflammatory macrophages cause injury to hepatocytes, in part by a cell-cell crosstalk phenomenon involving the secretion of EVs containing pro-inflammatory cargo. Incorporation of these inflammatory signals into EV requires the cleavage of the trafficking adaptor protein RILP, which, as previously shown, results from inflammasome-mediated caspase-1 activation. RILP cleavage can be blocked by overexpressing a dominant negative, non-cleavable form of RILP (ncRILP). EV preparations from ncRILP-expressing cells are, by themselves, sufficient to suppress inflammatory effects in hepatocytes. These results suggest that both direct RILP manipulation and/or supplying ncRILP-modified EVs could be used as a novel therapy for the treatment of inflammatory liver diseases.


Assuntos
Vesículas Extracelulares , Hepatopatia Gordurosa não Alcoólica , Humanos , Hepatócitos/metabolismo , Hepatopatia Gordurosa não Alcoólica/etiologia , Hepatopatia Gordurosa não Alcoólica/metabolismo , Macrófagos/metabolismo , Vesículas Extracelulares/metabolismo
2.
Hepatology ; 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38687563

RESUMO

BACKGROUND AND AIMS: Liver macrophages are heterogeneous and play an important role in alcohol-associated liver disease (ALD) but there is limited understanding of the functions of specific macrophage subsets in the disease. We used a Western diet alcohol (WDA) mouse model of ALD to examine the hepatic myeloid cell compartment by single cell RNAseq and targeted KC ablation to understand the diversity and function of liver macrophages in ALD. APPROACH AND RESULTS: In the WDA liver, KCs and infiltrating monocytes/macrophages each represented about 50% of the myeloid pool. Five major KC clusters all expressed genes associated with receptor-mediated endocytosis and lipid metabolism, but most were predicted to be noninflammatory and antifibrotic with 1 minor KC cluster having a proinflammatory and extracellular matrix degradation gene signature. Infiltrating monocyte/macrophage clusters, in contrast, were predicted to be proinflammatory and profibrotic. In vivo, diphtheria toxin-based selective KC ablation during alcohol exposure resulted in a liver failure phenotype with increases in PT/INR and bilirubin, loss of differentiated hepatocyte gene expression, and an increase in expression of hepatocyte progenitor markers such as EpCAM, CK7, and Igf2bp3. Gene set enrichment analysis of whole-liver RNAseq from the KC-ablated WDA mice showed a similar pattern as seen in human alcoholic hepatitis. CONCLUSIONS: In this ALD model, KCs are anti-inflammatory and are critical for the maintenance of hepatocyte differentiation. Infiltrating monocytes/macrophages are largely proinflammatory and contribute more to liver fibrosis. Future targeting of specific macrophage subsets may provide new approaches to the treatment of liver failure and fibrosis in ALD.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA