Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Proc Natl Acad Sci U S A ; 114(27): 7148-7153, 2017 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-28533369

RESUMO

Presenilin 1 (PS1), the catalytic subunit of the γ-secretase complex, cleaves ßCTF to produce Aß. We have shown that PS1 regulates Aß levels by a unique bifunctional mechanism. In addition to its known role as the catalytic subunit of the γ-secretase complex, selective phosphorylation of PS1 on Ser367 decreases Aß levels by increasing ßCTF degradation through autophagy. Here, we report the molecular mechanism by which PS1 modulates ßCTF degradation. We show that PS1 phosphorylated at Ser367, but not nonphosphorylated PS1, interacts with Annexin A2, which, in turn, interacts with the lysosomal N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) Vamp8. Annexin A2 facilitates the binding of Vamp8 to the autophagosomal SNARE Syntaxin 17 to modulate the fusion of autophagosomes with lysosomes. Thus, PS1 phosphorylated at Ser367 has an antiamyloidogenic function, promoting autophagosome-lysosome fusion and increasing ßCTF degradation. Drugs designed to increase the level of PS1 phosphorylated at Ser367 should be useful in the treatment of Alzheimer's disease.


Assuntos
Peptídeos beta-Amiloides/genética , Autofagossomos/metabolismo , Lisossomos/metabolismo , Presenilina-1/genética , Animais , Anexina A2/metabolismo , Autofagia/fisiologia , Encéfalo/metabolismo , Linhagem Celular Tumoral , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microscopia Confocal , Neuroblastoma/metabolismo , Neurônios/metabolismo , Fagossomos/metabolismo , Fosforilação , Proteínas Qa-SNARE/metabolismo , Proteínas R-SNARE/metabolismo , Transdução de Sinais
2.
Proc Natl Acad Sci U S A ; 114(27): 7142-7147, 2017 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-28533411

RESUMO

Alzheimer's disease (AD) is characterized by accumulation of the ß-amyloid peptide (Aß), which is generated through sequential proteolysis of the amyloid precursor protein (APP), first by the action of ß-secretase, generating the ß-C-terminal fragment (ßCTF), and then by the Presenilin 1 (PS1) enzyme in the γ-secretase complex, generating Aß. γ-Secretase is an intramembranous protein complex composed of Aph1, Pen2, Nicastrin, and Presenilin 1. Although it has a central role in the pathogenesis of AD, knowledge of the mechanisms that regulate PS1 function is limited. Here, we show that phosphorylation of PS1 at Ser367 does not affect γ-secretase activity, but has a dramatic effect on Aß levels in vivo. We identified CK1γ2 as the endogenous kinase responsible for the phosphorylation of PS1 at Ser367. Inhibition of CK1γ leads to a decrease in PS1 Ser367 phosphorylation and an increase in Aß levels in cultured cells. Transgenic mice in which Ser367 of PS1 was mutated to Ala, show dramatic increases in Aß peptide and in ßCTF levels in vivo. Finally, we show that this mutation impairs the autophagic degradation of ßCTF, resulting in its accumulation and increased levels of Aß peptide and plaque load in the brain. Our results demonstrate that PS1 regulates Aß levels by a unique bifunctional mechanism. In addition to its known role as the catalytic subunit of the γ-secretase complex, selective phosphorylation of PS1 on Ser367 also decreases Aß levels by increasing ßCTF degradation through autophagy. Elucidation of the mechanism by which PS1 regulates ßCTF degradation may aid in the development of potential therapies for Alzheimer's disease.


Assuntos
Doença de Alzheimer/metabolismo , Secretases da Proteína Precursora do Amiloide/metabolismo , Peptídeos beta-Amiloides/metabolismo , Presenilina-1/genética , Precursor de Proteína beta-Amiloide/metabolismo , Animais , Autofagia , Encéfalo/metabolismo , Linhagem Celular Tumoral , Humanos , Imuno-Histoquímica , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Mutação , Fosforilação , Presenilina-1/metabolismo , Domínios Proteicos , Serina/química , Resultado do Tratamento
3.
Alzheimers Dement ; 16(2): 273-282, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31677937

RESUMO

INTRODUCTION: The levels and distribution of amyloid deposits in the brain does not correlate well with Alzheimer's disease (AD) progression. Therefore, it is likely that amyloid precursor protein and its proteolytic fragments other than amyloid b (Ab) contribute to the onset of AD. METHODS: We developed a sensitive assay adapted to the detection of C99, the direct precursor of b-amyloid. Three postmortem groups were studied: control with normal and stable cognition; patients with moderate AD, and individuals with severe AD. The amount of C99 and Aß was quantified and correlated with the severity of AD. RESULTS: C99 accumulates in vulnerable neurons, and its levels correlate with the degree of cognitive impairment in patients suffering from AD. In contrast, Aß levels are increased in both vulnerable and resistant brain areas. DISCUSSION: These results raise the possibility that C99, rather than Aß plaques, is responsible for the death of nerve cells in AD.


Assuntos
Doença de Alzheimer/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Progressão da Doença , Neurônios/metabolismo , Fragmentos de Peptídeos/efeitos adversos , Precursor de Proteína beta-Amiloide/efeitos adversos , Animais , Autopsia , Encéfalo/metabolismo , Humanos
4.
Genesis ; 52(5): 417-23, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24596343

RESUMO

Mixl1 is the only member of the Mix/Bix homeobox gene family identified in mammals. During mouse embryogenesis, Mixl1 is first expressed at embryonic day (E)5.5 in cells of the visceral endoderm (VE). At the time of gastrulation, Mixl1 expression is detected in the vicinity of the primitive streak. Mixl1 is expressed in cells located within the primitive streak, in nascent mesoderm cells exiting the primitive streak, and in posterior VE overlying the primitive streak. Genetic ablation of Mixl1 in mice has revealed its crucial role in mesoderm and endoderm cell specification and tissue morphogenesis during early embryonic development. However, the early lethality of the constitutive Mixl1(-/-) mutant precludes the study of its role at later stages of embryogenesis and in adult mice. To circumvent this limitation, we have generated a conditional Mixl1 allele (Mixl1(cKO) that permits temporal as well as spatial control of gene ablation. Animals homozygous for the Mixl1(cKO) conditional allele were viable and fertile. Mixl1(KO/KO) embryos generated by crossing of Mixl1(cKO/cKO) mice with Sox2-Cre or EIIa-Cre transgenic mice were embryonic lethal at early somite stages. By contrast to wild-type embryos, Mixl1(KO/KO) embryos contained no detectable Mixl1, validating the Mixl1(cKO) as a protein null after Cre-mediated excision. Mixl1(KO/KO) embryos resembled the previously reported Mixl1(-/-) mutant phenotype. Therefore, the Mixl1 cKO allele provides a tool for investigating the temporal and tissue-specific requirements for Mixl1 in the mouse.


Assuntos
Endoderma/embriologia , Técnicas de Inativação de Genes/métodos , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Mesoderma/embriologia , Animais , Cruzamentos Genéticos , Endoderma/metabolismo , Gastrulação , Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Marcação de Genes , Genes Letais , Mesoderma/metabolismo , Camundongos
5.
Dev Biol ; 381(1): 73-82, 2013 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-23791818

RESUMO

Fibronectin and its major receptor, integrin α5ß1 are required for embryogenesis. These mutants have similar phenotypes, although, defects in integrin α5-deficient mice are milder. In this paper, we examined heart development in those mutants, in which the heart is formed, and discovered that both fibronectin and integrin α5 were required for cardiac morphogenesis, and in particular, for the formation of the cardiac outflow tract. We found that Isl1+ precursors are specified and migrate into the heart in fibronectin- or integrin α5-mutant embryos, however, the hearts in these mutants are of aberrant shape, and the cardiac outflow tracts are short and malformed. We show that these defects are likely due to the requirement for cell adhesion to fibronectin for proliferation of myocardial progenitors and for Fgf8 signaling in the pharyngeal region.


Assuntos
Fibronectinas/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Coração/crescimento & desenvolvimento , Integrina alfa5beta1/metabolismo , Animais , Linhagem da Célula , Movimento Celular , Proliferação de Células , Dimerização , Feminino , Coração/embriologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microscopia Eletrônica de Varredura , Morfogênese , Mutação , Miocárdio/metabolismo , Transdução de Sinais
6.
ACS Chem Biol ; 19(1): 37-47, 2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38079390

RESUMO

Alzheimer's disease (AD) is a debilitating neurodegenerative disorder characterized by the accumulation of ß-amyloid (Aß), C99, and Tau in vulnerable areas of the brain. Despite extensive research, current strategies to lower Aß levels have shown limited efficacy in slowing the cognitive decline associated with AD. Recent findings suggest that C99 may also play a crucial role in the pathogenesis of AD. Our laboratory has discovered that CK1γ2 phosphorylates Presenilin 1 at the γ-secretase complex, leading to decreased C99 and Aß levels. Thus, CK1γ2 activation appears as a promising therapeutic target to lower both C99 and Aß levels. In this study, we demonstrate that CK1γ2 is inhibited by intramolecular autophosphorylation and describe a high-throughput screen designed to identify inhibitors of CK1γ2 autophosphorylation. We hypothesize that these inhibitors could lead to CK1γ2 activation and increased PS1-Ser367 phosphorylation, ultimately reducing C99 and Aß levels. Using cultured cells, we investigated the impact of these compounds on C99 and Aß concentrations and confirmed that CK1γ2 activation effectively reduced their levels. Our results provide proof of concept that CK1γ2 is an attractive therapeutic target for AD. Future studies should focus on the identification of specific compounds that can inhibit CK1γ2 autophosphorylation and evaluate their efficacy in preclinical models of AD. These studies will pave the way for the development of novel therapeutics for the treatment of AD.


Assuntos
Doença de Alzheimer , Precursor de Proteína beta-Amiloide , Humanos , Precursor de Proteína beta-Amiloide/metabolismo , Secretases da Proteína Precursora do Amiloide/metabolismo , Peptídeos beta-Amiloides/metabolismo , Doença de Alzheimer/tratamento farmacológico , Encéfalo/metabolismo
7.
bioRxiv ; 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38645223

RESUMO

Lineage plasticity is a recognized hallmark of cancer progression that can shape therapy outcomes. The underlying cellular and molecular mechanisms mediating lineage plasticity remain poorly understood. Here, we describe a versatile in vivo platform to identify and interrogate the molecular determinants of neuroendocrine lineage transformation at different stages of prostate cancer progression. Adenocarcinomas reliably develop following orthotopic transplantation of primary mouse prostate organoids acutely engineered with human-relevant driver alterations (e.g., Rb1-/-; Trp53-/-; cMyc+ or Pten-/-; Trp53-/-; cMyc+), but only those with Rb1 deletion progress to ASCL1+ neuroendocrine prostate cancer (NEPC), a highly aggressive, androgen receptor signaling inhibitor (ARSI)-resistant tumor. Importantly, we show this lineage transition requires a native in vivo microenvironment not replicated by conventional organoid culture. By integrating multiplexed immunofluorescence, spatial transcriptomics and PrismSpot to identify cell type-specific spatial gene modules, we reveal that ASCL1+ cells arise from KRT8+ luminal epithelial cells that progressively acquire transcriptional heterogeneity, producing large ASCL1+;KRT8- NEPC clusters. Ascl1 loss in established NEPC results in transient tumor regression followed by recurrence; however, Ascl1 deletion prior to transplantation completely abrogates lineage plasticity, yielding adenocarcinomas with elevated AR expression and marked sensitivity to castration. The dynamic feature of this model reveals the importance of timing of therapies focused on lineage plasticity and offers a platform for identification of additional lineage plasticity drivers.

8.
Am J Physiol Cell Physiol ; 304(4): C324-33, 2013 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-23195071

RESUMO

Cardiotonic steroids (CTS) of the strophanthus and digitalis families have opposing effects on long-term blood pressure (BP). This implies hitherto unrecognized divergent signaling pathways for these CTS. Prolonged ouabain treatment upregulates Ca(2+) entry via Na(+)/Ca(2+) exchanger-1 (NCX1) and TRPC6 gene-encoded receptor-operated channels in mesenteric artery smooth muscle cells (ASMCs) in vivo and in vitro. Here, we test the effects of digoxin on Ca(2+) entry and signaling in ASMC. In contrast to ouabain treatment, the in vivo administration of digoxin (30 µg·kg(-1)·day(-1) for 3 wk) did not raise BP and had no effect on resting cytolic free Ca(2+) concentration ([Ca(2+)](cyt)) or phenylephrine-induced Ca(2+) signals in isolated ASMCs. Expression of transporters in the α2 Na(+) pump-NCX1-TRPC6 Ca(2+) signaling pathway was not altered in arteries from digoxin-treated rats. Upregulated α2 Na(+) pumps and a phosphorylated form of the c-SRC protein kinase (pY419-Src, ~4.5-fold) were observed in ASMCs from rats treated with ouabain but not digoxin. Moreover, in primary cultured ASMCs from normal rats, treatment with digoxin (100 nM, 72 h) did not upregulate NCX1 and TRPC6 but blocked the ouabain-induced upregulation of these transporters. Pretreatment of ASMCs with the c-Src inhibitor PP2 (1 µM; 4-amino-5-(4-chlorophenyl)-7-(t-butyl)pyrazolo[3,4-d]pyrimidine) but not its inactive analog eliminated the effect of ouabain on NCX1 and TRPC6 expression and ATP-induced Ca(2+) entry. Thus, in contrast to ouabain, the interaction of digoxin with α2 Na(+) pumps is unable to activate c-Src phosphorylation and upregulate the downstream NCX1-TRPC6 Ca(2+) signaling pathway in ASMCs. The inability of digoxin to upregulate c-Src may underlie its inability to raise long-term BP.


Assuntos
Sinalização do Cálcio/efeitos dos fármacos , Cardiotônicos/farmacologia , Digoxina/farmacologia , Músculo Liso Vascular/citologia , Miócitos de Músculo Liso/metabolismo , Ouabaína/farmacologia , Quinases da Família src/metabolismo , Animais , Aorta/citologia , Canais de Cálcio/metabolismo , Cardiotônicos/administração & dosagem , Células Cultivadas , Digoxina/administração & dosagem , Ativação Enzimática , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Masculino , Artérias Mesentéricas/citologia , Miócitos de Músculo Liso/efeitos dos fármacos , Nifedipino/farmacologia , Ouabaína/administração & dosagem , Fosforilação , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , Pirimidinas/farmacologia , Ratos , Ratos Sprague-Dawley , Trocador de Sódio e Cálcio/metabolismo , ATPase Trocadora de Sódio-Potássio/metabolismo , Canais de Cátion TRPC/metabolismo , Quinases da Família src/antagonistas & inibidores
9.
Adv Exp Med Biol ; 961: 365-74, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23224895

RESUMO

Arterial smooth muscle (ASM) Na(+)/Ca(2+) exchanger type 1 (NCX1) and TRPC/Orai-containing receptor/store-operated cation channels (ROC/SOC) are clustered with α2 Na(+) pumps in plasma membrane microdomains adjacent to the underlying junctional sarcoplasmic reticulum. This arrangement enables these transport proteins to function as integrated units to help regulate local Na(+) metabolism, Ca(2+) signaling, and arterial tone. They thus influence vascular resistance and blood pressure (BP). For instance, upregulation of NCX1 and TRPC6 has been implicated in the pathogenesis of high BP in several models of essential hypertension. The models include ouabain-induced hypertensive rats, Milan hypertensive rats, and Dahl salt-sensitive hypertensive rats, all of which exhibit elevated plasma ouabain levels. We suggest that these molecular mechanisms are key contributors to the increased vascular resistance ("whole body autoregulation") that elevates BP in essential hypertension. Enhanced expression and function of ASM NCX1 and TRPC/Orai1-containing channels in hypertension implies that these proteins are potential targets for pharmacological intervention.


Assuntos
Sinalização do Cálcio , Hipertensão/metabolismo , Proteínas Musculares/metabolismo , Músculo Liso Vascular/metabolismo , Trocador de Sódio e Cálcio/metabolismo , Canais de Cátion TRPC/metabolismo , Animais , Cálcio/metabolismo , Modelos Animais de Doenças , Humanos , Hipertensão/genética , Hipertensão/patologia , Proteínas Musculares/genética , Músculo Liso Vascular/patologia , Ratos , Ratos Endogâmicos Dahl , Sódio/metabolismo , Trocador de Sódio e Cálcio/genética , Canais de Cátion TRPC/genética , Canal de Cátion TRPC6
10.
Methods Mol Biol ; 2593: 233-244, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36513935

RESUMO

Technologies for staining and imaging multiple antigens in single tissue sections are developing rapidly due to their potential to uncover spatial relationships between proteins with cellular resolution. Detections are performed simultaneously or sequentially depending on the approach. However, several technologies can detect limited numbers of antigens or require expensive equipment and reagents. Another serious concern is the lack of flexibility. Most commercialized reagents are validated for defined antibody panels, and introducing any changes is laborious and costly. In this chapter, we describe a method where we combine, for the first time, multiplexed IF followed by sequential immunohistochemistry (IHC) with AEC chromogen on Leica Bond staining processors with paraffin tissue sections. We present data for successful detection of 10 antigens in a single tissue section with preserved tissue integrity. Our method is designed for use with any combination of antibodies of interest, with images collected using whole slide scanners. We include an image viewing and image analysis workflow using nonlinear warping to combine all staining passes in a single full-resolution image of the entire tissue section, aligned at the single cell level.


Assuntos
Biomarcadores Tumorais , Proteínas , Imuno-Histoquímica , Biomarcadores Tumorais/metabolismo , Imunofluorescência , Coloração e Rotulagem , Antígenos/análise
11.
Dev Biol ; 354(2): 208-20, 2011 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-21466802

RESUMO

Studies in Xenopus laevis suggested that cell-extracellular matrix (ECM) interactions regulate the development of the left-right axis of asymmetry; however, the identities of ECM components and their receptors important for this process have remained unknown. We discovered that FN is required for the establishment of the asymmetric gene expression pattern in early mouse embryos by regulating morphogenesis of the node, while cellular fates of the nodal cells, canonical Wnt and Shh signaling within the node were not perturbed by the absence of FN. FN is also required for the expression of Lefty 1/2 and activation of SMADs 2 and 3 at the floor plate, while cell fate specification of the notochord and the floor plate, as well as signaling within and between these two embryonic organizing centers remained intact in FN-null mutants. Furthermore, our experiments indicate that a major cell surface receptor for FN, integrin α5ß1, is also required for the development of the left-right asymmetry, and that this requirement is evolutionarily conserved in fish and mice. Taken together, our studies demonstrate the requisite role for a structural ECM protein and its integrin receptor in the development of the left-right axis of asymmetry in vertebrates.


Assuntos
Padronização Corporal , Matriz Extracelular/metabolismo , Fibronectinas/fisiologia , Integrina alfa5beta1/metabolismo , Animais , Proteínas da Matriz Extracelular/metabolismo , Fibronectinas/genética , Peixes/embriologia , Peixes/crescimento & desenvolvimento , Regulação da Expressão Gênica no Desenvolvimento , Proteínas Hedgehog/metabolismo , Fatores de Determinação Direita-Esquerda/metabolismo , Camundongos , Notocorda/embriologia , Notocorda/crescimento & desenvolvimento , Transdução de Sinais , Proteína Smad2/metabolismo , Proteína Smad3/metabolismo , Proteínas Wnt/metabolismo
12.
Biochem Cell Biol ; 90(3): 397-404, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22397552

RESUMO

Destruction of ceruloplasmin (Cp) in the presence of hydrogen peroxide is accompanied by the release of the protein's copper ions that provoke formation of hydroxyl radicals (OH˙) and, consequently, further degradation of the protein. Under such conditions, degradation of Cp is hampered by a number of substances able to bind copper ions. Lactoferrin (Lf) is the most active protector of Cp, its protective effect depending on the pH of the medium. The best protection of Cp by Lf was detected at pH 7.4. In an acidic buffer (pH 5.5), Lf did not affect the destruction of Cp. The pH-dependent efficiency of copper binding by Lf is in good agreement with its capacity to protect Cp against degradation provoked by hydrogen peroxide. It seems likely that peroxide-dependent degradation of Cp stimulated by its own copper ions is a part of neutrophil-induced antimicrobial reactions and may take place properly at the foci of inflammation. Interaction of Lf with Cp may regulate the generation of OH˙ from hydrogen peroxide in the foci of inflammation and protect the adjacent tissues.


Assuntos
Ceruloplasmina/química , Radical Hidroxila/química , Lactoferrina/química , Cobre/química , Espectroscopia de Ressonância de Spin Eletrônica , Humanos , Peróxido de Hidrogênio/química , Concentração de Íons de Hidrogênio , Hidrólise , Muramidase/química , Oxidantes/química , Oxirredução , Estresse Oxidativo , Ligação Proteica , Proteólise , Albumina Sérica/química
13.
Am J Physiol Heart Circ Physiol ; 302(6): H1317-29, 2012 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-22245773

RESUMO

Endogenous cardiotonic steroids (CTS) raise blood pressure (BP) via vascular sodium calcium exchange (NCX1.3) and transient receptor-operated channels (TRPCs). Circulating CTS are superelevated in pregnancy-induced hypertension and preeclampsia. However, their significance in normal pregnancy, where BP is low, is paradoxical. Here we test the hypothesis that vascular resistance to endogenous ouabain (EO) develops in normal pregnancy and is mediated by reduced expression of NCX1.3 and TRPCs. We determined plasma and adrenal levels of EO and the impact of exogenous ouabain in pregnancy on arterial expression of Na(+) pumps, NCX1.3, TRPC3, and TRPC6 and BP. Pregnant (embryonic day 4) and nonpregnant rats received infusions of ouabain or vehicle. At 14-16 days, tissues and plasma were collected for blotting and EO assay by radioimmunoassay (RIA), liquid chromatography (LC)-RIA, and LC-multidimensional mass spectrometry (MS3). BP (-8 mmHg; P < 0.05) and NCX1.3 expression fell (aorta -60% and mesenteric artery -30%; P < 0.001) in pregnancy while TRPC expression was unchanged. Circulating EO increased (1.14 ± 0.13 nM) vs. nonpregnant (0.6 ± 0.08 nM; P < 0.05) and was confirmed by LC-MS3 and LC-RIA. LC-MS3 revealed two previously unknown isomers of EO; one increased ∼90-fold in pregnancy. Adrenal EO but not isomers were increased in pregnancy. In nonpregnant rats, similar infusions of ouabain raised BP (+24 ± 3 mmHg; P < 0.001). In ouabain-infused rats, impaired fetal and placental growth occurred with no BP increase. In summary, normal pregnancy is an ouabain-resistant state associated with low BP, elevated circulating levels of EO, two novel steroidal EO isomers, and increased adrenal mass and EO content. Ouabain raises BP only in nonpregnant animals. Vascular resistance to the chronic pressor activity of endogenous and exogenous ouabain is mediated by suppressed NCX1.3 and reduced sensitivity of events downstream of Ca(2+) entry. The mechanisms of EO resistance and the impaired fetal and placental growth due to elevated ouabain may be important in pregnancy-induced hypertension (PIH) and preeclampsia (PE).


Assuntos
Artérias/efeitos dos fármacos , Artérias/metabolismo , Pressão Sanguínea/efeitos dos fármacos , Cardiotônicos/administração & dosagem , Resistência a Medicamentos , Ouabaína/administração & dosagem , Trocador de Sódio e Cálcio/metabolismo , Glândulas Suprarrenais/metabolismo , Animais , Cálcio/metabolismo , Cardenolídeos/sangue , Cardenolídeos/metabolismo , Cardiotônicos/toxicidade , Cromatografia Líquida , Regulação para Baixo , Feminino , Retardo do Crescimento Fetal/induzido quimicamente , Homeostase , Infusões Subcutâneas , Espectrometria de Massas , Ouabaína/toxicidade , Peptídeos Cíclicos , Placenta/efeitos dos fármacos , Placentação , Gravidez , Radioimunoensaio , Ratos , Ratos Sprague-Dawley , Saponinas/sangue , Saponinas/metabolismo , Canais de Cátion TRPC/metabolismo , Fatores de Tempo , Regulação para Cima
14.
Adv Pharmacol ; 90: 239-251, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33706935

RESUMO

Presenilin 1 (PS1) is an intramembrane protease, the active subunit of the γ-secretase complex. Its well-studied function is the amyloidogenic cleavage of the C-terminal fragment of the amyloid precursor protein, also known as C99, to produce the Abeta peptide. Recent findings from the Greengard laboratory suggest that PS1 also have anti-amyloidogenic activities, which reduce Abeta levels. First, it redirects APP-C99 toward autophagic degradation, lowering the amount that can be converted into Abeta. The protein kinase CK1γ2 phosphorylates PS1 at Ser367. Phosphorylated PS1 at this position interacts with Annexin A2, which, in turn, interacts with the lysosomal N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) Vamp8. Annexin A2 facilitates the binding of Vamp8 to the autophagosomal SNARE Syntaxin 17 to modulate the fusion of autophagosomes with lysosomes. Thus, PS1 phosphorylated at Ser367 has an anti-amyloidogenic function, promoting autophagosome-lysosome fusion and increasing C99 degradation. Second, it enhances the ability of microglia to phagocyte and degrade extracellular Abeta oligomer, through regulating the expression of the lysosomal master regulator TFEB. Thus, PS1 has a role in both the production and the clearance of Abeta. Drugs designed to activate CK1γ2 and increase the level of PS1 phosphorylated at Ser367 should be useful in the treatment of Alzheimer's disease.


Assuntos
Amiloide/metabolismo , Presenilina-1/metabolismo , Secretases da Proteína Precursora do Amiloide/metabolismo , Peptídeos beta-Amiloides/metabolismo , Animais , Autofagia , Humanos , Degeneração Neural/patologia
15.
Am J Physiol Heart Circ Physiol ; 298(1): H263-74, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19897708

RESUMO

Prolonged ouabain administration (25 microg kg(-1) day(-1) for 5 wk) induces "ouabain hypertension" (OH) in rats, but the molecular mechanisms by which ouabain elevates blood pressure are unknown. Here, we compared Ca(2+) signaling in mesenteric artery smooth muscle cells (ASMCs) from normotensive (NT) and OH rats. Resting cytosolic free Ca(2+) concentration ([Ca(2+)](cyt); measured with fura-2) and phenylephrine-induced Ca(2+) transients were augmented in freshly dissociated OH ASMCs. Immunoblots revealed that the expression of the ouabain-sensitive alpha(2)-subunit of Na(+) pumps, but not the predominant, ouabain-resistant alpha(1)-subunit, was increased (2.5-fold vs. NT ASMCs) as was Na(+)/Ca(2+) exchanger-1 (NCX1; 6-fold vs. NT) in OH arteries. Ca(2+) entry, activated by sarcoplasmic reticulum (SR) Ca(2+) store depletion with cyclopiazonic acid (SR Ca(2+)-ATPase inhibitor) or caffeine, was augmented in OH ASMCs. This reflected an augmented expression of 2.5-fold in OH ASMCs of C-type transient receptor potential TRPC1, an essential component of store-operated channels (SOCs); two other components of some SOCs were not expressed (TRPC4) or were not upregulated (TRPC5). Ba(2+) entry activated by the diacylglycerol analog 1-oleoyl-2-acetyl-sn-glycerol [a measure of receptor-operated channel (ROC) activity] was much greater in OH than NT ASMCs. This correlated with a sixfold upregulation of TRPC6 protein, a ROC family member. Importantly, in primary cultured mesenteric ASMCs from normal rats, 72-h treatment with 100 nM ouabain significantly augmented NCX1 and TRPC6 protein expression and increased resting [Ca(2+)](cyt) and ROC activity. SOC activity was also increased. Silencer RNA knockdown of NCX1 markedly downregulated TRPC6 and eliminated the ouabain-induced augmentation; silencer RNA knockdown of TRPC6 did not affect NCX1 expression but greatly attenuated its upregulation by ouabain. Clearly, NCX1 and TRPC6 expression are interrelated. Thus, prolonged ouabain treatment upregulates the Na(+) pump alpha(2)-subunit-NCX1-TRPC6 (ROC) Ca(2+) signaling pathway in arterial myocytes in vitro as well as in vivo. This may explain the augmented myogenic responses and enhanced phenylephrine-induced vasoconstriction in OH arteries (83) as well as the high blood pressure in OH rats.


Assuntos
Cardiotônicos , Hipertensão/induzido quimicamente , Hipertensão/metabolismo , Músculo Liso Vascular/metabolismo , Ouabaína , Trocador de Sódio e Cálcio/biossíntese , ATPase Trocadora de Sódio-Potássio/biossíntese , Animais , Western Blotting , Canais de Cálcio/metabolismo , Corantes Fluorescentes , Fura-2 , Homeostase/fisiologia , Processamento de Imagem Assistida por Computador , Masculino , Artérias Mesentéricas/metabolismo , Artérias Mesentéricas/fisiologia , RNA Interferente Pequeno , Ratos , Ratos Sprague-Dawley , Retículo Sarcoplasmático/efeitos dos fármacos , Retículo Sarcoplasmático/metabolismo , Trocador de Sódio e Cálcio/metabolismo , Canais de Cátion TRPC/biossíntese , Canais de Cátion TRPC/genética , Canal de Cátion TRPC6 , Regulação para Cima
16.
Am J Physiol Cell Physiol ; 297(5): C1103-12, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19675303

RESUMO

Ca(2+) entry through store-operated channels (SOCs) in the plasma membrane plays an important role in regulation of vascular smooth muscle contraction, tone, and cell proliferation. The C-type transient receptor potential (TRPC) channels have been proposed as major candidates for SOCs in vascular smooth muscle. Recently, two families of transmembrane proteins, Orai [also known as Ca(2+) release-activated Ca(2+) channel modulator (CRACM)] and stromal interacting molecule 1 (STIM1), were shown to be essential for the activation of SOCs mainly in nonexcitable cells. Here, using small interfering RNA, we show that Orai1 plays an essential role in activating store-operated Ca(2+) entry (SOCE) in primary cultured proliferating human aortic smooth muscle cells (hASMCs), whereas Orai2 and Orai3 do not contribute to SOCE. Knockdown of Orai1 protein expression significantly attenuated SOCE. Moreover, inhibition of Orai1 downregulated expression of Na(+)/Ca(2+) exchanger type 1 (NCX1) and plasma membrane Ca(2+) pump isoform 1 (PMCA1). The rate of cytosolic free Ca(2+) concentration decay after Ca(2+) transients in Ca(2+)-free medium was also greatly decreased under these conditions. This reduction of Ca(2+) extrusion, presumably via NCX1 and PMCA1, may be a compensation for the reduced SOCE. Immunocytochemical observations indicate that Orai1 and NCX1 are clustered in plasma membrane microdomains. Cell proliferation was attenuated in hASMCs with disrupted Orai1 expression and reduced SOCE. Thus Orai1 appears to be a critical component of SOCE in proliferating vascular smooth muscle cells, and may therefore be a key player during vascular growth and remodeling.


Assuntos
Canais de Cálcio/metabolismo , Cálcio/metabolismo , Miócitos de Músculo Liso/metabolismo , ATPases Transportadoras de Cálcio da Membrana Plasmática/metabolismo , Trocador de Sódio e Cálcio/metabolismo , Aorta/metabolismo , Western Blotting , Canais de Cálcio/genética , Sinalização do Cálcio/fisiologia , Proliferação de Células , Células Cultivadas , Regulação para Baixo , Imunofluorescência , Expressão Gênica , Regulação da Expressão Gênica , Humanos , Imuno-Histoquímica , Músculo Liso Vascular/metabolismo , Proteína ORAI1 , ATPases Transportadoras de Cálcio da Membrana Plasmática/genética , RNA Interferente Pequeno , Trocador de Sódio e Cálcio/genética
17.
Biometals ; 22(3): 521-9, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19189056

RESUMO

In our previous report we first described a complex between lactoferrin (Lf) and ceruloplasmin (Cp) with K (d) approximately 1.8 microM. The presence of this complex in colostrum that never contains more than 0.3 microM Cp questions the reliability of K (d) value. We carefully studied Lf binding to Cp and investigated the enzymatic activity of the latter in the presence of Lf, which allowed obtaining a new value for K (d) of Cp-Lf complex. Lf interacting with Cp changes its oxidizing activity with various substrates, such as Fe(2+), o-dianisidine (o-DA), p-phenylenediamine (p-PD) and dihydroxyphenylalanine (DOPA). The presence of at least two binding sites for Lf in Cp molecule is deduced from comparison of substrates' oxidation kinetics with and without Lf. When Lf binds to the first site affinity of Cp to Fe(2+) and to o-DA increases, but it decreases towards DOPA and remains unchanged towards p-PD. Oxidation rate of Fe(2+) grows, while that of o-DA, p-PD and DOPA goes down. Subsequent Lf binding to the second center has no effect on iron oxidation, hampers DOPA and o-DA oxidation, and reduces affinity towards p-PD. Scatchard plot for Lf sorbing to Cp-Sepharose allowed estimating K (d) for Lf binding to high-affinity (approximately 13.4 nM) and low-affinity (approximately 211 nM) sites. The observed effect of Lf on ferroxidase activity of Cp is likely to have physiological implications.


Assuntos
Ceruloplasmina/metabolismo , Lactoferrina/metabolismo , Ceruloplasmina/química , Cinética , Lactoferrina/química , Oxirredução , Ligação Proteica
18.
Sci Rep ; 9(1): 10168, 2019 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-31308417

RESUMO

The visceral endoderm is a polarized epithelial monolayer necessary for early embryonic development in rodents. A key feature of this epithelium is an active endocytosis and degradation of maternal nutrients, in addition to being the source of various signaling molecules or inhibitors required for the differentiation and patterning of adjacent embryonic tissues. Endocytosis across the visceral endoderm epithelium involves specific cell surface receptors and an extensive sub-membrane vesicular system with numerous apical vacuoles/lysosomes. We previously reported that Cubilin, the endocytic receptor for intrinsic factor-vitamin B12, albumin and apolipoproteinA-I/HDL allows maternal nutrient uptake by the visceral endoderm. In the present study, we show that the germline ablation of Cubilin impairs endodermal and mesodermal patterning, and results in developmental arrest at gastrulation. Notably, visceral endoderm dispersal is impeded in Cubilin null embryos. We further confirm the essential role of Cubilin in nutrient internalization by the early visceral endoderm and highlight its involvement in the formation of apical vacuoles. Our results reveal essential roles for Cubilin in early embryonic development, and suggest that in addition to its nutritive function, Cubilin sustains signaling pathways involved in embryonic differentiation and patterning.


Assuntos
Endocitose/fisiologia , Endoderma/citologia , Receptores de Superfície Celular/metabolismo , Animais , Transporte Biológico , Proteínas de Transporte/metabolismo , Diferenciação Celular/fisiologia , Desenvolvimento Embrionário/fisiologia , Endoderma/metabolismo , Feminino , Gastrulação/fisiologia , Fator Intrínseco/metabolismo , Mesoderma/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Gravidez , Transporte Proteico , Receptores de Superfície Celular/fisiologia , Vitamina B 12/metabolismo
19.
J Mol Biol ; 371(4): 1038-46, 2007 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-17597152

RESUMO

Ceruloplasmin is a copper protein found in vertebrate plasma, which belongs to the family of multicopper oxidases. Like transferrin of the blood plasma, lactoferrin, the iron-containing protein of human milk, saliva, tears, seminal plasma and of neutrophilic leukocytes tightly binds two ferric ions. Human lactoferrin and ceruloplasmin have been previously shown to interact both in vivo and in vitro forming a complex. Here we describe a study of the conformation of the human lactoferrin/ceruloplasmin complex in solution using small angle X-ray scattering. Our ab initio structural analysis shows that the complex has a 1:1 stoichiometry and suggests that complex formation occurs without major conformational rearrangements of either protein. Rigid-body modeling of the mutual arrangement of proteins in the complex essentially yields two families of solutions. Final discrimination is possible when integrating in the modeling process extra information translating into structural constraints on the interaction between the two partners.


Assuntos
Ceruloplasmina/química , Ceruloplasmina/metabolismo , Lactoferrina/química , Lactoferrina/metabolismo , Cromatografia Líquida de Alta Pressão , Humanos , Modelos Moleculares , Ligação Proteica , Estrutura Quaternária de Proteína , Soluções , Espectrofotometria
20.
Biol Open ; 3(7): 583-90, 2014 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-24928429

RESUMO

The node and notochord (and their equivalents in other species) are essential signaling centers, positioned along the plane of bilateral symmetry in developing vertebrate embryos. However, genes and mechanisms regulating morphogenesis of these structures and their placement along the embryonic midline are not well understood. In this work, we provide the first evidence that the position of the node and the notochord along the bilateral plane of symmetry are under genetic control and are regulated by integrin α5ß1 and fibronectin in mice. We found that the shape of the node is often inverted in integrin α5-null and fibronectin-null mutants, and that the positioning of node and the notochord is often skewed away from the perceived plane of embryonic bilateral of symmetry. Our studies also show that the shape and position of the notochord are dependent on the shape and embryonic placement of the node. Our studies suggest that fibronectin regulates the shape of the node by affecting apico-basal polarity of the nodal cells. Taken together, our data indicate that cell-extracellular matrix interactions mediated by integrin α5ß1 and fibronectin regulate the geometry of the node as well as the placement of the node and notochord along the plane of bilateral symmetry in the mammalian embryo.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA