Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Emerg Infect Dis ; 30(2): 391-394, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38270179

RESUMO

We report an outbreak of COVID-19 in a beaver farm in Mongolia in 2021. Genomic characterization revealed a unique combination of mutations in the SARS-CoV-2 of the infected beavers. Based on these findings, increased surveillance of farmed beavers should be encouraged.


Assuntos
COVID-19 , Humanos , COVID-19/epidemiologia , Mongólia/epidemiologia , SARS-CoV-2/genética , Fazendas , Surtos de Doenças
2.
Arch Virol ; 162(10): 3157-3160, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28667443

RESUMO

Between August and September 2016 pathological samples were collected from sheep and goats following suspected peste des petits ruminants (PPR) outbreaks in western Mongolia. RT-PCR followed by sequencing and phylogenetic analysis of the samples confirmed the presence of a PPR virus belonging to lineage IV. A full genome analysis of the viral RNA from one of the samples revealed a high similarity (99.0-99.5%) with PPR viruses currently circulating in China (2013-2015) indicating a common origin. This is the first genetic characterization of PPR virus in Mongolia and the data generated will have important implications for control and management of the disease in the region.


Assuntos
Genoma Viral , Peste dos Pequenos Ruminantes/virologia , Vírus da Peste dos Pequenos Ruminantes/genética , Animais , Mongólia/epidemiologia , Peste dos Pequenos Ruminantes/epidemiologia , Filogenia
3.
Viruses ; 16(4)2024 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-38675899

RESUMO

Lumpy skin disease virus (LSDV) is a member of the capripoxvirus (CPPV) genus of the Poxviridae family. LSDV is a rapidly emerging, high-consequence pathogen of cattle, recently spreading from Africa and the Middle East into Europe and Asia. We have sequenced the whole genome of historical LSDV isolates from the Pirbright Institute virus archive, and field isolates from recent disease outbreaks in Sri Lanka, Mongolia, Nigeria and Ethiopia. These genome sequences were compared to published genomes and classified into different subgroups. Two subgroups contained vaccine or vaccine-like samples ("Neethling-like" clade 1.1 and "Kenya-like" subgroup, clade 1.2.2). One subgroup was associated with outbreaks of LSD in the Middle East/Europe (clade 1.2.1) and a previously unreported subgroup originated from cases of LSD in west and central Africa (clade 1.2.3). Isolates were also identified that contained a mix of genes from both wildtype and vaccine samples (vaccine-like recombinants, grouped in clade 2). Whole genome sequencing and analysis of LSDV strains isolated from different regions of Africa, Europe and Asia have provided new knowledge of the drivers of LSDV emergence, and will inform future disease control strategies.


Assuntos
Genoma Viral , Doença Nodular Cutânea , Vírus da Doença Nodular Cutânea , Filogenia , Sequenciamento Completo do Genoma , Vírus da Doença Nodular Cutânea/genética , Vírus da Doença Nodular Cutânea/classificação , Vírus da Doença Nodular Cutânea/isolamento & purificação , Animais , Doença Nodular Cutânea/virologia , Doença Nodular Cutânea/epidemiologia , Bovinos , África Central/epidemiologia , África Ocidental/epidemiologia , Surtos de Doenças
4.
Vet Med Sci ; 9(6): 2676-2685, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37771165

RESUMO

BACKGROUND: Since 2005, highly pathogenic avian influenza A H5N1 viruses have spread from Asia worldwide, infecting poultry, humans and wild birds. Subsequently, global interest in avian influenza (AI) surveillance increased. OBJECTIVES: Mongolia presents an opportunity to study viruses in wild birds because the country has very low densities of domestic poultry and supports large concentrations of migratory water birds. METHODS: We conducted AI surveillance in Mongolia over two time periods, 2009-2013 and 2016-2018, utilizing environmental fecal sampling. Fresh fecal samples were collected from water bird congregation sites. Hemagglutinin (HA) and neuraminidase (NA) subtypes of positive samples were identified through viral isolation or molecular assays, with pathogenicity determined by HA subtype or sequencing the HA cleavage site. RESULTS: A total of 10,222 samples were collected. Of these, 7,025 fecal samples were collected from 2009 to 2013, and 3,197 fecal samples were collected from 2016 to 2018. Testing revealed 175 (1.7%) positive samples for low-pathogenicity influenza A, including 118 samples from 2009 to 2013 (1.7%) and 57 samples from 2016 to 2018 (1.8%). HA and NA subtyping of all positives identified 11 subtypes of HA and nine subtypes of NA in 29 different combinations. Within periods, viruses were detected more frequently during the fall season than in the early summer. CONCLUSION: Mongolia's critical wild bird habitat is positioned as a crossroad of multiple migratory flyways. Our work demonstrates the feasibility of using an affordable environmental fecal sampling approach for AI surveillance and contributes to understanding the prevalence and ecology of low-pathogenicity avian influenza viruses in this important location, where birds from multiple flyways mix.


Assuntos
Virus da Influenza A Subtipo H5N1 , Vírus da Influenza A , Influenza Aviária , Humanos , Animais , Influenza Aviária/epidemiologia , Mongólia/epidemiologia , Virulência , Animais Selvagens , Aves , Água
5.
Transbound Emerg Dis ; 68(5): 2787-2794, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33818903

RESUMO

African swine fever (ASF) is a severe haemorrhagic disease of domestic and wild pigs caused by the African swine fever virus (ASFV). In recent years, ASF has steadily spread towards new geographical areas, reaching Europe and Asia. On January 15th, 2019, Mongolia reported its first ASF outbreak to the World Organization for Animal Health (OIE), becoming, after China, the second country in the region affected by the disease. Following an event of unusual mortality in domestic pigs in Bulgan Province, a field team visited four farms and a meat market in the region to conduct an outbreak investigation and collect samples for laboratory analysis. Different organs were examined for ASF associated lesions, and total nucleic acid was extracted for real-time PCR, virus isolation and molecular characterization. The real-time PCR results confirmed ASFV DNA in 10 out of 10 samples and ASFV was isolated. Phylogenetic analysis established that ASFVs from Mongolia belong to genotype II and serogroup 8. The viruses were identical to each other, and to domestic pig isolates identified in China and Russia, based on the comparison of five genomic targets. Our results suggest a cross-border spread of ASFV, without indicating the source of infection.


Assuntos
Vírus da Febre Suína Africana , Febre Suína Africana , Doenças dos Suínos , Febre Suína Africana/epidemiologia , Vírus da Febre Suína Africana/genética , Animais , Genótipo , Mongólia , Filogenia , Sus scrofa , Suínos
6.
Transbound Emerg Dis ; 67(5): 2034-2049, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32181584

RESUMO

Mongolia is a large landlocked country in Central Asia and has one of the highest per capita livestock ratios in the world. During 2017, reported foot-and-mouth disease (FMD) outbreaks in Mongolia increased considerably, prompting widespread disease control measures. This study estimates the socio-economic impact of FMD and subsequent control measures on Mongolian herders. The analysis encompassed quantification of the impact on subsistence farmers' livelihoods and food security and estimation of the national-level gross losses due to reaction and expenditure during 2017. Data were collected from 112 herders across eight provinces that reported disease. Seventy of these herders had cases of FMD, while 42 did not have FMD in their animals but were within quarantine zones. Overall, 86/112 herders reported not drinking milk for a period of time and 38/112 reduced their meat consumption. Furthermore, 55 herders (49.1%) had to borrow money to buy food, medicines and/or pay bills or bank loans. Among herders with FMD cases, the median attack rate was 31.7%, 3.8% and 0.59% in cattle, sheep and goats, respectively, with important differences across provinces. Herders with clinical cases before the winter had higher odds of reporting a reduction in their meat consumption. National-level gross losses due to FMD in 2017 were estimated using government data. The estimate of gross economic loss was 18.4 billion Mongolian-tugriks (US$7.35 million) which equates to approximately 0.65% of the Mongolian GDP. The FMD outbreaks combined with current control measures have negatively impacted herders' livelihoods (including herders with and without cases of FMD) which are likely to reduce stakeholder advocacy. Possible strategies that could be employed to ameliorate the negative effects of the current control policy were identified. The findings and approach are relevant to other FMD endemic regions aiming to control the disease.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA