Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Ecol Lett ; 26(9): 1523-1534, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37330626

RESUMO

Despite host-fungal symbiotic interactions being ubiquitous in all ecosystems, understanding how symbiosis has shaped the ecology and evolution of fungal spores that are involved in dispersal and colonization of their hosts has been ignored in life-history studies. We assembled a spore morphology database covering over 26,000 species of free-living to symbiotic fungi of plants, insects and humans and found more than eight orders of variation in spore size. Evolutionary transitions in symbiotic status correlated with shifts in spore size, but the strength of this effect varied widely among phyla. Symbiotic status explained more variation than climatic variables in the current distribution of spore sizes of plant-associated fungi at a global scale while the dispersal potential of their spores is more restricted compared to free-living fungi. Our work advances life-history theory by highlighting how the interaction between symbiosis and offspring morphology shapes the reproductive and dispersal strategies among living forms.


Assuntos
Micorrizas , Simbiose , Animais , Humanos , Ecossistema , Fungos , Insetos , Plantas , Esporos Fúngicos
2.
ISME J ; 14(11): 2806-2815, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32759974

RESUMO

Increasing evidence suggests that degradation of biodiversity in human populated areas is a threat for the ecosystem processes that are relevant for human well-being. Fungi are a megadiverse kingdom that plays a key role in ecosystem processes and affects human well-being. How urbanization influences fungi has remained poorly understood, partially due to the methodological difficulties in comprehensively surveying fungi. Here we show that both aerial and soil fungal communities are greatly poorer in urban than in natural areas. Strikingly, a fivefold reduction in fungal DNA abundance took place in both air and soil samples already at 1 km scale when crossing the edge from natural to urban habitats. Furthermore, in the air, fungal diversity decreased with urbanization even more than in the soil. This result is counterintuitive as fungal spores are known to disperse over large distances. A large proportion of the fungi detectable in the air are specialized to natural habitats, whereas soil fungal communities comprise a large proportion of habitat generalists. The sensitivity of the aerial fungal community to anthropogenic disturbance makes this method a reliable and efficient bioindicator of ecosystem health in urban areas.


Assuntos
Micobioma , Biodiversidade , DNA Fúngico , Ecossistema , Fungos/genética , Humanos , Solo , Microbiologia do Solo , Urbanização
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA