Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Brain Sci ; 14(5)2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38790410

RESUMO

Previous studies demonstrate that ethanol dependence induced by repeating cycles of chronic intermittent ethanol vapor exposure (CIE) followed by protracted abstinence produces significant gray matter damage via myelin dysfunction in the rodent medial prefrontal cortex (mPFC) and alterations in neuronal excitability in the mPFC and the dentate gyrus (DG) of the hippocampus. Specifically, abstinence-induced neuroadaptations have been associated with persistent elevated relapse to drinking. The current study evaluated the effects of forced abstinence for 1 day (d), 7 d, 21 d, and 42 d following seven weeks of CIE on synaptic plasticity proteins in the mPFC and DG. Immunoblotting revealed reduced expression of CaMKII in the mPFC and enhanced expression of GABAA and CaMKII in the DG at the 21 d time point, and the expression of the ratio of GluN2A/2B subunits did not change at any of the time points studied. Furthermore, cognitive performance via Pavlovian trace fear conditioning (TFC) was evaluated in 3 d abstinent rats, as this time point is associated with negative affect. In addition, the expression of the ratio of GluN2A/2B subunits and a 3D structural analysis of neurons in the mPFC and DG were evaluated in 3 d abstinent rats. Behavioral analysis revealed faster acquisition of fear responses and reduced retrieval of fear memories in CIE rats compared to controls. TFC produced hyperplasticity of pyramidal neurons in the mPFC under control conditions and this effect was not evident or blunted in abstinent rats. Neurons in the DG were unaltered. TFC enhanced the GluN2A/2B ratio in the mPFC and reduced the ratio in the DG and was not altered by abstinence. These findings indicate that forced abstinence from CIE produces distinct and divergent alterations in plasticity proteins in the mPFC and DG. Fear learning-induced changes in structural plasticity and proteins contributing to it were more profound in the mPFC during forced abstinence.

2.
Neuropharmacology ; 185: 108438, 2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33333103

RESUMO

Alterations in the function of prefrontal cortex (PFC) and hippocampus have been implicated in underlying the relapse to alcohol seeking behaviors in humans and animal models of moderate to severe alcohol use disorders (AUD). Here we used chronic intermittent ethanol vapor exposure (CIE), 21d protracted abstinence following CIE (21d AB), and re-exposure to one vapor session during protracted abstinence (re-exposure) to evaluate the effects of chronic ethanol exposure on basal synaptic function, neuronal excitability and expression of key synaptic proteins that play a role in neuronal excitability in the medial PFC (mPFC) and dentate gyrus (DG). CIE consistently enhanced excitability of layer 2/3 pyramidal neurons in the mPFC and granule cell neurons in the DG. In the DG, this effect persisted during 21d AB. Re-exposure did not enhance excitability, suggesting resistance to vapor-induced effects. Analysis of action potential kinetics revealed that altered afterhyperpolarization, rise time and decay time constants are associated with the altered excitability during CIE, 21d AB and re-exposure. Molecular adaptations that may underlie increases in neuronal excitability under these different conditions were identified. Quantitative polymerase chain reaction of large-conductance potassium (BK) channel subunit mRNA in PFC and DG tissue homogenates did not show altered expression patterns of BK subunits. Western blotting demonstrates enhanced phosphorylation of Ca2⁺/calmodulin-dependent protein kinase II (CaMKII), and reduced phosphorylation of glutamate receptor GluN2A/2B subunits. These results suggest a novel relationship between activity of CaMKII and GluN receptors in the mPFC and DG, and neuronal excitability in these brain regions in the context of moderate to severe AUD.


Assuntos
Giro Denteado/efeitos dos fármacos , Etanol/administração & dosagem , Etanol/toxicidade , Exposição por Inalação/efeitos adversos , Neurônios/efeitos dos fármacos , Córtex Pré-Frontal/efeitos dos fármacos , Animais , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Giro Denteado/metabolismo , Masculino , Neurônios/metabolismo , Técnicas de Cultura de Órgãos , Córtex Pré-Frontal/metabolismo , Ratos , Ratos Wistar , Receptores de N-Metil-D-Aspartato/metabolismo
3.
Behav Brain Res ; 377: 112235, 2020 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-31521739

RESUMO

Adult female rats show greater running output compared with age-matched male rats, and the midbrain dopaminergic system may account for behavioral differences in running output. However, it is unknown if the lower running output in adult males can be regulated by wheel running experience during adolescence, and whether wheel running experience during adolescence will diminish the sex differences in running output during adulthood. We therefore determined and compared the exercise output in adult male and female rats that either had initiated voluntary wheel running only during adulthood or during adolescence. Our results demonstrate that running output in adult males were significantly higher when running was initiated during adolescence, and this higher running output was not significantly different from females. Running output did not differ during adulthood in females when wheel running was initiated during adolescence or during adulthood. Higher running output in females was associated with reduced expression of tyrosine hydroxylase and hyperactivation of calcium/calmodulin-dependent protein kinase II (CaMKII) in the dorsal striatum. Notably, running during adolescence-induced higher exercise output in adult males was associated with hyperactivation of CaMKII in the dorsal striatum, indicating a mechanistic role for CaMKII in running output. Together, the present results indicate sexually dimorphic adaptive biochemical changes in the dorsal striatum in rats that had escalated running activity, and highlight the importance of including sex as a biological variable in exploring neuroplasticity changes that predict enhanced exercise output in a voluntary physical activity paradigm.


Assuntos
Comportamento Animal/fisiologia , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Neostriado/metabolismo , Corrida/fisiologia , Caracteres Sexuais , Tirosina 3-Mono-Oxigenase/metabolismo , Fatores Etários , Animais , Feminino , Masculino , Modelos Animais , Fosforilação/fisiologia , Ratos , Ratos Long-Evans
4.
Brain Struct Funct ; 225(3): 1073-1088, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32246242

RESUMO

This study sought to determine if reducing dopamine D1 receptor (D1R) expression in the dorsal striatum (DS) via RNA-interference alters methamphetamine self-administration. A lentiviral construct containing a short hairpin RNA (shRNA) was used to knock down D1R expression (D1RshRNA). D1RshRNA in male rats increased responding for methamphetamine (i.v.) under a fixed-ratio schedule in an extended access paradigm, compared to D1R-intact rats. D1RshRNA also produced a vertical shift in a dose-response paradigm and enhanced responding for methamphetamine in a progressive-ratio schedule, generating a drug-vulnerable phenotype. D1RshRNA did not alter responding for sucrose (oral) under a fixed-ratio schedule compared to D1R-intact rats. Western blotting confirmed reduced D1R expression in methamphetamine and sucrose D1RshRNA rats. D1RshRNA reduced the expression of PSD-95 and MAPK-1 and increased the expression of dopamine transporter (DAT) in the DS from methamphetamine, but not sucrose rats. Sucrose density gradient fractionation was performed in behavior-naïve controls, D1RshRNA- and D1R-intact rats to determine the subcellular localization of D1Rs, DAT and D1R signaling proteins. D1Rs, DAT, MAPK-1 and PSD-95 predominantly localized to heavy fractions, and the membrane/lipid raft protein caveolin-1 (Cav-1) and flotillin-1 were distributed equally between buoyant and heavy fractions in controls. Methamphetamine increased localization of PSD-95, Cav-1, and flotillin-1 in D1RshRNA and D1R-intact rats to buoyant fractions. Our studies indicate that reduced D1R expression in the DS increases vulnerability to methamphetamine addiction-like behavior, and this is accompanied by striatal alterations in the expression of DAT and D1R signaling proteins and is independent of the subcellular localization of these proteins.


Assuntos
Transtornos Relacionados ao Uso de Anfetaminas/metabolismo , Corpo Estriado/metabolismo , Comportamento de Procura de Droga/fisiologia , Metanfetamina/administração & dosagem , Receptores de Dopamina D1/metabolismo , Animais , Condicionamento Operante/efeitos dos fármacos , Condicionamento Operante/fisiologia , Corpo Estriado/efeitos dos fármacos , Proteínas da Membrana Plasmática de Transporte de Dopamina/metabolismo , Comportamento de Procura de Droga/efeitos dos fármacos , Técnicas de Silenciamento de Genes , Masculino , RNA Interferente Pequeno/administração & dosagem , Ratos Long-Evans , Receptores de Dopamina D2/metabolismo
5.
Brain Sci ; 9(11)2019 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-31752398

RESUMO

The dorsal striatum is important for the development of drug addiction; however, the role of dopamine D1 receptor (D1R) expressing medium-sized spiny striatonigral (direct pathway) neurons (D1-MSNs) in regulating excessive methamphetamine intake remains elusive. Here we seek to determine if modulating D1-MSNs in the dorsal striatum alters methamphetamine self-administration in animals that have demonstrated escalation of self-administration. A viral vector-mediated approach was used to induce expression of the inhibitory (Gi coupled-hM4D) or stimulatory (Gs coupled-rM3D) designer receptors exclusively activated by designer drugs (DREADDs) engineered to specifically respond to the exogenous ligand clozapine-N-oxide (CNO) selectively in D1-MSNs in the dorsal striatum. CNO in animals expressing hM4D increased responding for methamphetamine compared to vehicle in a within subject treatment paradigm. CNO in animals that did not express DREADDs (DREADD naïve-CNO) or expressed rM3D did not alter responding for methamphetamine, demonstrating specificity for hM4D-CNO interaction in increasing self-administration. Postmortem tissue analysis reveals that hM4D-CNO animals had reduced Fos immunoreactivity in the dorsal striatum compared to rM3D-CNO animals and DREADD naïve-CNO animals. Cellular mechanisms in the dorsal striatum in hM4D-CNO animals reveal enhanced expression of D1R and Ca2+/calmodulin-dependent kinase II (CaMKII). Conversely, rM3D-CNO animals had enhanced activity of extracellular signal-regulated kinase (Erk1/2) and Akt in the dorsal striatum, supporting rM3D-CNO interaction in these animals compared with drug naïve controls, DREADD naïve-CNO and hM4D-CNO animals. Our studies indicate that transient inhibition of D1-MSNs-mediated strengthening of methamphetamine addiction-like behavior is associated with cellular adaptations that support dysfunctional dopamine signaling in the dorsal striatum.

6.
Brain Sci ; 8(7)2018 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-29949891

RESUMO

Lower impulse control is a known risk factor for drug abuse vulnerability. Chronic experience with illicit drugs is suggested to enhance impulsivity and thereby perpetuate addiction. However, the nature of this relationship (directionality, causality) with regard to alcohol use disorder is unclear. The present study tested the hypothesis that higher impulsivity is observed during chronic intermittent ethanol vapor inhalation (CIE; a model of ethanol dependence) and subsequent abstinence from CIE in adult Wistar rats. Impulsivity was tested using a differential reinforcement of low rates 15 s (DRL15) schedule using either nondrug reward (palatable modified sucrose pellets) or sweetened ethanol. A decrease in the efficiency of earning reinforcers (expressed as % reinforcers/responses) is indicative of a decrease in response inhibition or an increase in impulsivity. The efficiency of reinforcement and amount of reinforcers earned were unaltered in CIE and control animals when the reinforcer was sucrose. When the reinforcer was sweetened ethanol, the efficiency of reinforcement increased in CIE rats compared with controls only during protracted abstinence. Responding for sweetened ethanol under a progressive-ratio schedule was more rapid in CIE rats during protracted abstinence. Contrary to the initial hypothesis, impulsivity did not increase in rats with a history of CIE; instead, it decreased when ethanol was used as the reinforcer. Furthermore, although the efficiency of ethanol reinforcement did not differ between CIE and control animals during CIE, CIE rats escalated the amount of sweetened ethanol consumed, suggesting that behavioral adaptations that are induced by CIE in rats that are tested under a DRL15 schedule appear to be targeted toward the maximization of ethanol intake and thus may contribute to escalation and relapse.

7.
Brain Sci ; 8(12)2018 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-30487415

RESUMO

The present study examined differences in operant responses in adult male and female rats during distinct phases of addiction. Males and females demonstrated escalation in methamphetamine (0.05 mg/kg, i.v.) intake with females showing enhanced latency to escalate, and bingeing. Following protracted abstinence, females show reduced responses during extinction, and have greater latency to extinguish compared with males, indicating reduced craving. Females demonstrated lower context-driven reinstatement compared to males, indicating that females have less motivational significance to the context associated with methamphetamine. Whole-cell patch-clamp recordings on dentate gyrus (DG) granule cell neurons (GCNs) were performed in acute brain slices from controls and methamphetamine experienced male and female rats, and neuronal excitability was evaluated from GCNs. Reinstatement of methamphetamine seeking reduced spiking in males, and increased spiking in females compared to controls, demonstrating distinct neuroadaptations in intrinsic excitability of GCNs in males and females. Reduced excitability of GCNs in males was associated with enhanced levels of neural progenitor cells, expression of plasticity-related proteins including CaMKII, and choline acetyltransferase in the DG. Enhanced excitability in females was associated with an increased GluN2A/2B ratio, indicating changes in postsynaptic GluN subunit composition in the DG. Altered intrinsic excitability of GCNs was associated with reduced mossy fiber terminals in the hilus and pyramidal projections, demonstrating compromised neuroplasticity in the DG in both sexes. The alterations in excitability, plasticity-related proteins, and mossy fiber density were correlated with enhanced activation of microglial cells in the hilus, indicating neuroimmune responses in both sexes. Together, the present results indicate sexually dimorphic adaptive biochemical changes in excitatory neurotransmitter systems in the DG and highlight the importance of including sex as a biological variable in exploring neuroplasticity and neuroimmune changes that predict enhanced relapse to methamphetamine-seeking behaviors.

8.
Neuropharmacology ; 143: 239-249, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30273595

RESUMO

Adult male and female GFAP-TK transgenic rats experienced six weeks of chronic intermittent ethanol vapor inhalation (CIE). During the last week of CIE, a subset of male and female TK rats were fed with Valcyte to ablate neural progenitor cells (NPCs). Seventy-two hours after CIE cessation, all CIE and age-matched ethanol naïve controls experienced auditory trace fear conditioning (TFC). Twenty-four hours later all animals were tested for cue-mediated retrieval in the fear context. Adult male CIE rats showed a significant burst in NPCs paralleled by reduction in fear retrieval compared to naïve controls and Valcyte treated CIE rats. Adult female CIE rats did not show a burst in NPCs and showed similar fear retrieval compared to naïve controls and Valcyte treated CIE rats, indicating that CIE-mediated impairment in fear memory and its regulation by NPCs was sex dependent. Valcyte significantly reduced Ki-67 and NeuroD labeled cells in the dentate gyrus (DG) in both sexes, demonstrating a role for NPCs in reduced fear retrieval in males. Valcyte prevented adaptations in GluN2A receptor expression and synaptoporin density in the DG in males, indicating that NPCs contributed to alterations in plasticity-related proteins and mossy fiber projections that were associated with reduced fear retrieval. These data suggest that DG NPCs born during withdrawal and early abstinence from CIE are aberrant, and could play a role in weakening long-term memory consolidation dependent on the hippocampus.


Assuntos
Alcoolismo/fisiopatologia , Medo/fisiologia , Hipocampo/fisiopatologia , Memória/fisiologia , Células-Tronco Neurais/fisiologia , Alcoolismo/patologia , Alcoolismo/psicologia , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Depressores do Sistema Nervoso Central/efeitos adversos , Condicionamento Clássico/efeitos dos fármacos , Condicionamento Clássico/fisiologia , Etanol/efeitos adversos , Medo/efeitos dos fármacos , Feminino , Proteína Glial Fibrilar Ácida/genética , Proteína Glial Fibrilar Ácida/metabolismo , Hipocampo/efeitos dos fármacos , Hipocampo/patologia , Humanos , Antígeno Ki-67/metabolismo , Masculino , Memória/efeitos dos fármacos , Células-Tronco Neurais/efeitos dos fármacos , Células-Tronco Neurais/patologia , Ratos Long-Evans , Ratos Transgênicos , Caracteres Sexuais , Sinaptofisina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA