Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
BMC Plant Biol ; 24(1): 349, 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38684981

RESUMO

BACKGROUND: The rice-wheat cropping system is the prevailing agricultural method in the North-Western states of India, namely in the Indo-Gangetic plains. The practice of open burning of rice residue is frequently employed for expedient land preparation, but it has significant adverse impacts on both the environment and human health. These include the emission of greenhouse gases, loss of nutrients, elevated concentrations of particulate matter (PM), and disruption of the biological cycle. This research aims to investigate the implementation of effective management strategies in the rice-wheat cropping system, namely via the use of tillage-based crop cultivation techniques, stubble retention, and integration approaches. The objective is to enhance soil health features in order to augment crop yield and improve its attributes. RESULTS: The research was carried out using a split plot experimental design, consisting of three replications. The main plot consisted of four different cultivation methods, while the subplot included three genotypes of both rice and wheat. The research demonstrates the enhanced efficacy of residue application is significantly augmenting soil nutrient concentrations compared to standard tillage practices (P < 0.05). This was accomplished by an analysis of soil nutrient levels, namely nitrogen (N), phosphorus (P), potassium (K), and organic carbon (OC), at a depth of 0-15 cm. The implementation of natural farming, zero tillage, and reduced tillage practices resulted in decreases in rice grain yields of 34.0%, 16.1%, and 10.8%, respectively, as compared to conventional tillage methods. Similarly, the implementation of natural farming, zero tillage, and reduced tillage resulted in reductions in wheat grain yields of 59.4%, 10.9%, and 4.6% respectively, in comparison to conventional tillage practices. CONCLUSION: Regarding the individual crop genotypes investigated, it was continuously observed that Him Palam Lal Dhan 1 and HPW 368 displayed considerably greater grain yields for both rice and wheat during the two-year experimental period. Furthermore, when considering different cultivation methods, conventional tillage emerged as the most effective approach for obtaining higher productivity in both rice and wheat. Additionally, Him Palam Lal Dhan 1 and HPW 368 exhibited superior performance in terms of various crucial yield components for rice (such as panicle density, grains per panicle, panicle weight, and test weight) and wheat (including effective tiller density, grains per spike, spike weight, and 1000-grain weight).


Assuntos
Agricultura , Genótipo , Oryza , Solo , Triticum , Triticum/crescimento & desenvolvimento , Triticum/genética , Oryza/crescimento & desenvolvimento , Oryza/genética , Solo/química , Agricultura/métodos , Produtos Agrícolas/crescimento & desenvolvimento , Produtos Agrícolas/genética , Índia , Produção Agrícola/métodos
2.
Int J Phytoremediation ; 26(1): 114-130, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37405369

RESUMO

This study illustrates the salinity tolerance mechanisms in Volkameria inermis (a mangrove-associate), making it an ideal candidate for establishment in saline lands. The plant was exposed to 100, 200, 300, and 400 mM NaCl and the TI value indicates that the stress-imparting concentration was 400 mM. There was a decrease in biomass and tissue water, and a gradual increase in osmolytes like soluble sugars, proline, and free amino acids content was observed in plantlets with the increase in NaCl concentrations. Higher number of lignified cells in the vascular region of the plantlet's leaves treated with NaCl (400 mM) may influence the transport through the conducting tissues. SEM data reveals the presence of thick-walled xylem elements, an increased number of trichomes, and partially/fully closed stomata in the 400 mM NaCl-treated samples of V. inermis. In general, macro and micronutrient distribution tend to be affected in the NaCl-treated plantlets. However, Na content increased remarkably in plantlets treated with NaCl, and the highest accumulation was observed in roots (5.58-fold). Volkameria inermis can be a good option for phytodesalination in salt-affected areas since it is equipped with strong NaCl tolerance strategies and can be exploited for desalinization purpose of salt affected lands.


The phytodesalination potential of V. inermis was proved with the aid of physiochemical and anatomical studies, which was not yet revealed. The present study elucidated the level of NaCl tolerance in V. inermis and the development of associated adaptive responses.


Assuntos
Folhas de Planta , Cloreto de Sódio , Cloreto de Sódio/química , Cloreto de Sódio/metabolismo , Biodegradação Ambiental , Folhas de Planta/metabolismo , Salinidade
3.
Physiol Plant ; 175(2): e13881, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36840678

RESUMO

The significance of priming in enhancing abiotic stress tolerance is well-established in several important crops. Priming positively impacts plant growth and improves stress tolerance at multiple developmental stages, and seed priming is one of the most used methods. Seed priming influences the pre-germinative metabolism that ensures proper germination, early seedling establishment, enhanced stress tolerance and yield, even under unfavourable environmental conditions. Seed priming involves pre-exposure of seeds to mild stress, and this pre-treatment induces specific changes at the physiological and molecular levels. Interestingly, priming can improve the efficiency of the DNA repair mechanism, along with activation of specific signalling proteins and transcription factors for rapid and efficient stress tolerance. Notably, such acquired stress tolerance may be retained for longer duration, namely, later developmental stages or even subsequent generations. Epigenetic and chromatin-based mechanisms such as DNA methylation, histone modifications, and nucleosome positioning are some of the key molecular changes involved in priming/stress memory. Further, the retention of induced epigenetic changes may influence the priming-induced trans-generational stress memory. This review discusses known and plausible seed priming-induced molecular mechanisms that govern germination and stress memory within and across generations, highlighting their role in regulating the plant response to abiotic stresses. Understanding the molecular mechanism for activation of stress-responsive genes and the epigenetic changes resulting from seed priming will help to improve the resiliency of the crops for enhanced productivity under extreme environments.


Assuntos
Germinação , Plântula , Germinação/fisiologia , Estresse Fisiológico , Sementes , Epigênese Genética , Produtos Agrícolas/genética
4.
Int J Phytoremediation ; 25(8): 981-996, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36148488

RESUMO

The contamination of lands and water by heavy toxic metal(loid)s is an environmental issue that needs serious attention as it poses a major threat to public health. The persistence of heavy metals/metalloids in the environment as well as their potentially dangerous effects on organisms underpins the need to restore the areas contaminated by heavy toxic metal(loid)s. Soil restoration can be achieved through a variety of different methods. Being more cost-effective and environmentally sustainable, phytoremediation has recently replaced traditional processes like soil washing and burning. Many plants have been intensively explored to eliminate various heavy metals from polluted soils through phytoextraction, which is a commonly used phytoremediation approach. The ability of chelants to enhance phytoextraction potential has also received wide attention owing to their ability to elevate the efficiency of plants in removing heavy metal(loid)s. Chelants have been found to improve plant growth and the activity of the defense system. Several chelants, either non-biodegradable or biodegradable, have been reported to augment the phytoextraction efficiencies of various plants. The problem of the leaching of heavy metal(loid)s and secondary pollution caused by non-biodegradable chelants can be overcome by the use of biodegradable chelants to an extent. This review is a brief report focusing on recent articles on chelate-assisted phytoextraction of heavy metal (loids) As, Cd, Cu, Cr, Hg, Ni, Pb, U, and Zn.


The review "Chelate assisted phytoextraction for effective rehabilitation of heavy metal(loid)s contaminated land" elaborates on the chelated assisted phytoextraction of eight metals and one metalloids along with their effective chelants.


Assuntos
Mercúrio , Metais Pesados , Poluentes do Solo , Biodegradação Ambiental , Poluentes do Solo/análise , Metais Pesados/análise , Solo , Plantas
5.
Physiol Mol Biol Plants ; 29(9): 1225-1238, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38024954

RESUMO

Photosynthesis, as one of the most important chemical reactions, has powered our planet for over four billion years on a massive scale. This review summarizes and highlights the major contributions of Govindjee from fundamentals to applications in photosynthesis. His research included primary photochemistry measurements, in the picosecond time scale, in both Photosystem I and II and electron transport leading to NADP reduction, using two light reactions. He was the first to suggest the existence of P680, the reaction center of PSII, and to prove that it was not an artefact of Chlorophyll a fluorescence. For most photobiologists, Govindjee is best known for successfully exploiting Chlorophyll a fluorescence to understand the various steps in photosynthesis as well as to predict plant productivity. His contribution in resolving the controversy on minimum number of quanta in favor of 8-12 vs 3-4, needed for the evolution of one molecule of oxygen, is a milestone in the area of photosynthesis research. Furthermore, together with Don DeVault, he is the first to provide the correct theory of thermoluminescence in photosynthetic systems. His research productivity is very high: ~ 600 published articles and total citations above 27,000 with an h-index of 82. He is a recipient of numerous awards and honors including a 2022: Lifetime Achievement Award of the International Society of Photosynthesis Research. We hope that the retrospective of Govindjee described in this work will inspire and stimulate the readers to continue probing the photosynthetic apparatuses with new discoveries and breakthroughs.

6.
Ecotoxicology ; 31(1): 92-113, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34714461

RESUMO

The concentrations of cadmium (Cd) and zinc (Zn) in arable lands exceed the maximum permissible levels due to the excessive use of phosphorus fertilizers and fungicides by farmers. The increasing issues related to the application of agrochemicals have lead to the demand for the implementation of sustainable agricultural approaches. Association of arbuscular mycorrhizae with crop plants is an appropriate strategy due to the potential of these microorganisms to augment the metals tolerance of plants through the immobilization of Cd and Zn in an eco-friendly manner. In the present study, 45 d old Zea mays (var. CoHM6) plants inoculated with AM fungi (Claroideoglomus claroideum) were exposed to 1.95 g Zn Kg-1 soil and 0.45 g Cd Kg-1 soil. The major objective of this study was to determine the metabolic alterations in the leaves and roots of mycorrhizal and non-mycorrhizal plants exposed to CdCl2 and ZnSO4. Both non AM and AM plants exhibited alterations in the quantity of primary and secondary metabolites on exposure to Zn and Cd toxicity. Moreover, Zn and Cd-induced accumulation of γ-sitosterol reduced the quantity of neophytadiene (a well-known terpenoid) and aided the production of 3-ß-acetoxystigmasta-4,6,22-triene in maize leaves. Mycorrhization and heavy metal toxicity induced significant metabolic changes in the roots by producing 4,22-stigmastadiene-3-one, eicosane, 9,19-cyclolanost-24-en-3-ol, pentacosane, oxalic acid, heptadecyl hexyl ester, l-norvaline, and n-(2-methoxyethoxycarbonyl). In addition, the metal-induced variations in leaf and root lignin composition were characterized with the aid of the FTIR technique. Mycorrhization improved the tolerance of maize plants to Cd and Zn toxicity by stabilizing these metal ions in the soil and/or limiting their uptake into the plants, thus ensuring normal metabolic functions of their roots and shoots.


Assuntos
Micorrizas , Poluentes do Solo , Cádmio/toxicidade , Fungos , Micorrizas/química , Raízes de Plantas/química , Poluentes do Solo/análise , Poluentes do Solo/toxicidade , Zea mays , Zinco/toxicidade
7.
Int J Mol Sci ; 23(10)2022 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-35628428

RESUMO

Photosynthetic efficiency is significantly affected by both qualitative and quantitative changes during light exposure. The properties of light have a profound effect on electron transport and energy absorption in photochemical reactions. In addition, fluctuations in light intensity and variations in the spectrum can lead to a decrease in photosystem II efficiency. These features necessitate the use of a simple and suitable tool called chlorophyll a fluorescence to study photosynthetic reactions as a function of the aforementioned variables. This research implies that chlorophyll a fluorescence data can be used to determine precise light conditions that help photoautotrophic organisms optimally function.


Assuntos
Clorofila , Fotossíntese , Clorofila A , Fluorescência , Complexo de Proteína do Fotossistema II/metabolismo
8.
Environ Geochem Health ; 44(8): 2355-2373, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34365568

RESUMO

More than 2 billion people worldwide suffer from micronutrient malnutrition, sometimes known as hidden hunger. Zn malnutrition affects around a third of the world's population. The physicochemical features of soil, which limit the availability of Zn to plants, cause Zn deficiency. The eating habits of certain populations are more depended on Zn-deficient staple foods. Due to the high expense and certain interventions such as diet diversification, zinc supplementation and food fortification cannot be achieved in disadvantaged populations. Biofortification is the most practical technique for alleviating Zn malnutrition. Seed priming with nutrients is a promising biofortification approach for edible crops. Seed nutripriming with zinc is a cost-effective and environmentally benign approach of biofortification. Seeds can be nutriprimed with Zn using a variety of methods such as Zn fertilisers, Zn chelated compounds and Zn nanoparticles. Nutripriming with nanoparticles is gaining popularity these days due to its numerous advantages and vast biofortification potential. Seeds enriched with Zn also aid plant performance in Zn-deficient soil. Zn an essential trace element can regulate physiological, biochemical and molecular processes of plant cells and thus can enhance germination, growth, yield and bioavailable Zn in edible crops. Moreover, zinc emerges as an important element of choice for the management of COVID-19 symptoms.


Assuntos
COVID-19 , Desnutrição , Produtos Agrícolas/química , Humanos , Desnutrição/prevenção & controle , Sementes/química , Solo/química , Zinco/análise
9.
Physiol Plant ; 173(1): 460-471, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33305357

RESUMO

At present, the levels of cadmium (Cd) and zinc (Zn) in arable land are high and affect the growth and development of important food crops, including rice and maize. However, the application of silicon (Si) in contaminated areas increases the metal tolerance potential of these plants. This work aimed to study the variations in the distribution pattern of endogenous Si in various tissue regions in roots and leaves of rice and maize exposed to cadmium (Cd) and zinc (Zn) stresses. For these experiments, 45 day-old rice (var. Varsha) and maize (var. CoHM6) seedlings were treated with 1.95 g Zn and 0.45 g Cd kg-1 soil. Under Cd stress, the distribution of Si was high in the cortical region of the root, but under Zn stress, the highest Si deposition was found in the endodermis. In leaves, Si deposition was high in both the mesodermis and stelar regions of Cd-treated plants but more Si was deposited in the mesodermis tissue of Zn-treated plants. Heavy metal (Cd and Zn) accumulation and Si deposition showed a strong negative correlation in the roots of rice and maize plants. Complexation with metal ions and redistribution of Si were considered the major mechanisms in Si-mediated mitigation of Cd and Zn stress. Cd- and Zn-induced anatomical changes, such as endodermal thickening, deposits in the xylary elements and aerenchyma formation in the roots of rice and maize, were also associated with the Si distribution.


Assuntos
Oryza , Poluentes do Solo , Cádmio/toxicidade , Folhas de Planta/química , Raízes de Plantas/química , Silício/farmacologia , Poluentes do Solo/toxicidade , Zea mays , Zinco/toxicidade
10.
Int J Phytoremediation ; 23(5): 492-504, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33001743

RESUMO

The stress-buffering effects of cotyledonary leaves of Ricinus communis and the protection thus offered to the true leaves upon exposure to copper stress was performed by analyzing bioaccumulation of Cu and associated metabolic processes in the presence and absence of cotyledonary leaves. One-month-old seedlings of R. communis were treated with various concentrations of CuSO4 for 6 d under hydroponics with quarter strength modified Hoagland medium. Even though the photosynthetic pigments showed a decreasing trend with an increase in CuSO4 concentration and days of exposure in cotyledonary and true leaves, it was significant in true leaves with excised cotyledonary leaves. The results of chlorophyll a fluorescence parameters indicated that toxic levels of CuSO4 do not impart any major negative effect on the photochemistry of true leaves along with cotyledonary leaves. The analysis of osmolality, malondialdehyde, and metabolites showed a significantly increasing trend in true leaves with excised cotyledonary leaves. The above observations were strongly supported by higher Cu bioaccumulation in true leaves with excised cotyledonary leaves. The results suggest that the cotyledonary leaves have got the potential to evade Cu toxicity and thereby R. communis can be effectively used for the phytoremediation of Cu contaminated lands.


Assuntos
Cobre , Poluentes do Solo , Biodegradação Ambiental , Clorofila A , Cobre/análise , Cobre/toxicidade , Folhas de Planta/química , Ricinus , Poluentes do Solo/análise , Poluentes do Solo/toxicidade
11.
Int J Mol Sci ; 22(24)2021 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-34948146

RESUMO

Copper (Cu) is an essential element involved in various metabolic processes in plants, but at concentrations above the threshold level, it becomes a potential stress factor. The effects of two different cytokinins, kinetin (KIN) and 6-benzylaminopurine (BAP), on chlorophyll a fluorescence parameters, stomatal responses and antioxidation mechanisms in castor (Ricinus communis L.) under Cu2+ toxicity was investigated. Ricinus communis plants were exposed to 80 and 160 µM CuSO4 added to the growth medium. Foliar spraying of 15 µM KIN and BAP was carried out on these seedlings. The application of these cytokinins enhanced the tissue water status, chlorophyll contents, stomatal opening and photosynthetic efficiency in the castor plants subjected to Cu2+ stress. The fluorescence parameters, such as Fm, Fv/Fo, Sm, photochemical and non-photochemical quantum yields, energy absorbed, energy trapped and electron transport per cross-sections, were more efficiently modulated by BAP application than KIN under Cu2+ toxicity. There was also effective alleviation of reactive oxygen species by enzymatic and non-enzymatic antioxidation systems, reducing the membrane lipid peroxidation, which brought about a relative enhancement in the membrane stability index. Of the various treatments, 80 µM CuSO4 + BAP recorded the highest increase in photosynthetic efficiency compared to other cytokinin treatments. Therefore, it can be concluded that BAP could effectively alleviate the detrimental effects of Cu2+toxicity in cotyledonary leaves of R. communis by effectively modulating stomatal responses and antioxidation mechanisms, thereby enhancing the photosynthetic apparatus' functioning.


Assuntos
Compostos de Benzil/farmacologia , Cobre/farmacologia , Fotossíntese/efeitos dos fármacos , Purinas/farmacologia , Ricinus/metabolismo , Plântula/metabolismo
12.
Arch Microbiol ; 202(1): 1-16, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31552478

RESUMO

The acerbic elevation of toxic metal ions in arable lands, enhance the risk of their accumulation and biomagnification in crops as well as in humans. Phytoremediation is an eco-friendly approach to clear metal-contaminated lands by making use of metal accumulation potential of plants; which are referred to as hyperaccumulators. This phytoremediation potential can be enhanced with the symbiotic association between the root of hyperaccumulators and arbuscular mycorrhizae. Modification of root morphology, enhancement of antioxidants biosynthesis, and the increase in shoot biomass are the changes observed in plants as a result of indirect influence of arbuscular mycorrhizae. Direct influence of arbuscular mycorrhizae on enhancing metal tolerance of plants includes immobilization strategies, adsorption of metals on to the hyphal wall and glomalin exudation. Furthermore, we have discussed arbuscular mycorrhizal induced increment in the metal tolerance potential of plants through the alteration in various metabolic processes with special emphasis to the phenylpropanoid pathway.


Assuntos
Biodegradação Ambiental , Metais/toxicidade , Micorrizas/metabolismo , Raízes de Plantas/microbiologia , Plantas/efeitos dos fármacos , Plantas/microbiologia , Simbiose/fisiologia , Biomassa , Poluentes do Solo/toxicidade
13.
Physiol Mol Biol Plants ; 26(3): 551-565, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32205930

RESUMO

NaCl and PEG stresses have negative impacts on seed germination and early seedling establishment in Oryza sativa. The present study was designed to ascertain the influence of different priming techniques (Hydro priming-HyP, Halo priming-HP, UV-B priming-UP) in enhancing oxidative and anti-oxidative mechanisms during seed germination phase in response to NaCl and PEG stresses tolerance of three rice varieties (Neeraja, Vaisakh and Vyttila 6). NaCl and PEG stresses caused delayed germination rate, enhanced reactive oxygen species content and thereby increased lipid peroxidation rate. Different priming techniques significantly hastened the metabolites/non enzymatic antioxidant contents (total sugars, total phenolics, free amino acids, proline, ascorbate and glutathione) as well as activities of antioxidant enzymes (superoxide dismutase, catalase, ascorbate peroxidase and guaiacol peroxidase), and thus reduced oxidative stress damages caused by NaCl and PEG stresses in rice seedlings. Seed priming techniques imparted abiotic stress tolerance not only to sensitive varieties but also additional tolerance potential to tolerant varieties. All three priming techniques protects the plants from toxicity caused by NaCl and PEG stresses but halo priming had proved to be more successful.

14.
Int J Phytoremediation ; 21(14): 1423-1441, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31244328

RESUMO

Copper is an essential micronutrient for normal plant metabolism and it is involved in number of physiological processes in plants but at the same time, at concentrations above threshold level, it acts as a potential stress factor. In this study, the phytoremediation potential of Bruguiera cylindrica (L.) Blume with respect to Cu was evaluated for the first time. Various physiochemical and anatomical parameters were analyzed in three-month-old healthy plantlets of B. cylindrica on exposure to different concentrations of CuSO4 (0, 0.05, 0.15, and 0.25 mM)for 20 d. Higher uptake and accumulation of Cu in the roots indicates that the roots are the primary site of Cu accumulation and thus the plant perform as an excluder. Tolerance index values (TI > 60) reveals the phytoremediation potential of this plant. Metabolites are accumulated in plants to cope up with the oxidative damage due to Cu stress. Increased rate of proline and free amino acids content and soluble sugar content especially in leaves of B. cylindrica subjected to CuSO4 contributes toward higher osmolality so as to counter the reduced water transport from roots. Nonenzymatic antioxidants like ascorbic acid, glutathione, and phenolics are the ROS scavenging compounds in the Defense system of B. cylindrica toward higher concentrations of CuSO4, and of these, phenolics accumulation plays greater role in the antioxidative function in B. cylindrica in response to Cu stress. The histochemistry of B. cylindrica revealed the prominent occurrence of star-shaped calcium oxalate crystals when exposed to 0.25 mM CuSO4, and it seems to be a prominent defense mechanism under Cu stress. Also a remarkable finding was the accumulation of Cu in the xylem vessels of plants on exposure of 0.25 mM CuSO4 as compared to control. The infrared spectra were analyzed to compare the functional groups in the phenolics and carbohydrate constituents of control and CuSO4-treated B. cylindrica plantlets and it indicated that carboxyl and hydroxyl groups are involved in the Cu binding so as to achieve tolerance to Cu. Thus this study revealed the potential role of B. cylindrica as a promising candidate for phytostabilization of copper.


Assuntos
Cobre , Rhizophoraceae , Antioxidantes , Biodegradação Ambiental , Estresse Oxidativo , Raízes de Plantas
15.
Int J Phytoremediation ; 21(9): 866-877, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31016993

RESUMO

Effect of cadmium (Cd) on the primary metabolic activities and elemental distribution in roots was explored in Acanthus ilicifolius L., a halophyte with phytostabilization potential. The rate of photosynthesis decreased in the CdCl2 treated plants and this reduction was mainly attributed to the reduction of leaf area, photosynthetic pigments, impaired gaseous exchange caused by the stomatal closure and tissue water status. However, respiration rate was significantly higher in the CdCl2 treated plants which aid the plant with additional energy required for the metabolic activities. Distribution of essential elements in the roots exhibited significant differences from that of control, which indicate the nutritional adaptation developed by A. ilicifolius under the influence of toxic metal ions. Thus, Cd toxicity is neutralized through the resource allocation from the growth process to processes that increase the fitness of the plant to encounter adverse environmental condition. In addition, the absorbed Cd is retained in the cortical cells of root thereby preventing the upward movement to shoot thereby making the plant a potential candidate for phytostabilization of Cd.


Assuntos
Acanthaceae , Cádmio , Biodegradação Ambiental , Clorofila , Fotossíntese/efeitos dos fármacos , Raízes de Plantas , Plantas Tolerantes a Sal
16.
Int J Phytoremediation ; 19(4): 319-326, 2017 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-27593613

RESUMO

Heavy metal pollution in mangrove wetlands has become a growing matter of concern as it serves as sink and source for toxic heavy metals including cadmium (Cd). The present study evaluates the phytostabilization potential of a halophyte, Acanthus ilicifolius L., toward Cd under hydroponic culture conditions. Accumulation, translocation, and effects of Cd on the antioxidant system of A. ilicifolius were studied. Results indicated that A. ilicifolius accumulated Cd mainly in roots (96.4%) as compared to stem (1.4%) and leaves (0.6%) and the accumulated Cd is retained in root rather than being translocated to shoots as indicated by TF < 0.26. Moreover, malondialdehyde (MDA) content increased upon Cd treatment, which is further detoxified by the enzymatic and nonenzymatic antioxidant mechanism. Antioxidants like proline, ascorbate, and amino acid recorded an increased accumulation in the Cd-treated plants followed by the upregulation of antioxidant enzymes like superoxide dismutase (SOD), catalase (CAT), guaiacol peroxidase (GPX), and ascorbate peroxidase (APX). Therefore, the rate of sugar accumulation was found to be decreased in plants treated with Cd as compared to the control plants. Thus, having relatively high BCFroot (69.3) and low TFshoot (0.26) values, A. ilicifolius can be suggested as a potential candidate for phytostabilization of Cd in mangrove wetlands.


Assuntos
Acanthaceae/metabolismo , Cádmio/metabolismo , Plantas Tolerantes a Sal/metabolismo , Poluentes do Solo/metabolismo , Biodegradação Ambiental , Hidroponia , Áreas Alagadas
17.
Environ Monit Assess ; 189(6): 282, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28534307

RESUMO

The potential of a halophyte species-Acanthus ilicifolius L.-to phytostabilize zinc (Zn) grown under hydroponics culture conditions was critically evaluated in this study. The propagules after treating with ZnSO4 (4 mM) were analysed for the bioaccumulation pattern, translocation rate of Zn to the shoot, effects of Zn accumulation on organic solutes and the antioxidant defence system. It was found that most of the Zn absorbed by the plant was retained in the root (47%) and only a small portion was transported to stem (12%) and leaves (11%). This is further confirmed by the high BCFroot (bioconcentration factor) value (1.99) and low TFshoot/root (translocation factor) value (0.5), which indicates the increased retention of Zn in the root itself. Moreover, treatment with Zn resulted in an increased accumulation of organic solutes (proline, free amino acids and soluble sugars) and non-enzymatic antioxidants (ascorbate, glutathione and phenol) in the leaf and root tissue. Likewise, the activity of antioxidant enzymes namely superoxide dismutase (SOD), catalase (CAT), guaiacol peroxidase (GPX) and ascorbate peroxidase (APX) recorded an enhanced activity upon exposure to Zn as compared to the control plants. Thus, the increased tolerance for Zn in A. ilicifolius may be attributed to the efficient free radical scavenging mechanisms operating under excess Zn. In addition, being a high accumulator (53.7 mg of Zn) and at the same time a poor translocator of Zn to the aerial parts of the plant, A. ilicifolius can be recommended as a potential candidate for the phytostabilization of Zn in the contaminated wetlands.


Assuntos
Biodegradação Ambiental , Poluentes do Solo/metabolismo , Zinco/metabolismo , Acanthaceae , Antioxidantes/metabolismo , Ascorbato Peroxidases/metabolismo , Catalase/metabolismo , Monitoramento Ambiental , Glutationa/metabolismo , Hidroponia , Peroxidase , Folhas de Planta/química , Raízes de Plantas/química , Plantas Tolerantes a Sal , Poluentes do Solo/análise , Poluentes do Solo/toxicidade , Superóxido Dismutase/metabolismo , Zinco/análise , Zinco/toxicidade
18.
Environ Monit Assess ; 188(7): 425, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27329476

RESUMO

The influence of arbuscular mycorrhizal fungi (AMF) (Glomus spp.) on some physiological and biochemical characteristics of bioenergy grass Saccharum arundinaceum subjected to drought stress was studied. The symbiotic association of Glomus spp. was established with S. arundinaceum, a potential bioenergy grass as evident from the increase in percentage of root infection and distribution frequency of vesicles when compared with non-arbuscular mycorrhizal plants. AMF-treated plants exhibited an enhanced accumulation of osmolytes such as sugars and proline and also increased protein content under drought. AMF association significantly increased the accumulation of non-enzymatic antioxidants like phenols, ascorbate and glutathione as well as enhanced the activities of antioxidant enzymes such as SOD (superoxide dismutase), APX (ascorbate peroxidase) and GPX (guaiacol peroxidase) resulting in reduced lipid peroxidation in S. arundinaceum. AMF symbiosis also ameliorated the drought-induced reduction of total chlorophyll content and activities of photosystem I and II. The maximum quantum efficiency of PS II (F v/F m) and potential photochemical efficiency (F v/F o) were higher in AMF plants as compared to non-AMF plants under drought stress. These results indicate that AMF association alleviate drought stress in S. arundinaceum by the accumulation of osmolytes and non-enzymatic antioxidants and enhanced activities of antioxidant enzymes, and hence, the photosynthetic efficiency is improved resulting in increased biomass production. AMF association with energy grasses also improves the acclimatization of S. arundinaceum for growing in marginal lands of drought-affected soils.


Assuntos
Antioxidantes/metabolismo , Biocombustíveis , Secas , Monitoramento Ambiental/métodos , Micorrizas/crescimento & desenvolvimento , Saccharum/microbiologia , Ácido Ascórbico/metabolismo , Biomassa , Clorofila/metabolismo , Glutationa/metabolismo , Peroxidação de Lipídeos/fisiologia , Fenóis/metabolismo , Fotossíntese/fisiologia , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Raízes de Plantas/microbiologia , Saccharum/crescimento & desenvolvimento , Saccharum/metabolismo
19.
Environ Monit Assess ; 187(9): 551, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26239568

RESUMO

A comparative study was designed to elucidate the effect of iron and mercury on the morphological and anatomical changes as well as bioaccumulation potential in Chromolaena odorata. Plants were grown in half-strength Hoagland nutrient medium artificially contaminated with known quantities of HgCl2 (15 µM) and FeCl3 (1000 µM). Bioaccumulation of Hg and Fe was maximum in the root, and comparatively reduced bioaccumulation was recorded in the stem and leaves. Microscopic studies on morphology and anatomy revealed development of trichomes and lenticels on the stem and modified trichomes on leaves. Localized deposits of stained masses in various internal parts of the root, stem and leaf also were observed. Differential adaptation/strategy of C. odorata to attain tolerance towards Hg and Fe and phytoremediation potential of the plant is discussed.


Assuntos
Chromolaena/fisiologia , Ferro/análise , Mercúrio/análise , Adaptação Fisiológica , Biodegradação Ambiental , Monitoramento Ambiental , Microscopia Eletrônica de Varredura , Folhas de Planta/química , Folhas de Planta/ultraestrutura , Raízes de Plantas/química , Raízes de Plantas/ultraestrutura , Caules de Planta/química , Caules de Planta/ultraestrutura
20.
Physiol Mol Biol Plants ; 20(3): 303-12, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25049457

RESUMO

The investigation was carried out to study the effect of halopriming on NaCl and polyethylene glycol-6000 (PEG-6000) induced stress tolerance potential of three Vigna radiata (L.) Wilczek varieties, with varied abiotic stress tolerance potential. Halopriming is a seed priming technique in which the seeds were soaked in various salt solutions (in this study NaCl was used). The results of the study indicated that the application of stresses (both NaCl and PEG) induced retardation of growth attributes (measured in terms of shoot length, fresh weight, dry weight) and decrease in physiological attributes like total chlorophyll content, metabolites, photosynthetic and mitochondrial activity of the seedlings in all three V. radiata (L.) varieties. However, halopriming of the seeds could reduce the extent of decrease in these biological attributes. NaCl and PEG stress also caused increase in MDA content (a product of membrane lipid peroxidation) in all the varieties studied and this increase was significantly minimized under halopriming. From the present investigation it was evident that among the green gram varieties studied, Pusa Vishal, a NaCl tolerant variety showed enhanced tolerance to NaCl and PEG induced stress, when the seeds were subjected to halopriming followed by Pusa Ratna (stress sensitive variety). Pusa 9531 (drought tolerant variety) also showed positive halopriming effects but it was less significant when compared to other two varieties. It could be concluded that halopriming improved the drought and salinity stress tolerance potential of all varieties and it was significantly higher in the Pusa Vishal as compared to Pusa 9531 and Pusa Ratna.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA