Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Neurosci ; 42(4): 601-618, 2022 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-34844990

RESUMO

Precise information flow from the hippocampus (HP) to prefrontal cortex (PFC) emerges during early development and accounts for cognitive processing throughout life. On flip side, this flow is selectively impaired in mental illness. In mouse models of psychiatric risk mediated by gene-environment interaction (GE), the prefrontal-hippocampal coupling is disrupted already shortly after birth. While this impairment relates to local miswiring in PFC and HP, it might be also because of abnormal connectivity between the two brain areas. Here, we test this hypothesis by combining in vivo electrophysiology and optogenetics with in-depth tracing of projections and monitor the morphology and function of hippocampal afferents in the PFC of control and GE mice of either sex throughout development. We show that projections from the hippocampal CA1 area preferentially target layer 5/6 pyramidal neurons and interneurons, and to a lesser extent layer 2/3 neurons of prelimbic cortex (PL), a subdivision of PFC. In neonatal GE mice, sparser axonal projections from CA1 pyramidal neurons with decreased release probability reach the PL. Their ability to entrain layer 5/6 oscillatory activity and firing is decreased. These structural and functional deficits of hippocampal-prelimbic connectivity persist, yet are less prominent in prejuvenile GE mice. Thus, besides local dysfunction of HP and PL, weaker connectivity between the two brain areas is present in GE mice throughout development.SIGNIFICANCE STATEMENT Poor cognitive performance in mental disorders comes along with prefrontal-hippocampal dysfunction. Recent data from mice that model the psychiatric risk mediated by gene-environment (GE) interaction identified the origin of deficits during early development, when the local circuits in both areas are compromised. Here, we show that sparser and less efficient connectivity as well as cellular dysfunction are the substrate of the weaker excitatory drive from hippocampus (HP) to prefrontal cortex (PFC) as well as of poorer oscillatory coupling between the two brain areas in these mice. While the structural and functional connectivity deficits persist during the entire development, their magnitude decreases with age. The results add experimental evidence for the developmental miswiring hypothesis of psychiatric disorders.


Assuntos
Interação Gene-Ambiente , Hipocampo/crescimento & desenvolvimento , Transtornos Mentais/genética , Transtornos Mentais/fisiopatologia , Rede Nervosa/crescimento & desenvolvimento , Córtex Pré-Frontal/crescimento & desenvolvimento , Animais , Animais Recém-Nascidos , Modelos Animais de Doenças , Potenciais Pós-Sinápticos Excitadores/fisiologia , Feminino , Hipocampo/química , Masculino , Transtornos Mentais/psicologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Rede Nervosa/química , Córtex Pré-Frontal/química , Fatores de Risco
2.
J Cell Biol ; 165(4): 565-73, 2004 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-15148307

RESUMO

Mutations in the gene of the peripheral myelin protein zero (P0) give rise to the peripheral neuropathies Charcot-Marie-Tooth type 1B disease (CMT1B), Déjérine-Sottas syndrome, and congenital hypomyelinating neuropathy. To investigate the pathomechanisms of a specific point mutation in the P0 gene, we generated two independent transgenic mouse lines expressing the pathogenic CMT1B missense mutation Ile106Leu (P0sub) under the control of the P0 promoter on a wild-type background. Both P0sub-transgenic mouse lines showed shivering and ultrastructural abnormalities including retarded myelination, onion bulb formation, and dysmyelination seen as aberrantly folded myelin sheaths and tomacula in all nerve fibers. Functionally, the mutation leads to dispersed compound muscle action potentials and severely reduced conduction velocities. Our observations support the view that the Ile106Leu mutation acts by a dominant-negative gain of function and that the P0sub-transgenic mouse represents an animal model for a severe, tomaculous form of CMT1B.


Assuntos
Doença de Charcot-Marie-Tooth/genética , Doença de Charcot-Marie-Tooth/patologia , Proteína P0 da Mielina/genética , Bainha de Mielina/patologia , Nervos Periféricos/anormalidades , Nervos Periféricos/patologia , Potenciais de Ação/genética , Sequência de Aminoácidos/genética , Substituição de Aminoácidos , Animais , Doença de Charcot-Marie-Tooth/metabolismo , Modelos Animais de Doenças , Regulação da Expressão Gênica/genética , Genes Dominantes , Humanos , Camundongos , Camundongos Transgênicos , Microscopia Eletrônica , Transtornos dos Movimentos/genética , Transtornos dos Movimentos/metabolismo , Transtornos dos Movimentos/patologia , Mutação de Sentido Incorreto/genética , Bainha de Mielina/metabolismo , Bainha de Mielina/ultraestrutura , Condução Nervosa/genética , Nervos Periféricos/ultraestrutura , Regiões Promotoras Genéticas/genética , RNA Mensageiro/metabolismo
3.
Biochem Biophys Res Commun ; 308(4): 940-9, 2003 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-12927810

RESUMO

The tenascin-R (TN-R) gene encodes a multidomain extracellular matrix glycoprotein belonging to the tenascin family. It is detectable mainly in oligodendrocytes and neuronal subpopulations of the central nervous system. In this report, we describe the structure of the 5'-region of the mouse TN-R gene and characterise the activity of its promoter. By in silico cloning and genome walking, we have deduced the organisation of the gene and identified the promoter sequence by 5'-RACE technology. TN-R transcripts in adult mouse brain contain non-coding exons 1 and 2 as demonstrated by the reverse transcriptase-polymerase chain reaction. The promoter displays its activity in cultured cells of neural origin, but not in a fibroblast-like cell line or an undifferentiated teratocarcimoma cell line. As for the human and rat genes, the elements required for the full and cell type-specific activity of the promoter are contained in exon 1 and 167 bp upstream of this exon. The mouse TN-R promoter sequence is similar to that of rat and human in that it displays similarly unusual features: it lacks any classical TATA-box or CAAT-box, GC-rich regions or initiator elements. The promoter contains consensus sequences for binding of a variety of transcription factors, notably p53/p73 and glucocorticoid receptors.


Assuntos
Regiões Promotoras Genéticas , Tenascina/genética , Animais , Sequência de Bases , Encéfalo/embriologia , Diferenciação Celular , Clonagem Molecular , DNA Complementar/metabolismo , Proteínas de Ligação a DNA/metabolismo , Éxons , Fibroblastos/metabolismo , Genes Supressores de Tumor , Genoma , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Modelos Genéticos , Dados de Sequência Molecular , Neurônios/metabolismo , Proteínas Nucleares/metabolismo , Reação em Cadeia da Polimerase , Ligação Proteica , RNA Mensageiro/metabolismo , Ratos , Receptores de Glucocorticoides/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Homologia de Sequência do Ácido Nucleico , Especificidade da Espécie , Transcrição Gênica , Transfecção , Células Tumorais Cultivadas , Proteína Tumoral p73 , Proteína Supressora de Tumor p53/metabolismo , Proteínas Supressoras de Tumor
4.
Mol Cell Neurosci ; 26(1): 191-203, 2004 May.
Artigo em Inglês | MEDLINE | ID: mdl-15121190

RESUMO

Cell adhesion molecules have been implicated in neural development and hippocampal synaptic plasticity. Here, we investigated the role of the neural cell adhesion molecule L1 in regulation of basal synaptic transmission and plasticity in the CA1 area of the hippocampus of juvenile mice. We show that theta-burst stimulation (TBS) and pairing of low-frequency presynaptic stimulation with depolarization of postsynaptic CA1 pyramidal cells induced similar levels of LTP in L1-deficient and wild-type mice. The basal excitatory synaptic transmission and density of asymmetric excitatory synapses in the stratum radiatum were also normal in L1-deficient mice. Since L1 is expressed not only by principal cells but also by inhibitory interneurons, we recorded inhibitory postsynaptic currents (IPSCs) evoked in CA1 pyramidal cells by minimal stimulation of perisomatic interneurons. L1-deficient mice showed a reduction in the mean amplitude of putative unitary IPSCs, higher values of the coefficient of amplitude variation, higher number of failures in transmitter release, and a reduction in frequency but not amplitude of miniature IPSCs. The use-dependent modulation of inhibitory transmission by paired-pulse or short tetanic stimulation was, however, normal in L1-deficient mice. The physiological abnormalities correlated with a strong reduction in the density of inhibitory active zones, indicating that L1 is involved in establishing inhibitory perisomatic synapses in the hippocampus.


Assuntos
Hipocampo/metabolismo , Molécula L1 de Adesão de Célula Nervosa/deficiência , Inibição Neural/genética , Sinapses/metabolismo , Transmissão Sináptica/genética , Ácido gama-Aminobutírico/metabolismo , Animais , Diferenciação Celular/genética , Regulação para Baixo/genética , Estimulação Elétrica , Regulação da Expressão Gênica no Desenvolvimento/genética , Hipocampo/crescimento & desenvolvimento , Hipocampo/ultraestrutura , Técnicas In Vitro , Interneurônios/metabolismo , Interneurônios/ultraestrutura , Camundongos , Camundongos Knockout , Microscopia Eletrônica , Molécula L1 de Adesão de Célula Nervosa/genética , Células Piramidais/metabolismo , Células Piramidais/ultraestrutura , Sinapses/ultraestrutura , Ritmo Teta
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA