Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Mov Disord ; 33(10): 1632-1642, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29756234

RESUMO

Parkinson's disease motor symptoms are treated with levodopa, but long-term treatment leads to disabling dyskinesia. Altered synaptic transmission and maladaptive plasticity of corticostriatal glutamatergic projections play a critical role in the pathophysiology of dyskinesia. Because the noble gas xenon inhibits excitatory glutamatergic signaling, primarily through allosteric antagonism of the N-methyl-d-aspartate receptors, we aimed to test its putative antidyskinetic capabilities. We first studied the direct effect of xenon gas exposure on corticostriatal plasticity in a murine model of levodopa-induced dyskinesia We then studied the impact of xenon inhalation on behavioral dyskinetic manifestations in the gold-standard rat and primate models of PD and levodopa-induced dyskinesia. Last, we studied the effect of xenon inhalation on axial gait and posture deficits in a primate model of PD with levodopa-induced dyskinesia. This study shows that xenon gas exposure (1) normalized synaptic transmission and reversed maladaptive plasticity of corticostriatal glutamatergic projections associated with levodopa-induced dyskinesia, (2) ameliorated dyskinesia in rat and nonhuman primate models of PD and dyskinesia, and (3) improved gait performance in a nonhuman primate model of PD. These results pave the way for clinical testing of this unconventional but safe approach. © 2018 The Authors. Movement Disorders published by Wiley Periodicals, Inc. on behalf of International Parkinson and Movement Disorder Society.


Assuntos
Antiparkinsonianos/efeitos adversos , Discinesia Induzida por Medicamentos/tratamento farmacológico , Levodopa/efeitos adversos , Transtornos Parkinsonianos/tratamento farmacológico , Xenônio/uso terapêutico , Administração por Inalação , Animais , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Discinesia Induzida por Medicamentos/etiologia , Transtornos Neurológicos da Marcha/tratamento farmacológico , Transtornos Neurológicos da Marcha/etiologia , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Intoxicação por MPTP/tratamento farmacológico , Camundongos , Camundongos Transgênicos , Oxidopamina/toxicidade , Transtornos Parkinsonianos/induzido quimicamente , Transtornos Parkinsonianos/complicações , Ratos , Transtornos de Sensação/tratamento farmacológico , Transtornos de Sensação/etiologia , Simpatolíticos/toxicidade , Fatores de Tempo
2.
J Neurochem ; 142(1): 14-28, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28398653

RESUMO

Despite its low chemical reactivity, the noble gas xenon possesses a remarkable spectrum of biological effects. In particular, xenon is a strong neuroprotectant in preclinical models of hypoxic-ischemic brain injury. In this study, we wished to determine whether xenon retained its neuroprotective potential in experimental settings that model the progressive loss of midbrain dopamine (DA) neurons in Parkinson's disease. Using rat midbrain cultures, we established that xenon was partially protective for DA neurons through either direct or indirect effects on these neurons. So, when DA neurons were exposed to l-trans-pyrrolidine-2,4-dicarboxylic acid so as to increase ambient glutamate levels and generate slow and sustained excitotoxicity, the effect of xenon on DA neurons was direct. The vitamin E analog Trolox also partially rescued DA neurons in this setting and enhanced neuroprotection by xenon. However, in the situation where DA cell death was spontaneous, the protection of DA neurons by xenon appeared indirect as it occurred through the repression of a mechanism mediated by proliferating glial cells, presumably astrocytes and their precursor cells. Xenon also exerted trophic effects for DA neurons in this paradigm. The effects of xenon were mimicked and improved by the N-methyl-d-aspartate glutamate receptor antagonist memantine and xenon itself appeared to work by antagonizing N-methyl-d-aspartate receptors. Note that another noble gas argon could not reproduce xenon effects. Overall, present data indicate that xenon can provide protection and trophic support to DA neurons that are vulnerable in Parkinson's disease. This suggests that xenon might have some therapeutic value for this disorder.


Assuntos
Anestésicos Inalatórios/farmacologia , Neurônios Dopaminérgicos/efeitos dos fármacos , Mesencéfalo/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Xenônio/farmacologia , Animais , Antioxidantes/farmacologia , Morte Celular/efeitos dos fármacos , Células Cultivadas , Cromanos/farmacologia , Ácidos Dicarboxílicos/antagonistas & inibidores , Ácidos Dicarboxílicos/toxicidade , Antagonistas de Aminoácidos Excitatórios/farmacologia , Memantina/farmacologia , Técnicas de Cultura de Órgãos , Pirrolidinas/antagonistas & inibidores , Pirrolidinas/toxicidade , Ratos , Ratos Wistar
3.
J Surg Res ; 201(1): 44-52, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26850183

RESUMO

BACKGROUND: Evidence supports the use of ex vivo lung perfusion (EVLP) as a platform for active reconditioning before transplantation to increase the potential donor pool and to reduce the incidence of primary graft dysfunction. A promising reconditioning strategy is the administration of inhaled noble gases based on their organoprotective effects. Our aim was to validate a porcine warm ischemic lung injury model and investigate postconditioning with argon (Ar) or xenon (Xe) during prolonged EVLP. METHODS: Domestic pigs were divided in four groups (n = 5 per group). In the negative control group, lungs were flushed immediately. In the positive control (PC) and treatment (Ar, Xe) groups, lungs were flushed after a warm ischemic interval of 2-h in situ. All grafts were evaluated and treated during normothermic EVLP for 6 h. In the control groups, lungs were ventilated with 70% N2/30% O2 and in the treatment groups with 70% Ar/30% O2 or 70% Xe/30% O2, respectively. Outcome parameters were physiological variables (pulmonary vascular resistance, peak airway pressures, and PaO2/FiO2), histology, wet-to-dry weight ratio, bronchoalveolar lavage, and computed tomography scan. RESULTS: A significant difference between negative control and PC for pulmonary vascular resistance, peak airway pressures, PaO2/FiO2, wet-to-dry weight ratio, histology, and computed tomography-imaging was observed. No significant differences between the injury group (PC) and the treatment groups (Ar, Xe) were found. CONCLUSIONS: We validated a reproducible prolonged 6-h EVLP model with 2 h of warm ischemia and described the physiological changes over time. In this model, ventilation during EVLP with Ar or Xe administered postinjury did not improve graft function.


Assuntos
Argônio , Transplante de Pulmão , Perfusão , Respiração Artificial , Xenônio , Animais , Sobrevivência de Enxerto , Pulmão/imunologia , Pulmão/patologia , Masculino , Testes de Função Respiratória , Suínos , Isquemia Quente
4.
Alcohol Clin Exp Res ; 38(2): 557-63, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24118055

RESUMO

BACKGROUND: In recent years, the glutamate theory of alcoholism has emerged as a major theory in the addiction research field and N-methyl-d-aspartate (NMDA) receptors have been shown to play a major role in alcohol craving and relapse. The NMDA receptors are considered as the primary side of action of the anesthetic gases xenon (Xe) and nitrous oxide (N2 O). Despite the rapid on/off kinetics of these gases on the NMDA receptor, a brief gas exposure can induce an analgesic or antireward effect lasting several days. The aim of this study was to examine the effect of both Xe and N2 O on alcohol-seeking and relapse-like drinking behavior (measured as the alcohol deprivation effect) in Wistar rats. METHODS: We used 2 standard procedures-the alcohol deprivation model with repeated deprivation phases and the cue-induced reinstatement model of alcohol seeking-to study the effect of 2 brief gas exposures of either Xe, N2 O, or control gas on relapse-like drinking and alcohol-seeking behavior. RESULTS: Here, we show that exposure to Xe during the last 24 hours of abstinence produced a trend toward reduced ethanol intake during the first alcohol re-exposure days. In addition, Xe gas exposure significantly decreased the cue-induced reinstatement of alcohol-seeking behavior. N2 O had no effect on either behavior. CONCLUSIONS: Xe reduces alcohol-seeking behavior in rats and may therefore also interfere with craving in human alcoholics.


Assuntos
Alcoolismo/tratamento farmacológico , Alcoolismo/psicologia , Anestésicos Inalatórios/uso terapêutico , Comportamento de Procura de Droga/efeitos dos fármacos , Óxido Nitroso/uso terapêutico , Xenônio/uso terapêutico , Animais , Câmaras de Exposição Atmosférica , Condicionamento Operante/efeitos dos fármacos , Sinais (Psicologia) , Extinção Psicológica/efeitos dos fármacos , Masculino , Atividade Motora/efeitos dos fármacos , Ratos , Ratos Wistar , Recidiva , Autoadministração , Síndrome de Abstinência a Substâncias/psicologia
5.
Pain Res Manag ; 20(6): 309-15, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26371891

RESUMO

BACKGROUND: Despite numerous pharmacological approaches, there are no common analgesic drugs that produce meaningful relief for the majority of patients with neuropathic pain. Although nitrous oxide (N2O) is a weak analgesic that acts via opioid-dependent mechanisms, it is also an antagonist of the N-methyl-D-aspartate receptor (NMDAR). The NMDAR plays a critical role in the development of pain sensitization induced by nerve injury. OBJECTIVE: Using the chronic constriction injury of the sciatic nerve in male rats as a preclinical model of neuropathic pain, the first aim of the present study was to evaluate the lowest N2O concentration and the shortest time of N2O postinjury exposure that would produce persistent relief of neuropathic pain. The second aim was to compare the effects of N2O with gabapentin, a reference drug used in human neuropathic pain relief. METHODS: Changes in the nociceptive threshold were evaluated using the paw pressure vocalization test in rats. RESULTS: Among the various N2O concentrations tested, which ranged from 25% to 50%, only 50% N2O single exposure for 1 h 15 min induced a persistent (minimum of three weeks) and significant (60%) reduction in pain hypersensitivity. A single gabapentin dose (75 mg/kg to 300 mg/kg, intraperitoneally) induced an acute (1 h to 1 h 30 min) dose-dependent effect, but not a persistent effect such as that observed with N2O. CONCLUSIONS: These preclinical results suggest that N2O is advantageous for long-lasting neuropathic pain relief after sciatic nerve injury compared with other drugs used in humans such as gabapentinoids or NMDAR antagonists. The present preclinical study provides a rationale for developing comparative clinical studies.


Assuntos
Analgésicos/uso terapêutico , Hiperalgesia/tratamento farmacológico , Neuralgia/tratamento farmacológico , Neuralgia/fisiopatologia , Óxido Nitroso/uso terapêutico , Limiar da Dor/efeitos dos fármacos , Aminas/uso terapêutico , Animais , Ácidos Cicloexanocarboxílicos/uso terapêutico , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Gabapentina , Hiperalgesia/etiologia , Masculino , Medição da Dor , Ratos , Ratos Sprague-Dawley , Fatores de Tempo , Resultado do Tratamento , Ácido gama-Aminobutírico/uso terapêutico
6.
Med Gas Res ; 5: 8, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26113973

RESUMO

BACKGROUND: New gas therapies using inert gases such as xenon and argon are being studied, which would require chronically administered repeating doses. The pharmacokinetics of this type of administration has not been addressed in the literature. METHODS: A physiologically based pharmacokinetics (PBPK) model for humans, pigs, mice, and rats has been developed to investigate the unique aspects of the chronic administration of inert gas therapies. The absorption, distribution, metabolism and excretion (ADME) models are as follows: absorption in all compartments is assumed to be perfusion limited, no metabolism of the gases occurs, and excretion is only the reverse process of absorption through the lungs and exhaled. RESULTS: The model has shown that there can be a residual dose, equivalent to constant administration, for chronic repeated dosing of xenon in humans. However, this is not necessarily the case for small animals used in pre-clinical studies. CONCLUSIONS: The use of standard pharmacokinetics parameters such as area under the curve would be more appropriate to assess the delivered dose of chronic gas administration than the gas concentration in the delivery system that is typically reported in the scientific literature because species and gas differences can result in very different delivered doses.

7.
Cell Cycle ; 12(16): 2636-42, 2013 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-23907115

RESUMO

Although chemically non-reactive, inert noble gases may influence multiple physiological and pathological processes via hitherto uncharacterized physical effects. Here we report a cell-based detection system for assessing the effects of pre-defined gas mixtures on the induction of apoptotic cell death. In this setting, the conventional atmosphere for cell culture was substituted with gas combinations, including the same amount of oxygen (20%) and carbon dioxide (5%) but 75% helium, neon, argon, krypton, or xenon instead of nitrogen. The replacement of nitrogen with noble gases per se had no effects on the viability of cultured human osteosarcoma cells in vitro. Conversely, argon and xenon (but not helium, neon, and krypton) significantly limited cell loss induced by the broad-spectrum tyrosine kinase inhibitor staurosporine, the DNA-damaging agent mitoxantrone and several mitochondrial toxins. Such cytoprotective effects were coupled to the maintenance of mitochondrial integrity, as demonstrated by means of a mitochondrial transmembrane potential-sensitive dye and by assessing the release of cytochrome c into the cytosol. In line with this notion, argon and xenon inhibited the apoptotic activation of caspase-3, as determined by immunofluorescence microscopy coupled to automated image analysis. The antiapoptotic activity of argon and xenon may explain their clinically relevant cytoprotective effects.


Assuntos
Apoptose/efeitos dos fármacos , Argônio/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Citoproteção/efeitos dos fármacos , Xenônio/farmacologia , Técnicas de Cultura de Células , Linhagem Celular Tumoral , Citocromos c/metabolismo , Humanos , Microscopia de Fluorescência , Mitoxantrona/toxicidade , Estaurosporina/toxicidade
8.
Toxicol Sci ; 115(1): 238-52, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20133372

RESUMO

Cigarette smoke (CS) imposes a strong oxidative burden on exposed tissues resulting in a severely disturbed oxidant/antioxidant balance, which in the context of chronic exposure is assumed to be a key contributor to CS-related diseases. Because of its emerging central role in orchestrating the general cellular antioxidant response, the pathway leading to the activation of the transcription factor Nrf2 has received mounting attention over the past decade in investigations aimed at elucidating CS-induced pathophysiological mechanisms. To comprehensively characterize the impact of Nrf2 in acute and subchronic smoking scenarios, Nrf2(-/-) mice and their wild-type (wt) ICR littermates were exposed to either ambient air (sham exposure) or one of three doses of CS for up to 5 months, with two postexposure endpoints of 1 and 13 days. The lungs of the mice were monitored for transcriptomic changes on a genome-wide level, which confirmed an impaired expression of antioxidant and phase 2-related genes in CS-exposed Nrf2(-/-) mice. Importantly, in comparison to wt mice, an attenuated cell cycle/mitotic response and intensified stress gene expression pattern were observed in exposed Nrf2(-/-) mice, which was paralleled by clear dose-dependent effects on alveolar destruction and impaired lung function. In contrast, the inflammation-related transcriptional response and scores for various bronchioalveolar inflammation parameters were qualitatively and quantitatively similar in CS-exposed mice of both genotypes. Taken together, these results confirm the protective nature of Nrf2 in oxidative stress scenarios and suggest that the enhanced emphysematous phenotype exhibited by CS-exposed Nrf2(-/-) mice is more likely caused by an imbalance in cell loss and regeneration than by increased inflammation.


Assuntos
Ciclo Celular/genética , Enfisema/genética , Predisposição Genética para Doença , Fator 2 Relacionado a NF-E2/genética , Fumaça/efeitos adversos , Transcrição Gênica/genética , Animais , Antioxidantes/metabolismo , Cruzamento , Modelos Animais de Doenças , Enfisema/induzido quimicamente , Feminino , Perfilação da Expressão Gênica , Exposição por Inalação , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos ICR , Camundongos Knockout , Fator 2 Relacionado a NF-E2/deficiência , Análise de Sequência com Séries de Oligonucleotídeos , Estresse Oxidativo/efeitos dos fármacos , Transcrição Gênica/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA