RESUMO
Lipid nanoparticles (LNPs) are currently the most commonly used non-viral gene delivery system. Their physiochemical attributes, encompassing size, charge and surface modifications, significantly affect their behaviors both in vivo and in vitro. Nevertheless, the effects of these properties on the transfection and distribution of LNPs after intramuscular injection remain elusive. In this study, LNPs with varying sizes, lipid-based charges and PEGylated lipids were formulated to study their transfection and in vivo distribution. Luciferase mRNA (mLuc) was entraped in LNPs as a model nucleic acid molecule. Results indicated that smaller-sized LNPs and those with neutral potential presented superior transfection efficiency after intramuscular injection. Surprisingly, the sizes and charges did not exert a notable influence on the in vivo distribution of the LNPs. Furthermore, PEGylated lipids with shorter acyl chains contributed to enhanced transfection efficiency due to their superior cellular uptake and lysosomal escape capabilities. Notably, the mechanisms underlying cellular uptake differed among LNPs containing various types of PEGylated lipids, which was primarily attributed to the length of their acyl chain. Together, these insights underscore the pivotal role of nanoparticle characteristics and PEGylated lipids in the intramuscular route. This study not only fills crucial knowledge gaps but also provides significant directions for the effective delivery of mRNA via LNPs.
Assuntos
Lipídeos , Nanopartículas , Tamanho da Partícula , Polietilenoglicóis , RNA Mensageiro , Transfecção , Nanopartículas/química , Animais , Polietilenoglicóis/química , Injeções Intramusculares , Lipídeos/química , Transfecção/métodos , Camundongos , Técnicas de Transferência de Genes , Humanos , Luciferases/metabolismo , Luciferases/genética , Propriedades de Superfície , LipossomosRESUMO
In vitro dissolution that predicts the in vivo performance of solid preparations is extremely important in formulation optimization. Fraction absorbed (Fa) has been used to screen in vitro dissolution protocols based on the idea of in vitro-in vivo correlation (IVIVC) but failed to increase the success rate due to the inaccuracy of the Fa. The essence of IVIVC is the correlation between in vitro dissolution and in vivo dissolution. We tried to establish in vitro dissolution protocol via similarity with in vivo dissolution using aripiprazole (APZ) as a model drug. Hybrid APZ crystals (APZ-HCs) were prepared by physically embedding aggregation-caused quenching (ACQ) fluorophores inside the lattice to measure the in vivo dissolution. The process did not change the physicochemical properties and crystallinity of APZ. The fluorophore illuminated APZ crystals but was quenched upon dissolution of APZ-HCs in aqueous media, enabling monitoring intact APZ-HCs in real-time. The good correlation between fluorescent quenching and dissolution of APZ-HCs justified reliable quantification of intact APZ crystals. The residual percentage of fluorescence intensity in rats treated by APZ-HCs was recorded with time, which was converted to in vivo dissolution by the difference from 100%. The in vivo dissolution was validated with the Fa. The in vitro dissolution profile of APZ was set up via a similarity factor larger than 50 in comparison with the in vivo dissolution. The study provides a novel idea and method to establish in vitro dissolution protocol.
Assuntos
Aripiprazol , Ratos , Animais , Aripiprazol/química , SolubilidadeRESUMO
Ionic liquids (ILs) recently draw attention for addressing unmet needs in biomedicines. By converting solids into liquids, ILs are emerging as novel platforms to overcome some critical drawbacks associated with the application of solid or crystalline active pharmaceutical ingredients (APIs). ILs have shown promise in liquidizing or solubilizing APIs, or as green solvents, novel permeation enhancers or active ingredients, alone or synergistically with APIs. Meanwhile, challenges turn up in company with the deepening understanding of ILs as drug delivery carrier systems. This perspective aims to provide a sketchy overview on the status quo with specific attention paid to new problems arising from the utilization of ILs-based technologies in drug delivery.
Assuntos
Líquidos Iônicos , Sistemas de Liberação de Medicamentos , Líquidos Iônicos/química , Preparações Farmacêuticas , SolventesRESUMO
Antimicrobial resistance has become a serious threat to global health. New antimicrobials are thus urgently needed. Ionic liquids (ILs), salts consisting of organic cations and anions with melting points less than 100°C, have been recently found to be promising in antimicrobial field as they may disrupt the bacterial wall and membrane and consequently lead to cell leakage and death. Different types of antimicrobial ILs are introduced in the review, including cationic, polymeric, and anionic ILs. Being the main type of the antimicrobial ILs, the review focuses on the structure and the antimicrobial mechanisms of cationic ILs. The quantitative structure-activity relationship (QSAR) models of the cationic ILs are also included. Increase in alkyl chain length and lipophilicity is beneficial to increase the antimicrobial effects of cationic ILs. Polymeric ILs are homopolymers of monomer ILs or copolymers of ILs and other monomers. They have great potential in the field of antibiotics as they provide stronger antimicrobial effects than the sum of the monomer ILs. Anionic ILs are composed of existing anionic antibiotics and organic cations, being capable to enhance the solubility and bioavailability of the original form. Nonetheless, the medical application of antimicrobial ILs is limited by the toxicity. The structural optimization aided by QSAR model and combination with existing antibiotics may provide a solution to this problem and expand the application range of ILs in antimicrobial field.
Assuntos
Anti-Infecciosos , Líquidos Iônicos , Ânions , Antibacterianos/farmacologia , Anti-Infecciosos/química , Anti-Infecciosos/farmacologia , Cátions/química , Líquidos Iônicos/química , Líquidos Iônicos/farmacologia , SaisRESUMO
PURPOSE: The aim of this study is to convert tretinoin (Tr), an active pharmaceutical ingredient (API), into ionic liquid for improving aqueous solubility and permeability of Tr in transdermal drug delivery applications. METHODS: Three ionic liquids of Tr (TrILs) were synthesized through neutralization reactions, which were characterized to confirm the compositions and ionic interactions. The in vitro drug release studies and skin penetration tests were carried out to assess the performance of formulations containing TrILs. RESULTS: The TrIL formed by choline and Tr at the molar ratio of 2:1 (2[Ch][Tr]), was found to have prominent solubility, stability as well as permeability. In contrast with the insoluble Tr, 2[Ch][Tr] presented as clear and transparent aqueous solution even after diluted to 14%. The aqueous solution of 2[Ch][Tr] demonstrated better permeation effect, of which the solution with 20% of 2[Ch][Tr] showed the optimal delivery efficiency in both epidermis (2.09 ± 0.18) and dermis (3.31 ± 0.48), realizing the improvement on the permeability of API. Meanwhile, TrILs can be easily fabricated as o/w emulsions as transdermal formulation. The emulsions are also able to improve the skin permeability of Tr, though the enhanced effect is inferior to TrILs solutions. CONCLUSIONS: Ionic liquid technology can be used to improve solubility and permeability of Tr, providing a high potential strategy for the development of topical formulations and the desired transdermal application of drugs.
Assuntos
Líquidos Iônicos , Administração Cutânea , Colina , Emulsões/metabolismo , Líquidos Iônicos/metabolismo , Líquidos Iônicos/farmacologia , Permeabilidade , Pele/metabolismo , Absorção Cutânea , Solubilidade , Tretinoína/farmacologia , Água/metabolismoRESUMO
Targeted delivery of drug micro or nanocarriers has been attained via parenteral routes, especially the intravenous route. Conventionally, oral targeting refers to site-specific delivery and triggered drug release at local sites within the gastrointestinal tract (GIT), or targeting to the enteric epithelia through ligand-receptor or transporter interactions. Beyond that barrier, the concept of peroral targeting has not been clarified. Nevertheless, this is possible as long as drug carriers are able to be absorbed into the systemic circulation intact. Recent findings on in vivo translocation of drug micro or nanocarriers shed light on potential peroral targeting to remote sites beyond the GIT. Sequential processes of penetration across the enteric epithelia, transportation via the lymphatics and ultimate convergence with the systemic circulation are involved in the underlying mechanisms. The microfold cell (M cell) pathway plays a leading role in breaking through the enteric epithelial barrier. Accumulating evidence confirms primary targeting of a series of lipid and polymeric micro or nanocarriers to organs and tissues of the mononuclear phagocyte systems (MPS), such as the liver, spleen, lungs and kidneys. The total amount of lymph-bound particles could reach 8%, as evidenced by quantification of glucan microparticles that specifically bind M cell. Migration or translocation of micro or nanocarrier-bearing macrophages attains secondary targeting of the engulfed micro or nanocarriers to distant sites far beyond the MPS. The current findings foresee a probability of targeting to sites beyond the GIT. However, the content of exposure of micro or nanocarriers at target sites and potential therapeutic or diagnostic promises are yet to be unraveled.
Assuntos
Portadores de Fármacos , Nanopartículas , Sistemas de Liberação de Medicamentos , Trato Gastrointestinal , Lipídeos , PolímerosRESUMO
The application of physiologically based pharmacokinetic models to nanoparticles is still very restricted and challenging, owing to the complicated in vivo transport mechanisms involving nanoparticles, including phagocytosis, enhanced permeability and retention effects, cellular recognition, and internalisation, enzymatic degradation, lymphatic transport, and changes in physical properties. In our study, five nanoparticle formulations were synthesised using polycaprolactone as a framework material and methoxy poly (ethylene glycol)-poly(ε-caprolactone) as a long-circulating decorating material, as well as types of environmentally responsive near-infrared aza-boron-dipyrromethene dyes. According to quantification data and direct visualisation involving specific organs, a phagocytosis physiologically based pharmacokinetic model was developed to describe the dynamics of nanoparticles within and between organs in mice, considering cellular mechanisms involving phagocytosis and enhanced permeability and retention effects. Our results offer a better understanding of the in vivo fate of polymeric nanoparticles.
Assuntos
Corantes/química , Sistemas de Liberação de Medicamentos , Nanopartículas/química , Farmacocinética , Animais , Simulação por Computador , Humanos , Camundongos , Poliésteres/química , Polietilenoglicóis/química , Polímeros/químicaRESUMO
Surface charge is a crucial factor that determines the in vivo behaviors of drug nanocarriers following administration via different routes. However, there is still a lack of comprehensive knowledge of how surface charges affect the in vivo behaviors of particles, especially for oral delivery. In this study, solid lipid nanoparticles (SLNs), as model drug nanocarriers, are modified to bear either anionic, cationic, or net neutral surface charges. The effect of surface charges on oral absorption of intact SLNs was investigated by tracking the in vivo transport of the particles. The fluorescent bioimaging strategy exploits the aggregation-caused quenching property to discriminate the particles. Both in vitro and in vivo lipolysis studies confirm slowed-down lipolysis by anionic charges in comparison with both unmodified and net neutral SLNs but accelerated degradation by cationic charges. The scanning of ex vivo tissues and organs reveals limited absorption of unmodified SLNs into the circulation. Nevertheless, all three types of surface charge modifications are able to enhance the oral absorption of intact SLNs with the fastest and highest absorption observed for net neutral SLNs, possibly owing to promoted mucus penetration. Anionic SLNs, though repulsed by the mucus layer, show the second highest absorption owing to enhanced lymphatic transport. The efficacy of cationic charge modification is less significant due to entrapment and retention in mucus layers as well as increased lability to lipolysis. In conclusion, surface charges may serve as initiators to guide the in vivo behaviors and enhance the oral absorption of intact SLNs.
Assuntos
Portadores de Fármacos/química , Sistemas de Liberação de Medicamentos/métodos , Lipídeos/química , Nanopartículas/química , Administração Oral , Animais , Humanos , Lipólise , Masculino , Camundongos , Ratos , Ratos Sprague-DawleyRESUMO
Lipid-drug conjugates (LDCs) of a poorly soluble and poorly permeable drug silybin (SB) and lipids with different chain lengths (6C, 12C, 18C) are synthesized and formulated into solid lipid nanoparticles (SLNs). The in vivo fate of LDCs as well as SLNs is investigated by tracking either SB or LDCs or SLNs. LDCs are prone to be hydrolyzed by lipases either in simulated gastrointestinal media or in Caco-2 cell lines in a lipid chain length-dependent mode. The oral bioavailability of SB is enhanced by 5-7-fold in comparison with a fast-release formulation. No integral LDCs are detected in plasma confirms the readily degradable nature of LDCs. The absorption of LDCs by enteric epithelia and subsequent transportation into circulation might play a leading role in absorption enhancement, whereas the contribution of then M-cell pathway is not as remarkable. A shorter lipid chain favors earlier lipolysis and faster absorption along the intestine-to-circulation path.
Assuntos
Antioxidantes/farmacocinética , Lipídeos/química , Nanopartículas/química , Silimarina/farmacocinética , Administração Oral , Animais , Antioxidantes/administração & dosagem , Antioxidantes/química , Antioxidantes/metabolismo , Disponibilidade Biológica , Células CACO-2 , Linhagem Celular , Humanos , Hidrólise , Metabolismo dos Lipídeos , Nanopartículas/metabolismo , Ratos , Silibina , Silimarina/administração & dosagem , Silimarina/química , Silimarina/metabolismoRESUMO
One of the biggest challenges in bioimaging of nanoparticles is how to identify integral particles from bulk signals of probes. Signals of free probes are always mistakenly counted into total signals of particles. In this study, in vivo fate of intravenous polymeric micelles (PMs, mPEG2.5k-PDLLA2.5k) was explored using a highly sensitive near-infrared environment-responsive fluorescent probe. This probe is able to emit fluorescence when embedded in nanocarriers but quench spontaneously and absolutely upon release into water, based on the aggregation-caused quenching effect, which means that the interference generated by free probes can be completely diminished. Analysis of blood-borne fluorescence reveals rapid clearance of PMs from blood following a tricompartmental pharmacokinetic model. Live imaging shows pervasive distribution of PMs throughout the body, and a tendency of accumulation to extremities with fluorescence density 3-5 times higher than the trunk. Ex vivo examination reveals that most PMs are found in vital organs following an order of lung > liver > spleen > heart > kidney in concentration, but an order of liver > lung > spleen > heart ≈ kidney in total amount. The distribution to other organs and tissues is even lower, and to brain, negligible. It is concluded that the biodistribution of PMs to vital organs and extremities warns of potential toxicity and can be translated to explain the toxicity of its commercial counterpart with similar chain lengths.
Assuntos
Diagnóstico por Imagem/métodos , Micelas , Polímeros/química , Portadores de Fármacos/química , Nanopartículas/química , Poliésteres/química , Polietilenoglicóis/químicaRESUMO
PURPOSE: To achieve controlled release of integral nanoparticles by the osmotic pump strategy using nanostructured lipid carriers (NLCs) as model nanoparticles. METHODS: NLCs was prepared by a hot-homogenization method, transformed into powder by lyophilization, and formulated into osmotic pump tablets (OPTs). Release of integral NLCs was visualized by live imaging after labeling with a water-quenching fluorescent probe. Effects of formulation variables on in vitro release characteristics were evaluated by measuring the model drug fenofibrate. Pharmacokinetics were studied in beagle dogs using the core tablet and a micronized fenofibrate formulation as references. RESULTS: NLCs are released through the release orifices of the OPTs as integral nanoparticles. Near zero-order kinetics can be achieved by optimizing the influencing variables. After oral administration, decreased C max and steady drug levels for as long as over 24 h are observed. NLC-OPTs show an oral bioavailability of the model drug fenofibrate similar to that of the core tablets, which is about 1.75 folds that of a fast-release formulation. CONCLUSION: Controlled release of integral NLCs is achieved by the osmotic pump strategy.
Assuntos
Sistemas de Liberação de Medicamentos/métodos , Bombas de Infusão Implantáveis , Lipídeos/administração & dosagem , Lipídeos/farmacocinética , Nanopartículas/administração & dosagem , Nanopartículas/metabolismo , Animais , Estudos Cross-Over , Cães , Fenofibrato/administração & dosagem , Fenofibrato/farmacocinética , Pressão OsmóticaRESUMO
The development of polymeric carriers loaded with extracts suffers from the drawback not to be able to incorporate simultaneously various pharmacological compounds into the formulation. The aim of this study was therefore to achieve synchronous microencapsulation of multiple components of silymarin into poly (lactic-co-glycolic acid) nanoparticle, the most commonly used polymeric carrier with biodegradability and safety. The main strategy taken was to improve the overall entrapment efficiency and to reduce the escaping ratio of the components of different physicochemical properties. The optimized nanoparticles were spherical in morphology with a mean particle size of 150 ± 5 nm. Under common preparative conditions, silybin and isosilybin were entrapped in high efficiency, whereas taxifolin, silychristin and silydianin, especially taxifolin, showed less entrapment because they were more hydrophilic. By changing the pH of the outer aqueous phase and saturating it with silymarin, the entrapment efficiency of taxifolin, silychristin and silydianin could be significantly improved to over 90%, the level similar to silybin and isosilybin, thereby achieving synchronous encapsulation. It could be concluded that synchronous encapsulation of multiple components of silymarin was achieved by optimizing the preparative variables.
Assuntos
Química Farmacêutica/métodos , Emulsificantes/síntese química , Ácido Láctico/síntese química , Nanopartículas/química , Ácido Poliglicólico/síntese química , Silimarina/síntese química , Solventes/síntese química , Copolímero de Ácido Poliláctico e Ácido PoliglicólicoRESUMO
Environment-responsive near-infrared (NIR) aza-BODIPY dyes capable of fluorescence quenching in water were explored to visualize the in vivo fate of model lipid-based nanocarriers, solid lipid nanoparticles (SLNs). The water-quenching effect of the dyes was confirmed to be sensitive and remained stable for at least 24h. In vitro lipolysis measured by fluorescence quenching completed within 20min, which was in correlation with alkaline compensation results. In vivo live imaging indicated predominant digestion of SLNs within 2h and complete digestion within 4h, which correlated well to in vitro data. Rekindling of quenched dyes by mixed micelles was observed in vitro, but not in vivo. In sharp contrast, SLNs encapsulating another NIR dye DiR showed persistent fluorescence both in vitro and in vivo despite significant lipolysis. It was envisaged that water-quenching fluorescence dyes can be used as probes to monitor the in vivo fate of lipid-based nanocarriers. FROM THE CLINICAL EDITOR: Lipid-based drug delivery systems can provide an excellent nanocarrier platform for the delivery of poorly water-soluble drugs. Nonetheless, the mechanism of oral absorption and subsequent kinetics is poorly understood. In this article, the authors studied the novel use of near-infrared (NIR) aza-BODIPY dyes to visualize the fate of these lipid-based nanocarriers. The positive finding means that this approach may be useful for in-vivo monitoring of lipid-based nanocarriers.
Assuntos
Compostos de Boro/química , Portadores de Fármacos/análise , Corantes Fluorescentes/química , Lipídeos/análise , Nanopartículas/análise , Animais , Portadores de Fármacos/farmacocinética , Fluorescência , Lipídeos/farmacocinética , Camundongos Nus , Imagem Óptica , Água/químicaRESUMO
The aim of this study was to compare various formulations solid dispersion pellets (SDP), nanostructured lipid carriers (NLCs) and a self-microemulsifying drug delivery system (SMEDDS) generally accepted to be the most efficient drug delivery systems for BCS II drugs using fenofibrate (FNB) as a model drug. The size and morphology of NLCs and SMEDDS was characterized by dynamic light scattering (DLS) and transmission electron microscopy (TEM). Their release behaviors were investigated in medium with or without pancreatic lipase. The oral bioavailability of the various formulations was compared in beagle dogs using commercial Lipanthyl® capsules (micronized formulation) as a reference. The release of FNB from SDP was much faster than that from NLCs and SMEDDS in medium without lipase, whereas the release rate from NLCs and SMEDDS was increased after adding pancreatic lipase into the release medium. However, NLCs and SMEDDS increased the bioavailability of FNB to 705.11% and 809.10%, respectively, in comparison with Lipanthyl® capsules, although the relative bioavailability of FNB was only 366.05% after administration of SDPs. Thus, lipid-based drug delivery systems (such as NLCs and SMEDDS) may have more advantages than immediate release systems (such as SDPs and Lipanthyl® capsules).
Assuntos
Fenofibrato/administração & dosagem , Fenofibrato/metabolismo , Lipídeos/administração & dosagem , Nanoestruturas/administração & dosagem , Administração Oral , Animais , Disponibilidade Biológica , Química Farmacêutica/métodos , Cães , Portadores de Fármacos/administração & dosagem , Sistemas de Liberação de Medicamentos/métodos , Emulsões/administração & dosagem , Emulsões/metabolismo , Microscopia Eletrônica de Transmissão/métodos , Tamanho da PartículaRESUMO
This study aimed to explore biotinylated liposomes (BLPs) as novel carriers to enhance the oral delivery of insulin. Biotinylation was achieved by incorporating biotin-conjugated phospholipids into the liposome membranes. A significant hypoglycemic effect and enhanced absorption were observed after treating diabetic rats with the BLPs with a relative bioavailability of 12.09% and 8.23%, based on the measurement of the pharmacologic effect and the blood insulin level, respectively; this achieved bioavailability was approximately double that of conventional liposomes. The significance of the biotinylation was confirmed by the facilitated absorption of the BLPs through receptor-mediated endocytosis, as well as by the improved physical stability of the liposomes. Increased cellular uptake and quick gastrointestinal transport further verified the ability of the BLPs to enhance absorption. These results provide a proof of concept that BLPs can be used as potential carriers for the oral delivery of insulin. FROM THE CLINICAL EDITOR: Diabetes remains a major source of mortality in the Western world, and advances in its management are expected to have substantial socioeconomic impact. In this paper, biotinylated liposomes were utilized as carriers of insulin for local delivery, demonstrating the feasibility of this approach in a rat model.
Assuntos
Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus/tratamento farmacológico , Sistemas de Liberação de Medicamentos , Insulina/administração & dosagem , Administração Oral , Animais , Glicemia , Diabetes Mellitus/patologia , Portadores de Fármacos , Humanos , Insulina/química , Lipossomos/administração & dosagem , Lipossomos/química , RatosRESUMO
Psoriasis is a prevalent chronic disease affecting 2-3% of the global population. Cyclosporine A (CyA) has been widely used with great promise in the treatment of moderate to severe psoriasis despite various side effects associated with its systemic administration. Topical administration of CyA circumvents systemic side effects; however, the poor water solubility and large molecular weight of CyA pose challenges for dermal delivery. In this study, choline-based ionic liquids (ILs) were used to enhance the dermal delivery of CyA for the potential treatment of psoriasis. All four ILs tested significantly improved the solubility of CyA, which was greater than that of the control group with dimethyl sulfoxide (DMSO) as a solubilizer (20%, w/w). The saturated solubility of CyA in two of the ILs, choline geranate ([Ch][Ge]) and choline ricinoleate ([Ch][Ra]), reached more than 90 mg/mL, and the solubilization capability of the ILs except [Ch][Ci] was resistant to water dilution. The negligible change in CyA content determined by high-performance liquid chromatography and the secondary structure detected by circular dichroism spectroscopy confirmed the stability of CyA in the ILs. At 4 h in the in vitro penetration test, the amount of CyA retained in the skin in the IL groups was slightly greater than that in the control group (20% DMSO). The water content of the ILs significantly affected their penetration ability. When the water content increased from 10 to 70%, the dermal delivery of CyA first increased, peaked at a water content of 30%, and then decreased. The dermal delivery ability of [Ch][Ge] and [Ch][Ra] with a water content of 70% was still comparable to that of 20% DMSO. Moreover, CyA-loaded ILs (0.5%, w/w) significantly relieved the symptoms of psoriasis in an imiquimod (IMQ)-induced mouse model, and the levels of inflammatory factors, including tumor necrosis factor α, interleukin 22 and interleukin 17, in the affected area were reduced by 71.7%, 75.6%, and 89.3%, respectively. The IL tested, choline sorbate ([Ch][So]), showed low cytotoxicity to human immortalized epidermal cells (HaCaT). After 7 days of consecutive application, [Ch][So] did not cause significant irritation. In conclusion, ILs demonstrate promising potential for the dermal delivery of CyA for the treatment of psoriasis.
RESUMO
Proteins and peptides have been increasingly developed as pharmaceuticals owing to their high potency and low side effects. However, their administration routes are confined to injections, such as intra-muscular and intra-venous injections, making patient compliance a challenge. Hence, non-injectable delivery systems are crucial to expanding the clinical use of proteins and peptides. In this context, two choline-based ionic liquids (ILs), namely, choline geranic acid ([Ch][Ger]) and choline citric acid ([Ch][Cit]), have been identified as promising agents for enhancing the permeation and prolonging the retention time of glucagon (GC) after intra-nasal administration. Notably, intra-nasal delivery of GC via ILs (GC/ILs) elicited rapid and smooth reversal of acute hypoglycaemia without leading to rebound hyperglycaemia in type 1 diabetic rats subjected to insulin induction. In addition, ILs could improve the transcellular transport of GC through electrostatic interaction. ILs could also transiently open inter-cellular tight junctions transiently to facilitate the paracellular transport of GC. Safety tests indicated that continuous intra-nasal delivery of ILs led to reversible changes, such as epithelial cell inflammation, goblet cell overgrowth, and impacts on the distribution of nasal cilia. However, these changes could be alleviated by the innate self-repair ability of mucosal epithelial cells. This study highlights the considerable potential of ILs for long-term nasal delivery of biomacromolecules.
Assuntos
Administração Intranasal , Colina , Glucagon , Líquidos Iônicos , Mucosa Nasal , Animais , Colina/administração & dosagem , Colina/química , Líquidos Iônicos/administração & dosagem , Líquidos Iônicos/química , Glucagon/administração & dosagem , Masculino , Mucosa Nasal/metabolismo , Ratos Sprague-Dawley , Diabetes Mellitus Experimental/tratamento farmacológico , Humanos , Sistemas de Liberação de Medicamentos , Ratos , Glicemia/efeitos dos fármacos , Glicemia/análise , Hipoglicemia/tratamento farmacológicoRESUMO
Intraperitoneal (i.p.) administered nanomedicine has been widely applied in the clinical treatment of intra-abdominal diseases and preclinical pharmacological investigations. However, current understandings about the in vivo fate of i.p.-administered drug remains controversial owing to lack of reliable investigation tools. This work presents a nanoparticle-labeling strategy based on aggregation-caused quenching (ACQ) probes in the second near-infrared (NIR-II) window, which can eliminate the interference of unbound probes and allow for non-invasive tracking of nanoparticles in deep tissues. Our results strongly evidence a size-dependent absorption and biodistribution of the i.p.-administered polymeric nanocarriers (PNs) with particle sizes ranging from 30 to 1000 nm both in vivo and ex vivo, and moreover provide a clear visualization of lymphatic transportation and lymph node retention of integral PNs. Importantly, our findings suggest that small particles (≤30 nm) are favorable in systemic therapies due to their rapid absorption and high concentration (>19 %ID mL-1) in circulation, while large particles (over 1000 nm) are meant for localized treatment of abdominal diseases. Besides, the high retention of 200 nm nanoparticles within lymph nodes indicates their promising role in cancer vaccines and lymphatic diseases including lymph node metastasis.
RESUMO
Inflammatory bowel disease (IBD) is a chronic and recurrent inflammatory disease that affects the gastrointestinal tract. The major hurdles impeding IBD treatment are the low targeting efficiency and short retention time of drugs in IBD sites. Nanoparticles with specific shapes have demonstrated the ability to improve mucus retention and cellular uptake. Herein, mesoporous silica nanoparticles (MSNs) with various morphologies were used to deliver budesonide (BUD) for the treatment of IBD. The therapeutic efficacy is strongly dependent on their shapes. The system comprises different shapes of MSNs as carriers for budesonide (BUD), along with Eudragit S100 as the enteric release shell. The encapsulation of Eudragit S100 not only improved the stability of MSNs-BUD in the gastrointestinal tract but also conferred pH-responsive drug release properties. Then, MSNs efficiently deliver BUD to the colon site, and the special shape of MSNs plays a critical role in enhancing their permeability and retention in the mucus layer. Among them, dendritic MSNs (MSND) effectively reduced myeloperoxidase (MPO) activity and levels of inflammatory cytokines in the colon due to long retention time and rapid release in IBD sites, thereby enhancing the therapeutic efficacy against colitis. Given the special shapes of MSNs and pH-responsivity of Eudragit S100, BUD loaded in the voids of MSND (E@MSNs-BUD) could penetrate the mucous layer and be accurately delivered to the colon with minor side effects. This system is expected to complement current treatment strategies for the IBD.
Assuntos
Budesonida , Portadores de Fármacos , Doenças Inflamatórias Intestinais , Nanopartículas , Dióxido de Silício , Budesonida/química , Budesonida/administração & dosagem , Budesonida/uso terapêutico , Budesonida/farmacocinética , Nanopartículas/química , Nanopartículas/uso terapêutico , Animais , Dióxido de Silício/química , Doenças Inflamatórias Intestinais/tratamento farmacológico , Doenças Inflamatórias Intestinais/patologia , Portadores de Fármacos/química , Camundongos , Ácidos Polimetacrílicos/química , Liberação Controlada de Fármacos , Humanos , Anti-Inflamatórios/química , Anti-Inflamatórios/uso terapêutico , Anti-Inflamatórios/administração & dosagem , Porosidade , Concentração de Íons de HidrogênioRESUMO
The latent reservoir of human immunodeficiency virus (HIV) is a major obstacle in the treatment of acquired immune deficiency syndrome (AIDS). The "shock and kill" strategy has emerged as a promising approach for clearing HIV latent reservoirs. However, current latency-reversing agents (LRAs) have limitations in effectively and safely activating the latent virus and reducing the HIV latent reservoirs in clinical practice. Previously, EK-16A was extracted from Euphorbia kansui, which had the effect of interfering with the HIV-1 latent reservoir and inhibiting HIV-1 entry. Nevertheless, there is no suitable and efficient EK-16A oral formulation for in vivo delivery and clinical use. In this study, an oral EK-16A self-nanoemulsifying drug delivery system (EK-16A-SNEDDS) was proposed to "shock" the HIV-1 latent reservoir. This system aims to enhance the bioavailability and delivery of EK-16A to various organs. The composition of EK-16A-SNEDDS was optimized through self-emulsifying grading and ternary phase diagram tests. Cell models, pharmacokinetic experiments, and pharmacodynamics in HIV-1 latent cell transplant animal models suggested that EK-16A-SNEDDS could be absorbed by the gastrointestinal tract and enter the blood circulation after oral administration, thereby reaching various organs to activate latent HIV-1. The prepared EK-16A-SNEDDS demonstrated safety and efficacy, exhibited high clinical experimental potential, and may be a promising oral preparation for eliminating HIV-1 latent reservoirs.