Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Int J Mol Sci ; 23(24)2022 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-36555582

RESUMO

The loss of seed shattering is an important event in crop domestication, and elucidating the genetic mechanisms underlying seed shattering can help reduce yield loss during crop production. This study is the first to systematically identify and analyse the BELL family of transcription factor-encoding genes in Chinese wild rice (Zizania latifolia). ZlqSH1a (Zla04G033720) and ZlqSH1b (Zla02G027130) were identified as key candidate genes involved in seed shattering in Z. latifolia. These genes were involved in regulating the development of the abscission layer (AL) and were located in the nucleus of the cell. Over-expression of ZlqSH1a and ZlqSH1b resulted in a complete AL between the grain and pedicel and significantly enhanced seed shattering after grain maturation in rice. Transcriptome sequencing revealed that 172 genes were differentially expressed between the wild type (WT) and the two transgenic (ZlqSH1a and ZlqSH1b over-expressing) plants. Three of the differentially expressed genes related to seed shattering were validated using qRT-PCR analysis. These results indicate that ZlqSH1a and ZlqSH1b are involved in AL development in rice grains, thereby regulating seed shattering. Our results could facilitate the genetic improvement of seed-shattering behaviour in Z. latifolia and other cereal crops.


Assuntos
Oryza , Domesticação , Genes de Plantas , Sementes , Grão Comestível/genética
2.
Sci Total Environ ; 893: 164879, 2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37321504

RESUMO

Coastal waters are important sources of volatile halocarbons, which are important in atmospheric chemistry. Here, in May (spring) and October (autumn) 2020, we studied the surface, bottom, and sediment-pore seawater concentrations, atmospheric mixing ratios, and sea-to-air fluxes of the three primary short-lived atmospheric halocarbons (CH3I, CH2Br2, and CHBr3) in the East China Sea (ECS). The highest concentrations of the three short-lived halocarbons occurred in coastal waters, such as the Changjiang estuary and Zhejiang coastal waters, reflecting the influence of excessive anthropogenic inputs on the distributions of these gases. Interestingly, the aqueous levels of these gases seemed to be lower compared to previous measurements in this oceanic region, probably due to reduced contributions from local anthropogenic emission sources. The concentrations of CH3I, CH2Br2, and CHBr3 in pore water were significantly higher than those in bottom water, suggesting that sediment could be a source of these short-lived halocarbons. Additionally, the atmospheric mixing ratios of these gases occasionally increased in coastal areas. An air-mass back trajectory analysis showed this was due to continental anthropogenic sources and emissions from enriched waters. The atmospheric mixing ratios of these halocarbons exhibited significant seasonal variability, with significant correlations among atmospheric CH3I, CH2Br2, and CHBr3 in spring, but not in autumn. The sea-to-air fluxes of CH3I, CH2Br2, and CHBr3 indicated that the ECS is a source of these gases. Seasonal differences in CH3I and CH2Br2 fluxes were driven by changes in wind speed and sea surface temperature, while CHBr3 flux changes were associated with changes in its surface seawater concentration.

3.
Front Plant Sci ; 14: 1183739, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37324716

RESUMO

Wild rice (Zizania spp.), an aquatic grass belonging to the subfamily Gramineae, has a high economic value. Zizania provides food (such as grains and vegetables), a habitat for wild animals, and paper-making pulps, possesses certain medicinal values, and helps control water eutrophication. Zizania is an ideal resource for expanding and enriching a rice breeding gene bank to naturally preserve valuable characteristics lost during domestication. With the Z. latifolia and Z. palustris genomes completely sequenced, fundamental achievements have been made toward understanding the origin and domestication, as well as the genetic basis of important agronomic traits of this genus, substantially accelerating the domestication of this wild plant. The present review summarizes the research results on the edible history, economic value, domestication, breeding, omics research, and important genes of Z. latifolia and Z. palustris over the past decades. These findings broaden the collective understanding of Zizania domestication and breeding, furthering human domestication, improvement, and long-term sustainability of wild plant cultivation.

4.
Commun Biol ; 5(1): 36, 2022 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-35017643

RESUMO

Chinese wild rice (Zizania latifolia; family: Gramineae) is a valuable medicinal homologous grain in East and Southeast Asia. Here, using Nanopore sequencing and Hi-C scaffolding, we generated a 547.38 Mb chromosome-level genome assembly comprising 332 contigs and 164 scaffolds (contig N50 = 4.48 Mb; scaffold N50 = 32.79 Mb). The genome harbors 38,852 genes, with 52.89% of the genome comprising repetitive sequences. Phylogenetic analyses revealed close relation of Z. latifolia to Leersia perrieri and Oryza species, with a divergence time of 19.7-31.0 million years. Collinearity and transcriptome analyses revealed candidate genes related to seed shattering, providing basic information on abscission layer formation and degradation in Z. latifolia. Moreover, two genomic blocks in the Z. latifolia genome showed good synteny with the rice phytocassane biosynthetic gene cluster. The updated genome will support future studies on the genetic improvement of Chinese wild rice and comparative analyses between Z. latifolia and other plants.


Assuntos
Cromossomos de Plantas/genética , Genoma de Planta/genética , Poaceae/genética , Sementes/genética , China , Oryza/genética , Filogenia , Poaceae/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA