Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Inorg Chem ; 62(12): 4990-4998, 2023 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-36921355

RESUMO

Photochromic viologen-based materials have emerged as one of the most promising candidates for the development of X-ray light detection applications, including medical diagnosis and treatment, environmental radiation inspection, and industrial crack detection. However, the design and construction of low-dose X-ray-sensitive complexes remains an immense challenge, especially for the in-depth dissection of their response mechanisms. Herein, by using N,N'-4,4'-bipyridiniodipropionate (CV) as functional sensitive structural units and cadmium as heavy atoms, two cadmium-viologen complexes with one-dimensional chained structures, namely, [Cd2Cl4(CV)(H2O)2]n (1) and [CdBr2(CV)]n (2), have been constructed, which exhibit a remarkable and selective photochromic response to low-dose X-ray radiation detection. Compound 1 is visually sensitive to both X-ray and UV light due to the more accessible photoinduced electron transfer (ET) pathways, while compound 2 only shows a slight color-changing process in response to UV light, in conformity with UV-vis absorbance analyses and kinetic studies. Surprisingly, compound 2 has longer ET pathways than 1, but not in response to high-energy X-ray light, seeming to contradict the previous phenomena. On further analysis, the key point in achieving X-ray-sensitive behavior should be a good balance among the electron donor-acceptor distance, intermolecular interaction, and X-ray absorbing capacity, as verified by density functional theory (DFT) and X-ray absorption strength calculations, X-ray photoelectron spectra, electron paramagnetic resonance measurements, and independent gradient model analysis. In particular, compound 1 is unprecedentedly sensitive to soft X-ray radiation, accompanied by an X-ray detection limit of as low as 2.91 Gy. These findings push forward the further development of low-dose X-ray sensing materials.

2.
Inorg Chem ; 61(48): 19483-19491, 2022 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-36383707

RESUMO

Zero-dimensional (0D) organic-inorganic hybrid metal halides have captured broad interest in the lighting and display fields because of their unique electronic structures and splendid broadband emission properties. However, the blue light-excitable broadband yellow emissions have been rarely reported in 0D hybrid metal halides. Here, we design a new 0D bismuth hybrid, (4cmpyH)2BiCl5 (1, 4cmpy = 4-(chloromethyl)pyridine), featuring isolated edge-sharing bioctahedral [Bi2Cl10]4- dimers surrounded by rigid, conjugated, and luminescent organic [4cmpyH]+ cations. This material is able to show intrinsic broadband yellow emissions under blue light (468 nm) excitation with a long lifetime of 22.33 µs and a photoluminescence (PL) quantum yield of 5.56%. Solid-state UV-vis spectroscopy studies prove that introducing organic π-conjugated groups into hybrid systems leads to absorption in the visible light region, in favor of photoexcitation by visible light. By comparing the PL data of 1 and the organic template at room temperature and measuring variable-temperature PL spectra of 1, the blue light-excited broadband emission of 1 can be attributed to the synergistic emissions of intramolecular π → π* and n → π* transitions in the organic cations and triple self-trapped exciton (STE) states centralized at the highly distorted Bi-Cl lattices. Moreover, density functional theory calculations reveal a type-II band alignment in 1 with an indirect band gap of 2.64 eV, which is together determined by organic cations and inorganic bioctahedral units. To the best of our knowledge, our work represents the first report on the blue light-excitable STE emission in 0D Bi-based metal halides, which will largely promote the rapid development of novel high-performance yellow light-emitting materials.

3.
Inorg Chem ; 60(23): 18307-18313, 2021 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-34797066

RESUMO

Introducing transition metals into the intercluster linkers has been considered an important strategy for the rapid development of metal chalcogenide supertetrahedral (Tn) cluster-based open frameworks with excellent properties. However, using this strategy for achieving the structure and property tunability in the cluster-based framework of Tn (n ≥ 5) is still a great challenge. Herein, we report on three new sulfide and oxosulfide open frameworks of T5 clusters, i.e., T5-ZnMnInOS ([In30Zn5Mn4O2S58]12-), T5-MnInOS ([In34Mn5O2S58]8-), and T5-MnInS ([In28Mn6S54]12-). Interestingly, transition metals Zn and Mn are successfully introduced into T5-ZnMnInOS and T5-MnInOS via the consolidation of corner-shared Zn2OS2 and Mn2OS2 units, respectively. Under the photoexcitation of UV light, three compounds can emit bright-orange-red light closely associated with the Mn2+ ions, and the compounds containing M2OS2 units exhibit better photoluminescence (PL) lifetimes. Variable-temperature PL spectra demonstrate that the introduced M2OS2 units are favorable for weakening the deformation of the skeleton structure and decreasing the red shifts of the emission peaks at low temperatures. Moreover, the experimental results exhibit that the three compounds are wide-band-gap semiconductors and that the photogenerated electron separation efficiency can be doubly increased because the intercluster linkers are fixed by the M2OS2 units. This work paves a new way for enriching the content and distribution types of transition-metal sites in the supertetrahedral cluster-based metal chalcogenide open frameworks.

4.
Inorg Chem ; 60(20): 15136-15140, 2021 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-34612632

RESUMO

One-dimensional (1D) organic-inorganic hybrid lead halides with unique core-shell quantum wire structures and splendid photoluminescence properties have been considered one of the most promising high-efficiency broadband emitters. However, studies on the broadband emissions in 1D purely face-shared lead iodide hybrids are still rare so far. Herein, we report on a new 1D lead iodide hybrid, (2cepyH)PbI3 (2cepy = 1-(2-chloroethyl)pyrrolidine), characterized with face-sharing PbI6 octahedral chains. Upon UV photoexcitation, this material shows broadband yellow emissions originating from the self-trapped excitons associated with distorted Pb-I lattices on account of the strong exciton-phonon coupling, as proved by variable-temperature emission spectra. Moreover, experimental and calculated results reveal that (2cepyH)PbI3 is an indirect bandgap semiconductor, the band structures of which are governed by inorganic parts. Our work represents the first broadband emitter based on a 1D face-shared lead iodide hybrid and opens a new way to obtain the novel broadband emission materials.

5.
Nanotechnology ; 31(20): 205710, 2020 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-32018236

RESUMO

When used as a current collector, aluminum foil (AF) is vulnerable to local anodic corrosion during the charge/discharge process, which can lead to the deterioration of lithium-ion batteries (LIBs). Herein, a graphene foil (GF) with high electrical conductivity (∼5800 S cm-1) and low mass density (1.80 g cm-3) was prepared by reduction of graphene oxide foil with ultra-high temperature (2800 °C) annealing, and it exhibited significantly anodic corrosion resistance when serving as a current collector. Moreover, a LiNi0.5Co0.2Mn0.3O2 (NCM523) cathode using GF as a current collector (NCM523/GF) demonstrated a gravimetric capacity of 137.3 mAh g-1 at 0.5 C based on the mass of the whole electrode consisting of the active material, carbon black, binder, and the current collector, which is 44.5% higher than that of the NCM523/AF electrode. Furthermore, the NCM523/GF electrode retains higher capacity at relatively faster rates, from 0.1 C to 5.0 C. Therefore, GF, a lightweight corrosion-resistant current collector, is expected to replace the current commercial metal current collectors in LIBs and to achieve high energy-density batteries.

6.
Angew Chem Int Ed Engl ; 59(6): 2318-2322, 2020 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-31750970

RESUMO

Black phosphorus (BP) is a desirable anode material for alkali metal ion storage owing to its high electronic/ionic conductivity and theoretical capacity. In-depth understanding of the redox reactions between BP and the alkali metal ions is key to reveal the potential and limitations of BP, and thus to guide the design of BP-based composites for high-performance alkali metal ion batteries. Comparative studies of the electrochemical reactions of Li+ , Na+ , and K+ with BP were performed. Ex situ X-ray absorption near-edge spectroscopy combined with theoretical calculation reveal the lowest utilization of BP for K+ storage than for Na+ and Li+ , which is ascribed to the highest formation energy and the lowest ion diffusion coefficient of the final potassiation product K3 P, compared with Li3 P and Na3 P. As a result, restricting the formation of K3 P by limiting the discharge voltage achieves a gravimetric capacity of 1300 mAh g-1 which retains at 600 mAh g-1 after 50 cycles at 0.25 A g-1 .

7.
Angew Chem Int Ed Engl ; 55(44): 13822-13827, 2016 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-27701817

RESUMO

Low-energy density has long been the major limitation to the application of supercapacitors. Introducing topological defects and dopants in carbon-based electrodes in a supercapacitor improves the performance by maximizing the gravimetric capacitance per mass of the electrode. However, the main mechanisms governing this capacitance improvement are still unclear. We fabricated planar electrodes from CVD-derived single-layer graphene with deliberately introduced topological defects and nitrogen dopants in controlled concentrations and of known configurations, to estimate the influence of these defects on the electrical double-layer (EDL) capacitance. Our experimental study and theoretical calculations show that the increase in EDL capacitance due to either the topological defects or the nitrogen dopants has the same origin, yet these two factors improve the EDL capacitance in different ways. Our work provides a better understanding of the correlation between the atomic-scale structure and the EDL capacitance and presents a new strategy for the development of experimental and theoretical models for understanding the EDL capacitance of carbon electrodes.

8.
Inorg Chem ; 53(8): 4130-43, 2014 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-24712729

RESUMO

Seven cupric halide coordination polymers, namely [Cu5(OH)3Br3(ina)4] (1), [Cu5(OH)3Cl3(ina)4] (2), [Cu2(OH)Cl(ina)2] (3), [Cu3(OH)2Cl2(ina)2]·2H2O (4), [Cu3(OH)2Br2(ina)2]·2H2O (5), [Cu2Cl2(ina)2(H2O)2] (6), [Cu2Cl(ina)2(gca)(H2O)] (7), cupric complex templated cuprous halide [Cu(II)(Me-ina)2(H2O)][Cu(I)5Br7] (8), and organic templated cuprous halide Me2-ina[Cu2Br3] (9) (Hina = isonicotinic acid), were prepared from the starting materials of cupric halide and Hina via fine-tuning solvothermal reactions. According to valence states of copper, 1-7 are copper(II) complexes, 8 is a mixed-valent Cu(I,II) complex, while 9 is a Cu(I) compound. According to bonding types of halides, nine complexes can be classified as three types: complexes 1-3 include only normal X-Cu bond (X = halide); complexes 4-7 include normal X-Cu bond and X···Cu weak bond; complexes 8 and 9 include normal X-Cu bond and X···H-C halogen hydrogen bonds. Complexes 1 and 2 are isomorphic three-dimensional (3D) pcu topological metal organic frameworks (MOFs) with butterfly-like Cu4(µ3-OH)2X2 and steplike Cu6(µ3-OH)4 cores as nodes, showing strong ferromagnetic couplings. Complex 3 also is a pcu topological MOF with only butterfly-like Cu4(µ3-OH)2Cl2 clusters as nodes, presenting spin canting antiferromagnetic behavior. Isostructural 4 and 5 are Cu3(OH)2 clusters based two-dimensional (2D) (4,4) layers, which are extended into 3D eight-connected networks via weak Cu···X bonds, showing ferromagnetic coupling. Antiferromagnetic 6 is a simple one-dimensional coordination polymer, which is extended via weak Cu···Cl bonds into 3D (3,4)-connected networks. Paramagnetic 7 is a ladderlike polymer, which is extended into 2D (3,4)-connected layer via weak Cu···Cl bonds. The syntheses of polymeric cupric complexes 1-7 mainly result from differences in reactant ratio and pH value. Utilization of reducing methanol generated novel cubane-containing [Cu5Br7](2-) chain templated by paddlewheel-like [Cu(II)(Me-ina)2](2+) 8 and face-shared dimer-containing [Cu2Br3](-) chain templated by N-methylated and O-esterificated Me2-ina 9. Complex 9 exhibits a strong red emission and a weaker green emission upon excitation.

9.
Nanoscale ; 14(12): 4469-4473, 2022 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-35262141

RESUMO

A polyoxometalate-templated thiolate-protected silver nanocluster, [Cu3(Mo4O16)2@Ag55(CyhS)43(CH3O)(COOCF3)]·3H2O, has been isolated under solvothermal conditions. In situ insertion of three Cu2+ ions into two polymolybdate anions generated a new, sandwich-type D3h-symmetric [Cu3(Mo4O16)2]10- polyoxoanion template encapsulated into an Ag55(CyhS)43 shell. The structure and composition of this Ag nanocluster have been fully characterized. This work has provided a new way to develop high-nuclearity metal nanoclusters with various structures.

10.
Chem Commun (Camb) ; 57(20): 2495-2498, 2021 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-33585850

RESUMO

A new one-dimensional (1D) face-shared hybrid lead bromide of (2cepiH)PbBr3, which exhibits intrinsic broadband yellow-light emission with a quantum yield of 16.8% outperforming all previously reported 1D face-shared hybrid metal halides, is obtained. The origin of broadband emission and the coexistence of free excitons and self-trapped excitons are deeply investigated by variable-temperature photoluminescence spectra. Our work paves the way to discovering more wonderful light-emitting materials.

11.
Nat Commun ; 11(1): 371, 2020 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-31953432

RESUMO

A properly strained graphene monolayer or bilayer is expected to harbour periodic pseudo-magnetic fields with high symmetry, yet to date, a convincing demonstration of such pseudo-magnetic fields has been lacking, especially for bilayer graphene. Here, we report a definitive experimental proof for the existence of large-area, periodic pseudo-magnetic fields, as manifested by vortex lattices in commensurability with the moiré patterns of low-angle twisted bilayer graphene. The pseudo-magnetic fields are strong enough to confine the massive Dirac electrons into circularly localized pseudo-Landau levels, as observed by scanning tunneling microscopy/spectroscopy, and also corroborated by tight-binding calculations. We further demonstrate that the geometry, amplitude, and periodicity of the pseudo-magnetic fields can be fine-tuned by both the rotation angle and heterostrain. Collectively, the present study substantially enriches twisted bilayer graphene as a powerful enabling platform for exploration of new and exotic physical phenomena, including quantum valley Hall effects and quantum anomalous Hall effects.

12.
Science ; 370(6513): 192-197, 2020 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-33033214

RESUMO

High-rate lithium (Li) ion batteries that can be charged in minutes and store enough energy for a 350-mile driving range are highly desired for all-electric vehicles. A high charging rate usually leads to sacrifices in capacity and cycling stability. We report use of black phosphorus (BP) as the active anode for high-rate, high-capacity Li storage. The formation of covalent bonds with graphitic carbon restrains edge reconstruction in layered BP particles to ensure open edges for fast Li+ entry; the coating of the covalently bonded BP-graphite particles with electrolyte-swollen polyaniline yields a stable solid-electrolyte interphase and inhibits the continuous growth of poorly conducting Li fluorides and carbonates to ensure efficient Li+ transport. The resultant composite anode demonstrates an excellent combination of capacity, rate, and cycling endurance.

13.
RSC Adv ; 9(32): 18559-18564, 2019 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-35515238

RESUMO

Graphene oxide (GO) suspensions in solvents are the most important feedstocks for preparing GO based composites, and the dispersion state of GO on the microscale in solvent is a dominating factor in determining the physical properties of GO based composites. However, the morphology of GO sheets in solvents has hardly been reported due to the limitation of the characterization methods. Here, we report that the sheet thickness and lateral size of GO in solution can be identified using optical microscopy (OM) within a couple of minutes. The dispersion states of GO, including stretched flakes, scrolls, crumbles, and agglomerates, can also be distinguished. Moreover, the dispersion states, which change with the pH value and ionic strength of the solvent, are closely related to the dispersion stability of the GO suspension and the morphology of the GO/PVA composite. We believe that the fast observation and identification of GO sheets and their structural features in solvents, enabled by OM, opens up a new avenue to studying GO based composite materials in liquids.

14.
Adv Mater ; 31(23): e1808091, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30972870

RESUMO

Despite high-surface area carbons, e.g., graphene-based materials, being investigated as anodes for lithium (Li)-ion batteries, the fundamental mechanism of Li-ion storage on such carbons is insufficiently understood. In this work, the evolution of the electrode/electrolyte interface is probed on a single-layer graphene (SLG) film by performing Raman spectroscopy and Fourier transform infrared spectroscopy when the SLG film is electrochemically cycled as the anode in a half cell. The utilization of SLG eliminates the inevitable intercalation of Li ions in graphite or few-layer graphene, which may have complicated the discussion in previous work. Combining the in situ studies with ex situ observations and ab initio simulations, the formation of solid electrolyte interphase and the structural evolution of SLG are discussed when the SLG is biased in an electrolyte. This study provides new insights into the understanding of Li-ion storage on SLG and suggests how high-surface-area carbons could play proper roles in anodes for Li-ion batteries.

15.
Adv Mater ; 29(38)2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28833666

RESUMO

Lithium metal is an attractive anode material for rechargeable batteries because of its high theoretical specific capacity of 3860 mA h g-1 and the lowest negative electrochemical potential of -3.040 V versus standard hydrogen electrode. Despite extensive research efforts on tackling the safety concern raised by Li dendrites, inhibited Li dendrite growth is accompanied with decreased areal capacity and Li utilization, which are still lower than expectation for practical use. A scaffold made of covalently connected graphite microtubes is reported, which provides a firm and conductive framework with moderate specific surface area to accommodate Li metal for anodes of Li batteries. The anode presents an areal capacity of 10 mA h cm-2 (practical gravimetric capacity of 913 mA h g-1 ) at a current density of 10 mA cm-2 , with Li utilization of 91%, Coulombic efficiencies of ≈97%, and long lifespan of up to 3000 h. The analysis of structure evolution during charge/discharge shows inhibited lithium dendrite growth and a reversible electrode volume change of ≈9%. It is suggested that an optimized microstructure with moderate electrode/electrolyte interface area is critical to accommodate volume change and inhibit the risks of irreversible Li consumption by side reactions and Li dendrite growth for high-performance Li-metal anodes.

16.
ACS Appl Mater Interfaces ; 9(50): 43696-43703, 2017 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-29172433

RESUMO

Lithium-sulfur batteries are widely seen as a promising next-generation energy-storage system owing to their ultrahigh energy density. Although extensive research efforts have tackled poor cycling performance and self-discharge, battery stability has been improved at the expense of energy density. We have developed an interlayer consisting of two-layer chemical vapor deposition (CVD)-grown graphene supported by a conventional polypropylene (PP) separator. Unlike interlayers made of discrete nano-/microstructures that increase the thickness and weight of the separator, the CVD-graphene is an intact film with an area of 5 × 60 cm2 and has a thickness of ∼0.6 nm and areal density of ∼0.15 µg cm-2, which are negligible to those of the PP separator. The CVD-graphene on PP separator is the thinnest and lightest interlayer to date and is able to suppress the shuttling of polysulfides and enhance the utilization of sulfur, leading to concurrently improved specific capacity, rate capability, and cycle stability and suppressed self-discharge when assembled with cathodes consisting of different sulfur/carbon composites and electrolytes either with or without LiNO3 additive.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA