Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Opt Express ; 31(2): 2792-2806, 2023 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-36785285

RESUMO

Countless waveguides have been designed based on four basic bends: circular bend, sine/cosine bend, Euler bend (developed in 1744) and Bezier bend (developed in 1962). This paper proposes an n-adjustable (NA) bend, which has superior properties compared to other basic bends. Simulations and experiments indicate that the NA bends can show lower losses than other basic bends by adjusting n values. The circular bend and Euler bend are special cases of the proposed NA bend as n equals 0 and 1, respectively. The proposed bend are promising candidates for low-loss compact photonic integrated circuits.

2.
Opt Lett ; 48(7): 1686-1689, 2023 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-37221741

RESUMO

Optical metasurfaces provide a significant approach for the production of structural colors due to their excellent optical control abilities. Herein, we propose trapezoidal structural metasurfaces for achieving multiplex grating-type structural colors with high comprehensive performance originating from the anomalous reflection dispersion in the visible band. Single trapezoidal metasurfaces with different x-direction periods can tune the angular dispersion regularly from 0.036 rad/nm to 0.224 rad/nm to generate various structural colors, and composite trapezoidal metasurfaces with three kinds of combinations can achieve multiplex sets of structural colors. The brightness can be controlled by adjusting the distance between the trapezoids in a pair accurately. The designed structural colors have higher saturation than traditional pigmentary colors, whose excitation purity can reach 1.00. The gamut is about 158.1% of the Adobe RGB standard. This research has application potential in ultrafine displays, information encryption, optical storage, and anti-counterfeit tagging.

3.
Appl Opt ; 62(23): 6072-6080, 2023 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-37707073

RESUMO

The high demand for advanced acoustic sensors has prompted optical microphones to become a current research hotspot; this is especially the case in light of the performance of existing electroacoustic microphones having reached the ceiling. In this work, a thermally stable optical microphone has been developed for sensitive detection of low-frequency acoustic signals. The microphone was prepared using a prestressed nickel diaphragm and a compact grating interferometric module. The adjacent surfaces of the diaphragm and grating form a short Fabry-Perot cavity, which makes the microphone robust to ambient temperature fluctuation due to the reduced thermal drift of its operating point relative to the quadrature point of the interferometer. The cavity length-operating wavelength relationship of the microphone operating at the quadrature point was obtained. The performance of the prepared microphone was tested using various methods. Experimental results show that the microphone enables stable operation at the quadrature point over a wide range of temperatures from 0°C to 60°C with low signal distortion and high sensitivity. The response of the prepared optical microphone to low-frequency drone noise was measured and compared with that obtained with a commercial electret condenser microphone.

4.
Sensors (Basel) ; 23(24)2023 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-38139757

RESUMO

This study presents a grating interferometric acoustic sensor based on a flexible polymer diaphragm. A flexible-diaphragm acoustic sensor based on grating interferometry (GI) is proposed through design, fabrication and experimental demonstration. A gold-coated polyethylene terephthalate diaphragm was used for the sensor prototype. The vibration of the diaphragm induces a change in GI cavity length, which is converted into an electrical signal by the photodetector. The experimental results show that the sensor prototype has a flat frequency response in the voice frequency band and the minimum detectable sound pressure can reach 164.8 µPa/√Hz. The sensor prototype has potential applications in speech acquisition and the measurement of water content in oil. This study provides a reference for the design of optical interferometric acoustic sensor with high performance.

5.
Sensors (Basel) ; 23(9)2023 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-37177620

RESUMO

A prototype optical bionic microphone with a dual-channel Mach-Zehnder interferometric (MZI) transducer was designed and prepared for the first time using a silicon diaphragm made by microelectromechanical system (MEMS) technology. The MEMS diaphragm mimicked the structure of the fly Ormia Ochracea's coupling eardrum, consisting of two square wings connected through a neck that is anchored via the two torsional beams to the silicon pedestal. The vibrational displacement of each wing at its distal edge relative to the silicon pedestal is detected with one channel of the dual-channel MZI transducer. The diaphragm at rest is coplanar with the silicon pedestal, resulting in an initial phase difference of zero for each channel of the dual-channel MZI transducer and consequently offering the microphone strong temperature robustness. The two channels of the prototype microphone show good consistency in their responses to incident sound signals; they have the rocking and bending resonance frequencies of 482 Hz and 1911 Hz, and their pressure sensitivities at a lower frequency exhibit an "8"-shaped directional dependence. The comparison indicates that the dual-channel MZI transducer-based bionic microphone proposed in this work is advantageous over the Fabry-Perot interferometric transducer-based counterparts extensively reported.

6.
Sensors (Basel) ; 22(6)2022 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-35336389

RESUMO

A glass-diaphragm microphone was developed based on fiber-optic Fabry-Perot (FP) interferometry. The glass diaphragm was shaped into a wheel-like structure on a 150-µm-thick glass sheet by laser cutting, which consists of a glass disc connected to an outer glass ring by four identical glass beams. Such a structural diaphragm offers the microphone an open air chamber that reduces air damping and increases sensitivity and results in a cardioid direction pattern for the microphone response. The prepared microphone operates at 1550 nm wavelength, showing high stability in a range of temperature from 10 to 40 °C. The microphone has a resonance peak at 1152 Hz with a quality factor of 21, and its 3-dB cut-off frequency is 32 Hz. At normal incidence of 500 Hz sound, the pressure sensitivity of the microphone is 755 mV/Pa and the corresponding minimum detectable pressure is 251 µPa/Hz1/2. In addition to the above characteristics of the microphone in air, a preliminary investigation reveals that the microphone can also work stably under water for a long time due to the combination of the open-chamber and fiber-optic structures, and it has a large signal-to-noise ratio in response to waterborne sounds. The microphone prepared in this work is simple, inexpensive, and electromagnetically robust, showing great potential for low-frequency acoustic detection in air and under water.

7.
Appl Opt ; 58(25): 6942-6948, 2019 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-31503666

RESUMO

A colorful surface plasmon resonance imaging (SPRi) sensor with the hue-based enhanced sensitivity has been developed by using sputtered AuAg alloy thin film as the sensing layer. The condition for optimizing the hue-based sensitivity of the SPRi sensor was achieved, that is, the initial resonance wavelength is in the range from 595 to 610 nm. Under this condition, the hue-based refractive index sensitivity of the SPRi sensor was measured as high as Δhue/Δnc=29879/RIU. This sensitivity is 8 times higher than that obtained with a gold-layer SPRi sensor (Δhue/Δnc=3658/RIU) and 7.7 times as high in magnitude as the spectral sensitivity of the same sensor (ΔλR/Δnc=3897.6 nm/RIU). After functionalization of the AuAg alloy film with the monoclonal antibody, the sensor was used for quantitative immunodetection of highly carcinogenic benzo[a]pyrene (BaP) in water. According to the experimental results, the average hue of the SPR color image (300 pixels×300 pixels) experiences an initial rapid increase and then stabilizes 15 min after exposure of the functionalized AuAg alloy film to an aqueous BaP solution sample. The variation of average hue obtained at the equilibrium of surface immunoreaction is a linear function of BaP concentration with the slope being Δhue/Δc=132.2/(µg·L-1). A cooled CCD camera is able to distinguish a change of Δhue=1, offering the colorful SPRi sensor the BaP detection limit of 0.01 µg·L-1. The comparative measurements of the sensor's responses indicate that the hue variation obtained with 0.1 µg·L-1 of BaP is equal to that obtained either with 5 µg·L-1 of benzanthracene or with 5 µg·L-1 of benzofluoranthene, revealing the sensor's excellent specificity to BaP. The work demonstrated that the AuAg alloy film-based colorful SPRi sensor can be used not only for visualized analysis of molecular interaction at the surface but also for quantitative trace detection of small-molecule analytes.

8.
Sensors (Basel) ; 19(7)2019 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-30925691

RESUMO

Acoustic detection is of great significance because of its wide applications. This paper reports a Micro-Electro-Mechanical System (MEMS) acoustic sensor based on grating interferometer. In the MEMS structure, a diaphragm and a micro-grating made up the interference cavity. A short-cavity structure was designed and fabricated to reduce the impact of temperature on the cavity length in order to improve its stability against environment temperature variations. Besides this, through holes were designed in the substrate of the grating to reduce the air damping of the short-cavity structure. A silicon diaphragm with a 16.919 µm deep cavity and 2.4 µm period grating were fabricated by an improved MEMS process. The fabricated sensor chip was packaged on a conditioning circuit with a laser diode and a photodetector for acoustic detection. The output voltage signal in response to an acoustic wave is of high quality. The sensitivity of the acoustic sensor is up to -15.14 dB re 1 V/Pa @ 1 kHz. The output signal of the high-stability acoustic sensor almost unchanged as the environment temperature ranged from 5 °C to 55 °C.

9.
Sensors (Basel) ; 19(19)2019 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-31569346

RESUMO

An optical waveguide (OWG) sensor was developed for real-time detection of diethyl chlorophosphate (DCP) vapor, which is a typical simulant for organophosphorus pesticides and chemical weapon agents. Silica gel, crystal violet (CV), and potassium ion-exchange (PIE) OWG were used to fabricate the sensor's device. In the real-time detection of the DCP vapor, the volume fraction of DCP vapor was recorded to be as low as 1.68 × 10-9. Moreover, the detection mechanism of CV-SiO2 gel film coated the PIE OWG sensor for DCP, which was evaluated by absorption spectra. These results demonstrated that the change of output light intensity of the OWG sensor significantly increased with the augment of the DCP concentration. Repeatability as well as selectivity of the sensors were tested using 0.042 × 10-6 and 26.32 × 10-6 volume fraction of the DCP vapor. No clear interference with the DCP detection was observed in the presence of other common solvents (e.g., acetone, methanol, dichloromethane, dimethylsulfoxide, and tetrahydrofuran), benzene series (e.g., benzene, toluene, chlorobenzene, and aniline), phosphorus-containing reagents (e.g., dimethyl methylphosphonate and trimethyl phosphate), acid, and basic gas (e.g., acetic acid and 25% ammonium hydroxide), which demonstrates that the OWG sensor could provide real-time, fast, and accurate measurement results for the detection of DCP.

10.
Opt Express ; 25(15): 18081-18091, 2017 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-28789298

RESUMO

A sensitive one-dimensional vector bending fiber-optic sensor based on self-referenced antiresonant reflecting guidance mechanism has been proposed and experimentally demonstrated. Two symmetric air holes in the hollow-core photonic crystal fiber (HCPCF) were infiltrated with refractive index matching liquids with different refractive indices, which formed a self-referenced anti-resonant reflecting optical waveguide. The bending of the HCPCF induces a wavelength shift of lossy dip in the transmission spectrum. Specially, the one-dimensional bending orientation can be detected through the wavelength interval between two lossy dips due to the asymmetric refractive index change of the silica cladding for two resonators. The bending sensitivities are 4.86 and -4.84 nm/m-1 for the curvatures of the 0° and 180° bending orientations in a bending range from 0 to 0.88 m-1, respectively. Moreover, the temperature and strain crosstalk of the proposed sensor can be eliminated through the compensated self-referenced anti-resonant reflecting optical waveguide. The proposed fiber sensor can be used for the monitoring of the structural health of infrastructures.

11.
Opt Lett ; 42(14): 2703-2706, 2017 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-28708148

RESUMO

A real-time all-fiber anemometer based on laser-heated few-layer graphene in aligned graded-index fibers has been proposed and experimentally demonstrated. The proposed fiber-optic anemometer was composed of a pair of all-fiber collimators by using aligned graded-index fibers that was coated with the few-layer graphene. The few-layer graphene was heated through a heating light from a 532-nm laser, which changed the optical transmittance of signal light with the wavelength of 1550 nm. The wind speed can be measured through the transmission power of the signal light based on the wind cooling effects on the heated few-layer graphene, acting as a "hot-wire" anemometer. The experimental results show that the maximum sensitivity of the anemometer reaches -22.03 µW/(m/s), and a fast response time of as 0.064 s can be achieved. The proposed fiber sensor can be used for the real-time measurement of wind speed in the fields of environmental monitoring, oil exploration, oceanography research, etc.

12.
Sensors (Basel) ; 17(6)2017 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-28587153

RESUMO

A wavelength-interrogated surface plasmon resonance (SPR) sensor based on a nanoporous gold (NPG) film has been fabricated for the sensitive detection of trace quantities of benzo[a]pyrene (BaP) in water. The large-area uniform NPG film was prepared by a two-step process that includes sputtering deposition of a 60-nm-thick AuAg alloy film on a glass substrate and chemical dealloying of the alloy film in nitric acid. For SPR sensor applications, the NPG film plays the dual roles of analyte enrichment and supporting surface plasmon waves, which leads to sensitivity enhancement. In this work, the as-prepared NPG film was first modified with 1-dodecanethiol molecules to make the film hydrophobic so as to improve BaP enrichment from water via hydrophobic interactions. The SPR sensor with the hydrophobic NPG film enables one to detect BaP at concentrations as low as 1 nmol·L-1. In response to this concentration of BaP the sensor produced a resonance-wavelength shift of ΔλR = 2.22 nm. After the NPG film was functionalized with mouse monoclonal IgG1 that is the antibody against BaP, the sensor's sensitivity was further improved and the BaP detection limit decreased further down to 5 pmol·L-1 (the corresponding ΔλR = 1.77 nm). In contrast, the conventional SPR sensor with an antibody-functionalized dense gold film can give a response of merely ΔλR = 0.9 nm for 100 pmol·L-1 BaP.

13.
Phys Chem Chem Phys ; 17(33): 21278-87, 2015 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-25662793

RESUMO

Kretschmann-type waveguide structures, including Plasmon Waveguide (PW) and Resonant Mirror (RM), have been applied in interfacial Raman spectroscopy due to the following unique features: (1) unlike the classic surface enhanced Raman scattering (SERS) substrates made of either gold or silver, both PW and RM can be prepared using a large variety of inexpensive materials; (2) the field enhancement factors using these structures can be theoretically predicted and experimentally controlled, which enables us to manipulate the surface Raman sensitivity with high repeatability; (3) the use of transverse electric (TE) and transverse magnetic (TM) modes for Raman excitation allows us to evaluate the orientation of target molecules immobilized on the waveguide surface; (4) the unwanted impact of noble metals on the Raman fingerprints of target molecules, which is often observed for conventional SERS substrates, can be avoided upon the use of dielectric waveguides. In this paper, guided-mode-coupled directional Raman emission, which is an additional important feature of the waveguide Raman technique, was theoretically investigated based on the optical reciprocity theorem combined with the Fresnel equations. The simulation results indicate that the directional Raman emission from a dipole located within the field confinement and penetration depth of a guided mode depends on both the orientation of the dipole and its distance from the waveguide surface. Raman light from the TE-oriented dipoles is launched into the prism coupler at the TE-mode resonance angle and that from the non-TE-oriented dipoles propagates at the TM-mode resonance angle. The intensity of the guided-mode-excited Raman signal propagating at the mode resonance angle is proportional to the fourth power of the mode field (E(4)) at the depth of the dipole from the waveguide surface. This means that the guided-mode-excited and guided-mode-coupled directional Raman spectroscopy has a detection depth that is as small as a quarter of the evanescent-field penetration depth, indicating the excellent surface selectivity of this technique. The directional Raman emission also facilitates high-efficiency signal collection compared with conventional SERS. It is worth noting that Raman light from the dipoles confined in the core layer of a single-mode waveguide can be simultaneously coupled into both the guided mode and the substrate mode, especially the surface plasmon resonance (SPR) mode for PW.

14.
Opt Lett ; 39(13): 3923-6, 2014 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-24978772

RESUMO

A simple and reliable spectrum-retrieval method was proposed for the development of miniature stationary Fourier transform (FT) spectrometers based on a LiNbO3 (LN) waveguide Mach-Zehnder interferometer (MZI) modulator. The method takes into account the wavelength dependence of the optical pathlength difference (OPD) and allows us to use a nonlinear voltage ramp to modulate the OPD. The method is based on the dispersion of the half-wave voltage, which was measured to be a monotonous polynomial function of the wavelength for the LN waveguide MZI used. With the measured dispersion of the half-wave voltage, the OPD, as a linear function of the modulating voltage, can be accurately determined at each wavelength in the near-infrared region in which the MZI used is a single-mode device. A prototype FT spectrometer was prepared using a LN waveguide MZI modulator based on the above method. The experimental results demonstrated that the spectrometer can be used for accurate determination of the laser wavelength and for liquid absorptiometry.

15.
Micromachines (Basel) ; 15(4)2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38675327

RESUMO

Electro-optic modulation devices are essential components in the field of integrated optical chips. High-speed, low-loss electro-optic modulation devices represent a key focus for future developments in integrated optical chip technology, and they have seen significant advancements in both commercial and laboratory settings in recent years. Current electro-optic modulation devices typically employ architectures based on thin-film lithium niobate (TFLN), traveling-wave electrodes, and impedance-matching layers, which still suffer from transmission losses and overall design limitations. In this paper, we demonstrate a lithium niobate electro-optic modulation device based on bound states in the continuum, featuring a non-overlay structure. This device exhibits a transmission loss of approximately 1.3 dB/cm, a modulation bandwidth of up to 9.2 GHz, and a minimum half-wave voltage of only 3.3 V.

16.
Micromachines (Basel) ; 14(2)2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36838158

RESUMO

A miniature Fourier transform spectrometer is proposed using a thin-film lithium niobate electro-optical modulator instead of the conventional modulator made by titanium diffusion in lithium niobate. The modulator was fabricated by a contact lithography process, and its voltage-length and optical waveguide loss were 2.26 V·cm and 1.01 dB/cm, respectively. Based on the wavelength dispersion of the half-wave voltage of the fabricated modulator, the emission spectrum of the input signal was retrieved by Fourier transform processing of the interferogram, and the analysis of the experimental data of monochromatic light shows that the proposed miniaturized FTS can effectively identify the input signal wavelength.

17.
ACS Nano ; 17(6): 5673-5685, 2023 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-36716225

RESUMO

Pressure sensors with high sensitivity, a wide linear range, and a quick response time are critical for building an intelligent disease diagnosis system that directly detects and recognizes pulse signals for medical and health applications. However, conventional pressure sensors have limited sensitivity and nonideal response ranges. We proposed a multichannel flexible pulse perception array based on polyimide/multiwalled carbon nanotube-polydimethylsiloxane nanocomposite/polyimide (PI/MPN/PI) sandwich-structure pressure sensor that can be applied for remote disease diagnosis. Furthermore, we established a mechanical model at the molecular level and guided the preparation of MPN. At the structural level, we achieved high sensitivity (35.02 kPa-1) and a broad response range (0-18 kPa) based on a pyramid-like bilayer microstructure with different upper and lower surfaces. A 27-channel (3 × 9) high-density sensor array was integrated at the device level, which can extract the spatial and temporal distribution information on a pulse. Furthermore, two intelligent algorithms were developed for extracting six-dimensional pulse information and automatic pulse recognition (the recognition rate reaches 97.8%). The results indicate that intelligent disease diagnosis systems have great potential applications in wearable healthcare devices.


Assuntos
Nanocompostos , Nanotubos de Carbono , Dispositivos Eletrônicos Vestíveis , Percepção
18.
Langmuir ; 28(23): 8814-21, 2012 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-22594626

RESUMO

We present novel nanoporous TiO(2)/polyion thin-film-coated long-period fiber grating (LPFG) sensors for the direct measurement of low-molecular-weight chemicals by monitoring the resonance wavelength shift. The hybrid overlay films are prepared by a simple layer-by-layer deposition approach, which is mainly based on the electrostatic interaction of TiO(2) nanoparticles and polyions. By the alternate immersion of LPFG into dispersions of TiO(2) nanoparticles and polyions, respectively, the so-formed TiO(2)/polyion thin film exhibits a unique nanoporous internal structure and has a relative higher refractive index than LPFG cladding. In particular, the porosity of the thin film reduces the diffusion coefficient and enhances the permeability retention of low-molecular-weight analytes within the porous film. The increases in the refractive index of the LPFG overlay results in a distinguished modulation of the resonance wavelength. Therefore, the detection sensitivity of LPFG sensors has been greatly improved, according to theoretical simulation. After the structure of the TiO(2)/polyion thin film was optimized, glucose solutions as an example with a low concentration of 10(-7) M was easily detected and monitored at room temperature.


Assuntos
Glucose/análise , Nanoestruturas/química , Titânio/química , Peso Molecular , Porosidade , Refratometria , Soluções , Eletricidade Estática , Ressonância de Plasmônio de Superfície , Água
19.
Analyst ; 137(20): 4822-8, 2012 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-22943046

RESUMO

Sol-gel copolymer-templated mesoporous silica films with a thickness of 70 nm and interpore spacing of 4.34 nm were fabricated on gold layer covered glass substrates for application as a wavelength-interrogated surface plasmon resonance (SPR) sensor. The resonance wavelength (λ(R)) of the sensor with a solution sample was determined by absorptiometry at a given incident angle. A comparison between the experimental data obtained with the coated and uncoated SPR chips demonstrated that the mesoporous silica film effectively enhanced sensor response to individual adsorption of cysteamine molecules and lead(II) ions. An approximate proportional relationship between the resonance-wavelength shift of the sensor and the volume fraction of analyte molecules adsorbed in the mesoporous silica film was obtained by numerical simulation. Porosities of 0.865 and 0.785 for the two silica films used as well as the volume fractions of 0.048 and 0.116 for adsorbed lysozyme and cysteamine molecules were determined by fitting the simulation results to the experimental data. The adsorbed amount of cysteamine (∼0.5 nm) is equivalent to more than 16 full monolayers on the geometric surface of the mesoporous silica film used. In contrast, an equivalence of less than 2 full monolayers for adsorbed lysozyme molecules (3 nm × 3 nm × 4.5 nm) suggests that the mesoporous silica film has good size-selective adsorption capability due to its uniform pore size distribution. Cysteamine modification of the mesoporous silica film renders the SPR sensor able to detect lead(II) ions at concentrations as low as 1 nM.


Assuntos
Cisteamina/química , Chumbo/análise , Dióxido de Silício/química , Ressonância de Plasmônio de Superfície , Adsorção , Cisteamina/metabolismo , Íons/química , Muramidase/química , Muramidase/metabolismo , Porosidade
20.
J Phys Chem A ; 116(9): 2141-6, 2012 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-22283376

RESUMO

The competitive adsorption of methylene blue (MB) and ß-casein on hydrophilic glass from an aqueous mixed solution was directly detected at the solution pH smaller than the protein isoelectric point (pI) by means of the waveguide-based broadband time-resolved evanescent wave absorption spectroscopy. The competitive adsorption causes the MB coverage to exponentially decrease with time from its peak value and prevents MB aggregation at the interface. The kinetic equation for the competitive adsorption of binary adsorbates was theoretically deduced based on the Langmuir model, and was used for creating the best fit to the experimental data. In the case of a fixed concentration of MB in the mixed solution, the best-fit parameter τ(-1) increases with the protein concentration at a specific pH and decreases with the solution pH at a given concentration of protein. The findings suggest that the ß-casein concentration in sub-µM level can be rapidly determined by the time-resolved waveguide absorptiometry based on the competitive adsorption of MB and protein.


Assuntos
Caseínas/química , Azul de Metileno/química , Adsorção , Vidro , Concentração de Íons de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Cinética , Modelos Biológicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA