Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 139
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Small ; 20(28): e2311356, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38295058

RESUMO

The engineering of amorphous metal-organic frameworks (MOFs) offers potential opportunities for the construction of electrocatalysts for efficient oxygen evolution reaction (OER). Herein, highly efficient OER performance and durability in alkaline electrolyte are discovered for MOF-derived amorphous and porous electrocatalysts, which are synthesized in a brief procedure and can be facilely produced in scalable quantities. The structural inheritance of MOF amorphous catalysts is significant for the retention of catalytic sites and the diffusion of electrolytes, and the presence of Fe sites can change the electronic structure and effectively control the adsorption behavior of important intermediates, accelerating reaction kinetics. The obtained amorphous A-FeNi can be transformed from FeNi-MOF effortlessly and instantly, and it only needs low overpotentials of 152 and 232 mV at 10 and 100 mA cm-2 with a Tafel slope of 17 mV dec-1 in 1 m KOH for OER. Moreover, A-FeNi possesses high corrosion resistance and durability, therefore A-FeNi can work continually for at least 400 h at 100 mA cm-2. This work may pave a new avenue for the design of MOFs-related amorphous electrocatalyst.

2.
Phys Chem Chem Phys ; 26(25): 17622-17630, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38864339

RESUMO

The in vitro detection applications of europium complex-doped microspheres mainly rely on strong fluorescence intensity and a well-defined morphology. In this work, using methyl methacrylate-modified polystyrene microspheres has been proven an effective strategy to enhance the fluorescence and morphology of Eu-complexes. The experimental results showed that the modification resulted in the formation of a porous structure within the polystyrene microspheres, enhancing the doping uniformity and facilitating a more significant accumulation of fluorescent molecules. Furthermore, because of their encapsulation ability, microspheres efficiently confine the fluorescent molecules within them. In addition, the nano-scale porous structure endowed the microspheres with enhanced properties without compromising solvent swelling capability, thereby significantly boosting the fluorescence performance of porous PSMMA. In lateral flow immunoassays (LFIAs), PSMMA-Eu microspheres were effectively utilized to detect fentanyl with exceptional sensitivity by capitalizing on these benefits, capable of detecting concentrations as low as 0.10 ng mL-1. This technology has significant potential for rapid point-of-care screening and clinical applications.

3.
Angew Chem Int Ed Engl ; 63(26): e202404734, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38635373

RESUMO

The development of porous materials with flexible-robust characteristics shows some unique advantages to target high performance for gas separation, but remains a daunting challenge to achieve so far. Herein, we report a carboxyl-based hydrogen-bonded organic framework (ZJU-HOF-8a) with flexible-robust porosity for efficient purification of natural gas. ZJU-HOF-8a features a four-fold interpenetrated structure with dia topology, wherein abundant supramolecular entanglements are formed between the adjacent subnetworks through weak intermolecular hydrogen bonds. This structural configuration could not only stabilize the whole framework to establish the permanent porosity, but also enable the framework to show some flexibility due to its weak intermolecular interactions (so-called flexible-robust framework). The flexible-robust porosity of ZJU-HOF-8a was exclusively confirmed by gas sorption isotherms and single-crystal X-ray diffraction studies, showing that the flexible pore pockets can be opened by C3H8 and n-C4H10 molecules rather by C2H6 and CH4. This leads to notably higher C3H8 and n-C4H10 uptakes with enhanced selectivities than C2H6 over CH4 under ambient conditions, affording one of the highest n-C4H10/CH4 selectivities. The gas-loaded single-crystal structures coupled with theoretical simulations reveal that the loading of n-C4H10 can induce an obvious framework expansion along with pore pocket opening to improve n-C4H10 uptake and selectivity, while not for C2H6 adsorption. This work suggests an effective strategy of designing flexible-robust HOFs for improving gas separation properties.

4.
Angew Chem Int Ed Engl ; : e202411753, 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39136332

RESUMO

Development of highly porous and robust HOFs for high-pressure methane and hydrogen storage remains a grand challenge due to the fragile nature of hydrogen bonds. Herein, we report a strategy of constructing double-walled framework to target highly porous and robust HOF (ZJU-HOF-5a) for extraordinary CH4 and H2 storage. ZJU-HOF-5a features a minimized twofold interpenetration with double-walled structure, in which multiple supramolecular interactions are existed between the interpenetrated walls. This structural configuration can notably enhance the framework robustness while maintaining its high porosity, affording one of the highest gravimetric and volumetric surface areas of 3102 m2 g-1 and 1976 m2 cm-3 among the reported HOFs so far. ZJU-HOF-5a exhibits an extremely high volumetric H2 uptake of 43.6 g L-1 at 77 K/100 bar and working capacity of 41.3 g L-1 under combined swing conditions, and also impressive methane storage performance with a 5-100 bar working capacity of 187 (or 159) cm3 cm-3 at 270 K (or 296 K). SCXRD studies on CH4-loaded ZJU-HOF-5a reveal that abundant supramolecular binding sites combined with ultrahigh porosities account for its high CH4 storage capacities. Combined with high stability, super-hydrophobicity, and easy-recovery, ZJU-HOF-5a is placed among the most promising materials for H2 and CH4 storage applications.

5.
Analyst ; 148(12): 2717-2724, 2023 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-37232084

RESUMO

The early diagnosis and real-time prognosis of cardiovascular diseases (CVDs) at the bedside are important. However, real-time detection of myocardial infarction involves the use of large-scale instrumentation and long test times. Herein, a simple, rapid and sensitive lateral flow immunochromatographic strip (LFIS) based on Yb/Er co-doped NaYF4 upconversion nanoparticles (UCNPs) was demonstrated for use in the detection of myocardial infarction. First, through heavy Yb/Er doping and an inert NaYF4 shell coating on the nanoparticles, the surface-related luminescence quenching effect of UCNPs was eliminated to enhance the upconversion luminescence. Second, through uniform coating of a SiO2 layer on the UCNPs, the biological affinity was improved to couple UCNPs and antibody proteins. Finally, through modification and activation with a specific antibody protein (serum amyloid A (SAA)), the UCNPs exhibited intense upconversion luminescence and high specificity when applied as a lateral flow immunochromatographic strip (LFIS). The developed UC-LFIS was highly sensitive (0.1 µg mL-1) and specific for detecting SAA in only 10 µL of serum. The UC-LFIS holds great potential for the early diagnosis and prognosis of CVDs.


Assuntos
Luminescência , Nanopartículas , Proteína Amiloide A Sérica , Dióxido de Silício , Nanopartículas/química , Prognóstico
6.
Angew Chem Int Ed Engl ; 62(12): e202218590, 2023 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-36691771

RESUMO

Developing porous materials for C3 H6 /C3 H8 separation faces the challenge of merging excellent separation performance with high stability and easy scalability of synthesis. Herein, we report a robust Hofmann clathrate material (ZJU-75a), featuring high-density strong binding sites to achieve all the above requirements. ZJU-75a adsorbs large amount of C3 H6 with a record high storage density of 0.818 g mL-1 , and concurrently shows high C3 H6 /C3 H8 selectivity (54.2) at 296 K and 1 bar. Single-crystal structure analysis unveil that the high-density binding sites in ZJU-75a not only provide much stronger interactions with C3 H6 but also enable the dense packing of C3 H6 . Breakthrough experiments on gas mixtures afford both high separation factor of 14.7 and large C3 H6 uptake (2.79 mmol g-1 ). This material is highly stable and can be easily produced at kilogram-scale using a green synthesis method, making it as a benchmark material to address major challenges for industrial C3 H6 /C3 H8 separation.

7.
J Am Chem Soc ; 144(7): 3200-3209, 2022 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-35138086

RESUMO

The discovery of high-performance adsorbents for highly efficient separation of xenon from krypton is an important but challenging task in the chemical industry due to their similar size and inert spherical nature. Herein, we report two robust and radiation-resistant Hofmann-type MOFs, Co(pyz)[Ni(CN)4] and Co(pyz)[Pd(CN)4] (termed as ZJU-74a-Ni and ZJU-74a-Pd), featuring oppositely adjacent open metal sites and perfect pore sizes (4.1 and 3.8 Å) comparable to the kinetic diameter of xenon (4.047 Å), affording the benchmark binding affinity for polarizable Xe gas. These materials thus exhibit both record-high Xe uptake capacities (89.3 and 98.4 cm3 cm-3 at 296 K and 0.2 bar) and Xe/Kr selectivities (74.1 and 103.4) at ambient conditions, all of which are the highest among all the state-of-the-art materials reported so far. The locations of Xe molecules within ZJU-74a-Ni have been visualized by single-crystal X-ray diffraction studies, in which two oppositely adjacent metal centers combined with the right aperture size can construct a unique sandwich-like binding site to offer unprecedented and ultrastrong Ni2+-Xe-Ni2+ interactions with xenon, thus leading to the record Xe capture capacity and selectivity. The excellent separation capacity of ZJU-74a-Pd was verified by breakthrough experiments for Xe/Kr gas mixtures, providing both unprecedentedly high xenon uptake capacity (4.63 mmol cm-3) and krypton productivity (214 cm3 g-1).

8.
J Am Chem Soc ; 144(6): 2614-2623, 2022 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-35109657

RESUMO

Purification of C2H4 from a ternary C2H2/C2H6/C2H4 mixture by one-step adsorption separation is of prime importance but challenging in the petrochemical industry; however, effective strategies to design high-performance adsorbents are lacking. We herein report for the first time the incorporation of Lewis basic sites into a C2H6-selective MOF, enabling efficient one-step production of polymer-grade C2H4 from ternary mixtures. Introduction of amino groups into highly stable C2H6-selective UiO-67 can not only partition large pores into smaller cagelike pockets to provide suitable pore confinement but also offer additional binding sites to simultaneously enhance C2H2 and C2H6 adsorption capacities over C2H4. The amino-functionalized UiO-67-(NH2)2 thus exhibits exceptionally high C2H2 and C2H6 uptakes as well as benchmark C2H2/C2H4 and C2H6/C2H4 selectivities, surpassing all of the C2H2/C2H6-selective materials reported so far. Theoretical calculations combined with in situ infrared spectroscopy indicate that the synergetic effect of suitable pore confinement and functional surfaces decorated with amino groups provides overall stronger multipoint van der Waals interactions with C2H2 and C2H6 over C2H4. The exceptional performance of UiO-67-(NH2)2 was evidenced by breakthrough experiments for C2H2/C2H6/C2H4 mixtures under dry and wet conditions, providing a remarkable C2H4 productivity of 0.55 mmol g-1 at ambient conditions.

9.
Small ; 18(35): e2203105, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35931456

RESUMO

Optimizing the adsorption free energy and promoting the active phase transition to further enhance the oxygen evolution reaction (OER) activity remain significant challenges. The adsorption free energy can be optimized by modulating the electronic structure and adjusting the crystal configuration. Meanwhile, the transformation of the active phase can be promoted by introducing strain energy. The theoretical calculations are conducted to verify the rational envisage. However, it is still a great obstacle to introducing strain into the electrocatalysts and avoiding destruction. The stress field caused by dislocation can realize both of the above. Hence, the molten salt with the bound water method is proposed and the abundant dislocation layered double hydroxides (D-NiFe LDH) are constructed. The in situ characterizations further verify the dislocations significantly affect the generation of the active phase and the state of electronic structure. Consequently, the D-NiFe LDH exhibits outstanding OER activity and obtains 10 mA cm-2 , only requiring 199 mV overpotential with fabulous stability (100 mA cm-2 more than 24 h). The work paves a new avenue for the rational introduction dislocations to optimize the crystal configuration and boost the active phase formation, significantly enhancing the OER performance.

10.
Angew Chem Int Ed Engl ; 61(41): e202211523, 2022 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-35979632

RESUMO

Developing porous materials to overcome the trade-off between adsorption capacity and selectivity for C2 H2 /CO2 separation remains a challenge. Herein, we report a stable HKUST-1-like MOF (ZJU-50a), featuring large cages decorated with high density of supramolecular binding sites to achieve both high C2 H2 storage and selectivity. ZJU-50a exhibits one of the highest C2 H2 storage capacity (192 cm3 g-1 ) and concurrently high C2 H2 /CO2 selectivity (12) at 298 K and 1 bar. Single-crystal X-ray diffraction studies on gas-loaded ZJU-50a crystal unveil that the incorporated supramolecular binding sites can selectively take up C2 H2 molecule but not CO2 to result in both high C2 H2 storage and selectivity. Breakthrough experiments validated its separation performance for C2 H2 /CO2 mixtures, providing a high C2 H2 recovery capacity of 84.2 L kg-1 with 99.5 % purity. This study suggests a novel strategy of engineering supramolecular binding sites into MOFs to overcome the trade-off for this separation.

11.
Small ; 17(6): e2006649, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33470526

RESUMO

Two europium metal-organic frameworks (MOFs) based on the same ligand, named as ZJU-23-Eu and ZJU-24-Eu, are selectively synthesized by fine-tuning solvent contents to tailor the coordination modes. Eu atoms are eight-coordinated and nine-coordinated in ZJU-23-Eu and ZJU-24-Eu respectively, and their frameworks vary in both spatial connectivity and symmetry. The ligand not only has multiphoton response but also suitable triplet energy level (19 998 cm-1 ) to sensitize Eu3+ . Thus ZJU-23-Eu exhibits characteristic emission of Eu3+ peaking at 614 nm via the energy transfer from the two-/three-photon excited ligand to Eu3+ , with its bidimensional layered structure benefiting this process. In contrast, the changed spatial connectivity in tridimensional ZJU-24-Eu narrows the distances between adjacent Eu3+ ions and reduces the density, resulting in poor two-photon excited fluorescence. Besides, noncentrosymmetric ZJU-24-Eu shows second harmonic generation (SHG) response with an intensity of ≈6.2 times relative to KH2 PO4 (KDP) microcrystalline powder while centrosymmetric ZJU-23-Eu cannot. These results have established two nonlinear optical (NLO) models based on MOFs to synchronously analyze the effects of two structural variables on different NLO behaviors, and provide ingenious ways to design MOF-based NLO devices with function on demand.

12.
Int J Neurosci ; 131(8): 810-827, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32326790

RESUMO

INTRODUCTION: The expression levels of signal transducer and activator of transcription 3 (STAT3) protein and Fascin-1 were inhibited using the STAT3 inhibitor BP-1-102 and RNA interference, respectively, to investigate the expression of AtT20 in mouse pituitary cells. The proliferative capacity and related molecular mechanisms of pituitary tumor cells were then analyzed. METHODS: Mouse AtT20 pituitary adenoma cells were divided into a control group (Pa group), a STAT3 inhibitor vehicle group (PA + DMSO group), a STAT3 inhibitor group (PA + BP-1-102 group), a Fascin-1 negative control group (PA + neg-siRNA group) and a Fascin-1 silenced group (PA + Fascin-siRNA group). The related protein expression and cell proliferation of the five groups were measured using immunofluorescence, Western blot and real-time RT-PCR, whereas their apoptosis and cell cycle were evaluated using CCK-8 and flow cytometry. RESULTS: Proliferation of AtT20 cells is inhibited with BP-1-102 enhanced apoptosis, at the same time reduced the expression of Fascin-1 and N-cadherin, and increased the expression of E-cadherin. After inhibiting Fascin-1, the expression of STAT3 decreased, the expression of N-cadherin decreased and the expression of E-cadherin increased. CONCLUSIONS: BP-1-102 is a novel drug with a great potential in pituitary tumors. Given their important roles in the growth of pituitary adenomas, STAT3 and Fascin-1 can be used as new treatment targets.


Assuntos
Adenoma/metabolismo , Proliferação de Células , Proteínas dos Microfilamentos/metabolismo , Neoplasias Hipofisárias/metabolismo , Receptores Odorantes/metabolismo , Fator de Transcrição STAT3/metabolismo , Ácidos Aminossalicílicos/administração & dosagem , Animais , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Camundongos , Interferência de RNA , Transdução de Sinais/efeitos dos fármacos , Sulfonamidas/administração & dosagem
13.
Angew Chem Int Ed Engl ; 60(47): 25068-25074, 2021 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-34529885

RESUMO

Porous materials for C2 H2 /CO2 separation mostly suffer from high regeneration energy, poor stability, or high cost that largely dampen their industrial implementation. A desired adsorbent should have an optimal balance between excellent separation performance, high stability, and low cost. We herein report a stable, low-cost, and easily scaled-up aluminum MOF (CAU-10-H) for highly efficient C2 H2 /CO2 separation. The suitable pore confinement in CAU-10-H can not only provide multipoint binding interactions with C2 H2 but also enable the dense packing of C2 H2 inside the pores. This material exhibits one of the highest C2 H2 storage densities of 392 g L-1 and highly selective adsorption of C2 H2 over CO2 at ambient conditions, achieved by a low C2 H2 adsorption enthalpy (27 kJ mol-1 ). Breakthrough experiments confirm its exceptional separation performance for C2 H2 /CO2 mixtures, affording both large C2 H2 uptake of 3.3 mmol g-1 and high separation factor of 3.4. CAU-10-H achieves the benchmark balance between separation performance, stability, and cost for C2 H2 /CO2 separation.

14.
Angew Chem Int Ed Engl ; 60(18): 10304-10310, 2021 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-33630416

RESUMO

For the separation of ethane from ethylene, it remains challenging to target both high C2 H6 adsorption and selectivity in a C2 H6 -selective material. Herein, we report a reversible solid-state transformation in a labile hydrogen-bonded organic framework to generate a new rod-packing desolvated framework (ZJU-HOF-1) with suitable cavity spaces and functional surfaces to optimally interact with C2 H6 . ZJU-HOF-1 thus exhibits simultaneously high C2 H6 uptake (88 cm3 g-1 at 0.5 bar and 298 K) and C2 H6 /C2 H4 selectivity (2.25), which are significantly higher than those of most top-performing materials. Theoretical calculations revealed that the cage-like cavities and functional sites synergistically "match" better with C2 H6 to provide stronger multipoint interactions with C2 H6 than C2 H4 . In combination with its high stability and ultralow water uptake, this material can efficiently capture C2 H6 from 50/50 C2 H6 /C2 H4 mixtures in ambient conditions under 60 % RH, providing a record polymer-grade C2 H4 productivity of 0.98 mmol g-1 .

15.
Angew Chem Int Ed Engl ; 60(29): 15995-16002, 2021 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-33977622

RESUMO

Separation of acetylene from carbon dioxide remains a daunting challenge because of their very similar molecular sizes and physical properties. We herein report the first example of using copper(I)-alkynyl chemistry within an ultra-microporous MOF (CuI @UiO-66-(COOH)2 ) to achieve ultrahigh C2 H2 /CO2 separation selectivity. The anchored CuI ions on the pore surfaces can specifically and strongly interact with C2 H2 molecule through copper(I)-alkynyl π-complexation and thus rapidly adsorb large amount of C2 H2 at low-pressure region, while effectively reduce CO2 uptake due to the small pore sizes. This material thus exhibits the record high C2 H2 /CO2 selectivity of 185 at ambient conditions, significantly higher than the previous benchmark ZJU-74a (36.5) and ATC-Cu (53.6). Theoretical calculations reveal that the unique π-complexation between CuI and C2 H2 mainly contributes to the ultra-strong C2 H2 binding affinity and record selectivity. The exceptional separation performance was evidenced by breakthrough experiments for C2 H2 /CO2 gas mixtures. This work suggests a new perspective to functionalizing MOFs with copper(I)-alkynyl chemistry for highly selective separation of C2 H2 over CO2 .

16.
J Am Chem Soc ; 142(1): 633-640, 2020 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-31838841

RESUMO

The separation of ethane (C2H6) from ethylene (C2H4) is of prime importance in the production of polymer-grade C2H4 for industrial manufacturing. It is very challenging and still remains unexploited to fully realize efficient C2H6/C2H4 separation in the emerging hydrogen-bonded organic frameworks (HOFs) due to the weak nature of hydrogen bonds. We herein report the benchmark example of a novel ultrarobust HOF adsorbent (termed as HOF-76a) with a Brunauer-Emmett-Teller surface area exceeding 1100 m2 g-1, exhibiting the preferential binding of C2H6 over C2H4 and thus highly selective separation of C2H6/C2H4. Theoretical calculations indicate the key role of the nonpolar surface and the suitable triangular channel-like pores in HOF-76a to sterically "match" better with the nonplanar C2H6 molecule than the planar C2H4, thus affording overall stronger multipoint van der Waals interactions with C2H6. The exceptional separation performance of HOF-76a for C2H6/C2H4 separation was clearly demonstrated by gas adsorption isotherms, ideal adsorbed solution theory calculations, and simulated and experimental breakthrough curves. Breakthrough experiments on HOF-76a reveal that polymer-grade ethylene gas can be straightforwardly produced from 50/50 (v/v) C2H6/C2H4 mixtures during the first adsorption cycle with a high productivity of 7.2 L/kg at 298 K and 1.01 bar and 18.8 L/kg at 298 K and 5.0 bar, respectively.

17.
Chemphyschem ; 21(5): 397-405, 2020 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-31944536

RESUMO

GeSe micro-sheets and micro-belts have been synthesized by a facile one-pot wet chemical method in 1-octadecene solvent and oleic acid solvent, respectively. The adsorption of more oleic acid molecules on the (002) plane promoted growth along [010] direction of the GeSe micro-belts and limited carrier transport in this direction, resulting in higher carrier concentration and mobility of the GeSe micro-belts. The performance of the photodetectors based on the single GeSe micro-sheet and the single GeSe micro-belt was investigated under illumination at 532 nm, 980 nm and 1319 nm. Both, photodetectors based on a single GeSe micro-sheet and a single GeSe micro-belt, exhibit a high photoresponse, short response/recovery times, and long-term durability. Moreover, the photodetector based on a single GeSe micro-belt displays a broadband response with a high responsivity (5562 A/W at 532 nm, 1546 A/W at 980 nm) and detectivity (3.01×1012 Jones at 532 nm, 8.38×1011 Jones at 980 nm). These excellent characteristics render single GeSe micro-belts very interesting for use as highly efficient photodetectors, especially in the NIR region.

18.
Inorg Chem ; 59(5): 3330-3339, 2020 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-32058697

RESUMO

The fabrication of heterojunctions or homojunctions between semiconductors is a controllable strategy to facilitate charge separation in photocatalysis. The homophase junctions exhibit atomic-level contact for the fast-speed charge transfer via inducing the built-in electric fields. Herein, a new concept of TiO2 quasi-core-shell homophase junction induced by a Ti3+ concentration difference for remarkably enhancing photocatalytic activity is proposed. Nano anatase TiO2 quasi-core-shell homophase junctions are constructed between the interior with high Ti3+ concentration (quasi-core) and the surface with no detected Ti3+ (quasi-shell). Diverse Ti3+ concentration differences are obtained via regulating the mass ratio of the Ti source. The nano anatase TiO2 quasi-core-shell homophase junctions exhibit improved photocatalytic hydrogen evolution compared with commercial anatase nanoparticles. To be specific, the maximum hydrogen evolution rate of 50.02 mmol/h/g is 25.4 times superior to that of commercial anatase nanoparticles under solar illumination. Besides, the photocatalytic activity remains stable (H2 evolution rate of 49.21 mmol/h/g, activity loss of <2%) after five cycles of catalytic test. The promoted photocatalytic activities are ascribed to the constitution of a built-in electrical field between the quasi-shell and quasi-core induced by the band bending, which accelerates the spatial charge separation and suppresses the recombination of carriers. Moreover, the atomic-level contact at the homophase junction interface provides smooth channels for carrier transfer, resulting in more effective separation and transfer of photogenerated electrons and holes. The synthesis of nano anatase TiO2 quasi-core-shell homophase junctions provides new insights into the efficient separation and transfer of photogenerated carriers for photocatalytic applications.

19.
Phys Chem Chem Phys ; 22(37): 21307-21316, 2020 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-32935686

RESUMO

Molecule like silver quantum clusters ([Agm]n+ QCs) exhibit an ultrasmall size confinement resulting in efficient broadband fluorescence. However, free [Agm]n+ QCs are also chemically active, so their stabilization is required for practical applications. We report in this work a phosphate oxyfluoride glass network enabled stabilization strategy of [Agm]n+ QCs. A series of silver-doped P2O5-ZnF2-xAg glasses were prepared by a conventional melt-and-quench method. The NMR and XPS results reveal that two types of [P(O,F)4] tetrahedrons (Q1, Q2) form chain structures and Zn(iv) connects [P(O,F)4] chains into a 3-dimension network in the glasses. The frameworks with limited void spaces were designed to restrict the polymerization degree, m, of [Agm]n+ QCs; the negatively charged tetrahedrons were designed to restrict the charge, n, of [Agm]n+ QCs. Through optical and mass spectroscopy studies, silver quantum clusters, [Ag2]2+ and [Ag4]2+, were identified to be charge compensated by [ZnO4] tetrahedrons and surrounded with [P(O,F)4] complex anions. The fluorescence thus gives high quantum efficiencies of 55.2% and 83.4%, for P2O5-ZnF2-xAg glass stabilized [Ag2]2+ and [Ag4]2+ QCs, respectively. This further reveals that the peak fixed fluorescence of [Ag2]2+ and [Ag4]2+ can be described by molecular fluorescence mechanisms. These are parity-allowed singlet-singlet transitions (S1 → S0), parity-forbidden triplet-singlet transitions (T1 → S0) and intersystem crossings between singlets (S1) and triplets (T1). The phonon coupled intersystem crossing between singlets (S1) and triplets (T1) determines the phosphate stabilized [Ag4]2+ QCs to exhibit a series of temperature dependent fluorescence behaviors. These include fluorescence intensity (at 50-200 K), intensity ratio (FIR) (at 50-200 K), peak shift (at 100-300 K) and lifetime (at 300-450 K) with maximum sensitivities of 1.27% K-1, 0.94% K-1, 0.29% K-1 and 0.41% K-1, respectively. Therefore, phosphate stabilized [Ag4]2+ QCs can be applied as temperature sensing probes, especially at low temperatures (10-300 K) and for color-based visualized temperature sensors.

20.
Coord Chem Rev ; 3842019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38712014

RESUMO

Metal-organic frameworks (MOFs) are organic-inorganic hybrid solids constructed from the coordination interaction of metal ions/clusters with organic linkers, which currently represent one of the most rapidly expanding platforms for new functional materials. Based on well-established approaches, involving tuning the pore sizes, incorporation of functional sites and post-synthetic modification, the pore structures of MOFs can be readily controlled for multifunctional applications. In this brief review, we summarize and highlight our research progresses during our journey on developing functional MOFs for various applications including gas storage, gas separations, luminescent sensing, proton conduction, and molecular recognitions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA