Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Chem Soc Rev ; 51(18): 8045-8101, 2022 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-36047454

RESUMO

Lithium-air batteries (LABs) have attracted tremendous attention since the proposal of the LAB concept in 1996 because LABs have a super high theoretical/practical specific energy and an infinite supply of redox-active materials, and are environment-friendly. However, due to the lack of critical electrode materials and a thorough understanding of the chemistry of LABs, the development of LABs entered a germination period before 2010, when LABs research mainly focused on the development of air cathodes and carbonate-based electrolytes. In the growing period, i.e., from 2010 to the present, the investigation focused more on systematic electrode design, fabrication, and modification, as well as the comprehensive selection of electrolyte components. Nevertheless, over the past 25 years, the development of LABs has been full of retrospective steps and breakthroughs. In this review, the evolution of LABs is illustrated along with the constantly emerging design, fabrication, modification, and optimization strategies. At the end, perspectives and strategies are put forward for the development of future LABs and even other metal-air batteries.


Assuntos
Fontes de Energia Elétrica , Lítio , Eletrodos , Íons , Estudos Retrospectivos
2.
Angew Chem Int Ed Engl ; 62(49): e202311460, 2023 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-37707882

RESUMO

Organic electrode materials (OEMs), valued for their sustainability and structural tunability, have been attracting increasing attention for wide application in sodium-ion batteries (SIBs) and other rechargeable batteries. However, most OEMs are plagued with insufficient specific capacity or poor cycling stability. Therefore, it's imperative to enhance their specific capacity and cycling stability through molecular design. Herein, we designed and synthesized a heteroaromatic molecule 2,3,8,9,14,15-hexanol hexaazatrinaphthalene (HATN-6OH) by the synergetic coupling of catechol (the precursor of ortho-quinone)/ortho-quinone functional groups and HATN conjugated core structures. The abundance of catechol/ortho-quinone and imine redox-active moieties delivers a high specific capacity of nine-electron transfer for SIBs. Most notably, the π-π interactions and intermolecular hydrogen bond forces among HATN-6OH molecules secure the stable long-term cycling performance of SIBs. Consequently, the as-prepared HATN-6OH electrode exhibited a high specific capacity (554 mAh g-1 at 0.1 A g-1 ), excellent rate capability (202 mAh g-1 at 10 A g-1 ), and stable long-term cycling performance (73 % after 3000 cycles at 10 A g-1 ) in SIBs. Additionally, the nine-electron transfer mechanism is confirmed by systematic density functional theory (DFT) calculation, attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR), and Raman analysis. The achievement of the synergetic coupling of the redox-active sites on OEMs could be an important key to the enhancement of SIBs and other metal-ion batteries.

3.
Adv Mater ; 36(21): e2313456, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38377174

RESUMO

All-solid-state lithium metal batteries (LMBs) are currently one of the best candidates for realizing the yearning high-energy-density batteries with high safety. However, even polyethylene oxide (PEO), the most popular polymeric solid-state electrolyte (SSE) with the largest ionic conductivity in the category so far, has significant challenges due to the safety issues of lithium dendrites, and the insufficient ionic conductivity. Herein, molecular sieve (MS) is integrated into the PEO as an inert filler with the liquid metal (LM) as a functional module, forming an "LM-MS-PEO" composite as both SSE with enhanced ionic conductivity, and protection layer against lithium dendrites. As demonstrated by theoretical and experimental investigations, LM released from MS can be uniformly and efficiently distributed in PEO, which could avoid agglomeration, enable the effective blocking of lithium dendrites, and regulate the mass transport of Li ions, thus achieving even deposition of lithium during charge/discharge. Moreover, MS could reduce the crystallinity of PEO, improve lithium-ion conductivity, and reduce operating temperature. Benefiting from the introduction of the functional MS/LM, the LM-MS-PEO electrolyte exhibits fourfold higher lithium ionic conductivity than the pristine PEO at 40 °C, while the as-assembled all-solid-state LMBs have four to five times longer stable cycle life.

4.
Exploration (Beijing) ; 2(1): 20210131, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37324579

RESUMO

The sulfur cathode of lithium-sulfur (Li-S) batteries suffers from inherent problems of insufficient mechanical strength and the dissolution of sulfur and polysulfides. Inspired by the extraordinarily resilient and strong binding force of the Great Wall binder, that is, the sticky rice mortar, we extracted highly branched amylopectin (HBA), the effective ingredient, as a low-cost, nontoxic and environmentally benign aqueous binder for the sulfur cathode. The HBA-based cells outperform the Li-S batteries based on the traditional polyvinyldene diflouride (PVDF) binder and a lowly branched polysaccharide binder. The improved electrochemical performance in the HBA-based cell could be attributed to two mechanisms. First, the branched structure of the HBA provides enhanced mechanical and adhesive properties, which allow for a robust electronic and ionic conductive framework to be maintained throughout the cathode after extended cycling. Second, the HBA shows enhanced polysulfide retention due to the polymer's abundant lone-pair rich hydroxyl groups and the formation of C─S bonds between the HBA and polysulfides prohibits the shuttle effect of polysulfides. The improved mechanical properties and polysulfide retention function of the HBA binder facilitate the HBA-based Li-S battery to deliver a long cycle life of 500 cycles at 2 C while only displaying a capacity fading of 0.104% per cycle.

5.
ACS Nano ; 16(9): 14600-14610, 2022 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-36067416

RESUMO

Aqueous Zn-ion batteries (AZIBs), being safe, inexpensive, and pollution-free, are a promising candidate for future large-scale sustainable energy storage. However, in a conventional AZIBs setup, the Zn metal anode suffers oxidative corrosion, side reactions with electrolytes, disordered dendrite growth during operation, and consequently low efficiency and short lifespan. In this work, we discover that purging CO2 gas into the electrolyte could address these issues by eliminating dissolved O2, inhibiting side reactions by buffering the local pH change, and preventing dendrite growth by inducing the in situ formation of a ZnCO3 solid electrolyte interphase layer. Moreover, the CO2-purged electrolyte could enable a highly reversible plating/stripping behavior with a high Coulombic efficiency of 99.97% and an ultralong lifespan of 32,000 cycles (1600 h) even under an ultrahigh current density of 40 mA cm-2. Consequently, the CO2-purged symmetrical cells deliver long cycling stability at a high depth of discharge of 57%, while the CO2-purged Zn/V2O5 full cells exhibit outstanding capacity retention of 66% after 1000 cycles at a high current density of 5 A g-1. Our strategy, the simple introduction of CO2 gas into the electrolyte, could effectively mediate the zinc anode's critical issues and provide a scalable and cost-effective pathway for the commercialization of AZIBs.

6.
Nanomicro Lett ; 13(1): 13, 2020 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-34138201

RESUMO

Carbon nitrides (including CN, C2N, C3N, C3N4, C4N, and C5N) are a unique family of nitrogen-rich carbon materials with multiple beneficial properties in crystalline structures, morphologies, and electronic configurations. In this review, we provide a comprehensive review on these materials properties, theoretical advantages, the synthesis and modification strategies of different carbon nitride-based materials (CNBMs) and their application in existing and emerging rechargeable battery systems, such as lithium-ion batteries, sodium and potassium-ion batteries, lithium sulfur batteries, lithium oxygen batteries, lithium metal batteries, zinc-ion batteries, and solid-state batteries. The central theme of this review is to apply the theoretical and computational design to guide the experimental synthesis of CNBMs for energy storage, i.e., facilitate the application of first-principle studies and density functional theory for electrode material design, synthesis, and characterization of different CNBMs for the aforementioned rechargeable batteries. At last, we conclude with the challenges, and prospects of CNBMs, and propose future perspectives and strategies for further advancement of CNBMs for rechargeable batteries.

7.
ACS Appl Mater Interfaces ; 9(36): 30608-30616, 2017 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-28841286

RESUMO

VNb9O25 is a novel lithium storage material, which has not been systematically investigated so far. Via electrospinning technology, VNb9O25 samples with two different morphologies, pored nanoribbon and rodlike nanoparticles, are prepared in relatively low temperature and time-saving calcination conditions. It is found that the formation process of different morphologies depends on the control of self-aggregation of the precursor by using different sample collectors. Compared with rodlike VNb9O25 (RL-VNb9O25), pored nanoribbon VNb9O25 (PR-VNb9O25) can deliver a higher specific capacity, lower capacity loss, and better cyclability. Even cycled at 1000 mA g-1, the reversible capacity of 132.3 mAh g-1 is maintained by PR-VNb9O25 after 500 cycles, whereas RL-VNb9O25 only exhibits a capacity of 102.7 mAh g-1. The enhancement should be attributed to the pored nanoribbon structure with large specific surface area and shorter pathway for lithium ions transport. Furthermore, the lithium ions insertion/extraction process is verified from refinement results of in situ X-ray diffraction data, which is associated with a lithium occupation process in type III and VI cavities through tunnels I, II, and III. In addition, high structural stability and electrochemical reversibility are also demonstrated. All of these advantages suggest that PR-VNb9O25 is a promising anode material for lithium-ion batteries.

8.
ACS Appl Mater Interfaces ; 8(16): 10302-14, 2016 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-27052633

RESUMO

Via Li(+), Cu(2+), Y(3+), Ce(4+), and Nb(5+) dopings, a series of Na-site-substituted Na1.9M0.1Li2Ti6O14 are prepared and evaluated as lithium storage host materials. Structural and electrochemical analyses suggest that Na-site substitution by high-valent metal ions can effectively enhance the ionic and electronic conductivities of Na2Li2Ti6O14. As a result, Cu(2+)-, Y(3+)-, Ce(4+)-, and Nb(5+)-doped samples reveal better electrochemical performance than bare Na2Li2Ti6O14, especially for Na1.9Nb0.1Li2Ti6O14, which can deliver the highest reversible charge capacity of 259.4 mAh g(-1) at 100 mA g(-1) among all samples. Even when cycled at higher rates, Na1.9Nb0.1Li2Ti6O14 still can maintain excellent lithium storage capability with the reversible charge capacities of 242.9 mAh g(-1) at 700 mA g(-1), 216.4 mAh g(-1) at 900 mA g(-1), and 190.5 mAh g(-1) at 1100 mA g(-1). In addition, ex situ and in situ observations demonstrate that the zero-strain characteristic should also be responsible for the outstanding lithium storage capability of Na1.9Nb0.1Li2Ti6O14. All of this evidence indicates that Na1.9Nb0.1Li2Ti6O14 is a high-performance anode material for rechargeable lithium ion batteries.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA