Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 75
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
PLoS Genet ; 18(6): e1010232, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35727824

RESUMO

Dync1li1, a subunit of cytoplasmic dynein 1, is reported to play important roles in intracellular retrograde transport in many tissues. However, the roles of Dync1li1 in the mammalian cochlea remain uninvestigated. Here we first studied the expression pattern of Dync1li1 in the mouse cochlea and found that Dync1li1 is highly expressed in hair cells (HCs) in both neonatal and adult mice cochlea. Next, we used Dync1li1 knockout (KO) mice to investigate its effects on hearing and found that deletion of Dync1li1 leads to early onset of progressive HC loss via apoptosis and to subsequent hearing loss. Further studies revealed that loss of Dync1li1 destabilizes dynein and alters the normal function of dynein. In addition, Dync1li1 KO results in a thinner Golgi apparatus and the accumulation of LC3+ autophagic vacuoles, which triggers HC apoptosis. We also knocked down Dync1li1 in the OC1 cells and found that the number of autophagosomes were significantly increased while the number of autolysosomes were decreased, which suggested that Dync1li1 knockdown leads to impaired transportation of autophagosomes to lysosomes and therefore the accumulation of autophagosomes results in HC apoptosis. Our findings demonstrate that Dync1li1 plays important roles in HC survival through the regulation of autophagosome transportation.


Assuntos
Autofagossomos , Dineínas do Citoplasma , Células Ciliadas Auditivas , Animais , Apoptose/fisiologia , Autofagossomos/metabolismo , Cóclea/citologia , Cóclea/metabolismo , Dineínas do Citoplasma/metabolismo , Dineínas/metabolismo , Células Ciliadas Auditivas/citologia , Células Ciliadas Auditivas/metabolismo , Camundongos
2.
Biochem Biophys Res Commun ; 704: 149704, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38430700

RESUMO

Ribbon synapses in the cochlear hair cells are subject to extensive pruning and maturation processes before hearing onset. Previous studies have highlighted the pivotal role of thyroid hormone (TH) in this developmental process, yet the detailed mechanisms are largely unknown. In this study, we found that the thyroid hormone receptor α (Thrα) is expressed in both sensory epithelium and spiral ganglion neurons in mice. Hypothyroidism, induced by Pax8 gene knockout, significantly delays the synaptic pruning during postnatal development in mice. Detailed spatiotemporal analysis of ribbon synapse distribution reveals that synaptic maturation involves not only ribbon pruning but also their migration, both of which are notably delayed in the cochlea of Pax8 knockout mice. Intriguingly, postnatal hyperthyroidism, induced by intraperitoneal injections of liothyronine sodium (T3), accelerates the pruning of ribbon synapses to the mature state without affecting the auditory functions. Our findings suggest that thyroid hormone does not play a deterministic role but rather controls the timing of cochlear ribbon synapse maturation.


Assuntos
Cóclea , Sinapses , Animais , Camundongos , Sinapses/fisiologia , Hormônios Tireóideos , Gânglio Espiral da Cóclea , Audição/fisiologia , Camundongos Knockout
3.
Audiol Neurootol ; 29(2): 146-166, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37963433

RESUMO

INTRODUCTION: The aim of the study was to investigate differences in the intra- and inter-network functional connectivity (FC) of the brain using resting-state functional magnetic resonance imaging (rs-fMRI) in patients with tinnitus, with (T + H) or without hearing loss (T). METHODS: We performed rs-fMRI on 82 participants (21 T, 32 T + H, and 29 healthy controls). An independent component analysis (ICA) was performed to obtain the resting-state networks (RSNs) and calculate the differences in FC. Moreover, we investigated the relationships between networks using functional network connectivity analysis. RESULTS: We identified nine major RSNs, including the auditory network; default mode network; executive control network (ECN), including the right frontoparietal network and left frontoparietal network (LFPN); somatomotor network (SMN); dorsal attention network; ventral attention network; salience network (SN); and visual network (VN). These RSNs were extracted in all groups using ICA. Compared with that in the control group, we observed reduced FC between the LFPN and VN in the T group and between the LFPN and SN in the T + H group. The inter-network connectivity analysis revealed decreased network interactions in the SMN (IC 22)-ECN (IC 2), SMN (IC 22)-VN (IC 8), and VN (IC 14)-SN (IC 3) connections in the T + H group, compared with the healthy control group. Furthermore, we observed significantly decreased network interactions in the SMN (IC 22)-VN (IC 8) in the T group. CONCLUSIONS: Our results indicated abnormalities within the brain networks of the T and T + H groups, including the SMN, ECN, and VN, compared with the control group. Furthermore, both T and T + H groups demonstrated reduced FC between the LFPN, VN, and SMN. There were no significant differences between the T and the T + H groups. Furthermore, we observed reduced FC between the right olfactory cortex and the orbital part of the right middle frontal gyrus, right precentral gyrus, left dorsolateral superior frontal gyrus, and right triangular part of the inferior frontal gyrus within the T and T + H groups. Thus, disruptions in brain regions responsible for attention, stimulus monitoring, and auditory orientation contribute to tinnitus generation.


Assuntos
Surdez , Perda Auditiva , Zumbido , Humanos , Mapeamento Encefálico/métodos , Zumbido/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Encéfalo/diagnóstico por imagem , Perda Auditiva/diagnóstico por imagem
4.
Arch Sex Behav ; 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38902490

RESUMO

Parents develop their own preferences regarding prospective in-laws, which influence their children's mate selection processes and outcomes. From an evolutionary perspective, fathers, mothers, and their offspring have partially divergent genetic interests, potentially leading to conflicts in mate preferences. Currently, the characteristics of discrepancy profiles in mate preferences within Chinese families and their influencing factors remain unclear. Adopting an individual-centered perspective, this study examined the profiles of discrepancies in mate preferences between fathers, mothers, and children across a diverse set of Chinese families, along with their associations with family relations and evaluations of children. This study recruited 337 complete families. The results revealed three distinct profiles of father-mother mate preference discrepancies in families with sons and four profiles in families with daughters. Additionally, both families with sons and daughters displayed three profiles of discrepancies in parent-child mate preferences. Parental perceptions of marital relationships and their evaluations of children were linked to diverse father-mother discrepancy profiles in both families with sons and daughters. The father-son relationship was associated with the profiles of parent-child discrepancies in families with sons, while maternal evaluations of children and daughters' self-evaluations were related to the profiles of parent-child discrepancies in families with daughters. This study provides insights into understanding the conflict patterns and underlying reasons regarding mate preference between Chinese parents and their children within family settings.

5.
Cell Mol Life Sci ; 79(2): 79, 2022 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-35044530

RESUMO

The Hippo/Yes-associated protein (YAP) signaling pathway has been shown to be able to maintain organ size and homeostasis by regulating cell proliferation, differentiation, and apoptosis. The abuse of aminoglycosides is one of the main causes of sensorineural hearing loss (SSNHL). However, the role of the Hippo/YAP signaling pathway in cochlear hair cell (HC) damage protection in the auditory field is still unclear. In this study, we used the YAP agonist XMU-MP-1 (XMU) and the inhibitor Verteporfin (VP) to regulate the Hippo/YAP signaling pathway in vitro. We showed that YAP overexpression reduced neomycin-induced HC loss, while downregulated YAP expression increased HC vulnerability after neomycin exposure in vitro. We next found that activation of YAP expression inhibited C-Abl-mediated cell apoptosis, which led to reduced HC loss. Many previous studies have reported that the level of reactive oxygen species (ROS) is significantly increased in cochlear HCs after neomycin exposure. In our study, we also found that YAP overexpression significantly decreased ROS accumulation, while downregulation of YAP expression increased ROS accumulation. In summary, our results demonstrate that the Hippo/YAP signaling pathway plays an important role in reducing HC injury and maintaining auditory function after aminoglycoside exposure. YAP overexpression could protect against neomycin-induced HC loss by inhibiting C-Abl-mediated cell apoptosis and decreasing ROS accumulation, suggesting that YAP could be a novel therapeutic target for aminoglycosides-induced sensorineural hearing loss in the clinic.


Assuntos
Antibacterianos/efeitos adversos , Células Ciliadas Auditivas/efeitos dos fármacos , Via de Sinalização Hippo/efeitos dos fármacos , Neomicina/efeitos adversos , Proteínas de Sinalização YAP/metabolismo , Animais , Células Ciliadas Auditivas/metabolismo , Células Ciliadas Auditivas/patologia , Camundongos , Fatores de Proteção , Inibidores da Síntese de Proteínas/efeitos adversos , Transdução de Sinais/efeitos dos fármacos
6.
PLoS Genet ; 16(9): e1009040, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32970669

RESUMO

Genetic hearing loss is a common health problem with no effective therapy currently available. DFNA15, caused by mutations of the transcription factor POU4F3, is one of the most common forms of autosomal dominant non-syndromic deafness. In this study, we established a novel mouse model of the human DFNA15 deafness, with a Pou4f3 gene mutation (Pou4f3Δ) identical to that found in a familial case of DFNA15. The Pou4f3(Δ/+) mice suffered progressive deafness in a similar manner to the DFNA15 patients. Hair cells in the Pou4f3(Δ/+) cochlea displayed significant stereociliary and mitochondrial pathologies, with apparent loss of outer hair cells. Progression of hearing and outer hair cell loss of the Pou4f3(Δ/+) mice was significantly modified by other genetic and environmental factors. Using Pou4f3(-/+) heterozygous knockout mice, we also showed that DFNA15 is likely caused by haploinsufficiency of the Pou4f3 gene. Importantly, inhibition of retinoic acid signaling by the aldehyde dehydrogenase (Aldh) and retinoic acid receptor inhibitors promoted Pou4f3 expression in the cochlear tissue and suppressed the progression of hearing loss in the mutant mice. These data demonstrate Pou4f3 haploinsufficiency as the main underlying cause of human DFNA15 deafness and highlight the therapeutic potential of Aldh inhibitors for treatment of progressive hearing loss.


Assuntos
Aldeído Desidrogenase/antagonistas & inibidores , Inibidores Enzimáticos/farmacologia , Células Ciliadas Auditivas/patologia , Perda Auditiva/tratamento farmacológico , Perda Auditiva/etiologia , Proteínas de Homeodomínio/genética , Fator de Transcrição Brn-3C/genética , Animais , Benzaldeídos/farmacologia , Modelos Animais de Doenças , Haploinsuficiência/genética , Perda Auditiva/genética , Perda Auditiva/patologia , Proteínas de Homeodomínio/metabolismo , Humanos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos , Camundongos Knockout , Ruído/efeitos adversos , Quinolinas/farmacologia , Fator de Transcrição Brn-3C/metabolismo , Tretinoína/farmacologia , para-Aminobenzoatos/farmacologia
7.
Ann Nutr Metab ; 78(1): 21-32, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34814152

RESUMO

PURPOSES: Adipokine alterations contribute to the development and remission of nonalcoholic fatty-liver disease (NAFLD). Adipsin is one of the most abundant adipokines and is almost exclusively produced by adipocytes. However, data on adipsin in human NAFLD are limited and controversial. We performed this study to investigate the association between adipsin and the remission of NAFLD in middle-aged and elderly Chinese adults. METHODS: Whether adipsin is associated with the remission of NAFLD in a 3-year community-based prospective cohort study was investigated. Baseline levels of adipsin were measured in serum samples collected from 908 NAFLD participants. NAFLD was diagnosed using abdominal ultrasonography. Logistic regression analysis and a multiple stepwise logistic regression model including different variables were conducted to evaluate the association between serum adipsin levels and the remission of NAFLD. RESULTS: During a mean follow-up of 3.14 ± 0.36 years, 247 (27.20%) participants with NAFLD at baseline were in remission. At baseline, serum adipsin concentration was positively correlated with body mass index (r: 0.39, p < 0.001), insulin (r: 0.31, p < 0.001), and homeostasis model assessment of insulin resistance (r: 0.31, p < 0.001) and was inversely associated with NAFLD remission with a fully adjusted odds ratio (OR) of 0.28 (0.16-0.48) (p trend < 0.001). In a multiple stepwise logistic regression model, circulating adipsin independently predicted NAFLD remission (OR: 0.284, 95% confidence interval [CI]: 0.172-0.471, p for trend <0.001). The area under the receiver operating characteristic curve was 0.751 (95% CI: 0.717-0.785) (p < 0.001) for the prediction model of NAFLD remission. CONCLUSIONS: We provide evidence for an association between serum adipsin levels and the remission of NAFLD in a community-based prospective cohort study. Serum adipsin can be a potential biomarker for predicting NAFLD remission.


Assuntos
Resistência à Insulina , Hepatopatia Gordurosa não Alcoólica , Adulto , Idoso , Estudos de Coortes , Fator D do Complemento/análise , Humanos , Pessoa de Meia-Idade , Estudos Prospectivos
8.
Small ; 17(38): e2102062, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34411420

RESUMO

Spiral ganglion neuron (SGN) degeneration can lead to severe hearing loss, and the directional regeneration of SGNs has shown great potential for improving the efficacy of auditory therapy. Here, a novel 3D conductive microstructure with surface topologies is presented by integrating superaligned carbon-nanotube sheets (SA-CNTs) onto Morpho Menelaus butterfly wings for SGN culture. The parallel groove-like topological structures of M. Menelaus wings induce the cultured cells to grow along the direction of its ridges. The excellent conductivity of SA-CNTs significantly improves the efficiency of cellular information conduction. When integrating the SA-CNTs with M. Menelaus wings, the SA-CNTs are aligned in parallel with the M. Menelaus ridges, which further strengthens the consistency of the surface topography in the composite substrate. The SA-CNTs integrated onto butterfly wings provide powerful physical signals and regulate the behavior of SGNs, including cell survival, adhesion, neurite outgrowth, and synapse formation. These features indicate the possibility of directed regeneration after auditory nerve injury.


Assuntos
Borboletas , Gânglio Espiral da Cóclea , Animais , Condutividade Elétrica , Neuritos , Neurônios , Asas de Animais
9.
Eur Arch Otorhinolaryngol ; 273(6): 1477-80, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26370235

RESUMO

The present study was aimed to investigate the effects of DNS on the structure of nasal cavity. The paranasal sinus coronal view CT of 108 patients with DNS and 129 hospitalized patients without DNS was retrospectively analyzed. The transverse diameter of nasal cavity (a), transverse diameter of nasal cavity and paranasal sinus (b), angle between maxillary and palatal bone, interalveolar distance, and maxillary rotation distance were measured. The ratio of a/b in experimental group was 0.367 ± 0.006 which was significantly (P = 0.0023) less than that in control group (0.391 ± 0.005). For the angle between maxillary and palatal bone, there was no significant difference found between DNS and control group for both right and left sides. The interalveolar distance was 40.75 mm in experimental group, and 38.8 mm in control (P = 0.0002). For the maxillary rotation distance, findings were considered as significant (P < 0.0001) in experimental group (11.25 mm) compared with control (10.1 mm). The present study demonstrates that long-term DNS affects the development of nasal cavity and paranasal sinus, as well as increases the interalveolar distance and maxillary rotation distance. These influences may be caused by the alteration of airflow inside the nasal cavities.


Assuntos
Cavidade Nasal/diagnóstico por imagem , Septo Nasal/anormalidades , Seios Paranasais/diagnóstico por imagem , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Estudos de Casos e Controles , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Septo Nasal/diagnóstico por imagem , Estudos Retrospectivos , Tomografia Computadorizada por Raios X , Adulto Jovem
10.
Artigo em Inglês | MEDLINE | ID: mdl-25791913

RESUMO

AIMS: Compared with those in other head and neck regions, schwannomas in the nasal cavity or paranasal sinuses are rare. The aim of this study was to present the experience of the authors in 11 schwannoma cases of the sinonasal tract and pterygopalatine fossa over a decade. METHODS: A retrospective study from 2003 to 2014. RESULTS: Three female and 8 male patients from 22 to 61 years of age (mean age 42 years) were admitted. The most common complaints were unilateral nasal congestion. A total of 10 of the patients received surgery, including 6 functional endoscopic sinus surgeries (FESS). The postoperative course was generally uneventful. Among the patients, 10 remained regionally asymptomatic, and there has been no clinical or radiological evidence of recurrence or residual tumor. CONCLUSION: Surgical treatment is effective for schwannomas of the sinonasal tract and the pterygopalatine fossa with a low recurrence rate. Conducting CT and MRI (particularly fluid-attenuated inversion recovery) before surgery is mandatory. FESS could become the primary treatment of choice.


Assuntos
Cavidade Nasal/patologia , Neurilemoma/cirurgia , Neoplasias Nasais/patologia , Neoplasias dos Seios Paranasais/cirurgia , Seios Paranasais/patologia , Fossa Pterigopalatina/patologia , Adulto , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Cavidade Nasal/cirurgia , Recidiva Local de Neoplasia , Neoplasias Nasais/cirurgia , Neoplasias dos Seios Paranasais/patologia , Seios Paranasais/cirurgia , Estudos Retrospectivos , Tomografia Computadorizada por Raios X , Adulto Jovem
11.
Cell Prolif ; 57(7): e13620, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38400824

RESUMO

Irreversible damage to hair cells (HCs) in the cochlea leads to hearing loss. Cochlear supporting cells (SCs) in the murine cochlea have the potential to differentiate into HCs. Neuron membrane glycoprotein M6B (Gpm6b) as a four-transmembrane protein is a potential regulator of HC regeneration according to our previous research. In this study, we found that AAV-ie-mediated Gpm6b overexpression promoted SC-derived organoid expansion. Enhanced Gpm6b prevented the normal decrease in SC plasticity as the cochlea develops by supporting cells re-entry cell cycle and facilitating the SC-to-HC transformation. Also, overexpression of Gpm6b in the organ of Corti through the round window membrane injection facilitated the trans-differentiation of Lgr5+ SCs into HCs. In conclusion, our results suggest that Gpm6b overexpression promotes HC regeneration and highlights a promising target for hearing repair using the inner ear stem cells combined with AAV.


Assuntos
Dependovirus , Células Ciliadas Auditivas , Animais , Dependovirus/genética , Camundongos , Células Ciliadas Auditivas/metabolismo , Células Ciliadas Auditivas/citologia , Reprogramação Celular , Camundongos Endogâmicos C57BL , Cóclea/metabolismo , Cóclea/citologia , Transdiferenciação Celular , Organoides/metabolismo , Organoides/citologia
12.
Neurosci Bull ; 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38589712

RESUMO

Deafness is the prevailing sensory impairment among humans, impacting every aspect of one's existence. Half of congenital deafness cases are attributed to genetic factors. Studies have shown that Luzp2 is expressed in hair cells (HCs) and supporting cells of the inner ear, but its specific role in hearing remains unclear. To determine the importance of Luzp2 in auditory function, we generated mice deficient in Luzp2. Our results revealed that Luzp2 has predominant expression within the HCs and pillar cells. However, the loss of Luzp2 did not result in any changes in auditory threshold. HCs or synapse number and HC stereocilia morphology in Luzp2 knockout mice did not show any notable distinctions. This was the first study of the role of Luzp2 in hearing in mice, and our results provide important guidance for the screening of deafness genes.

13.
Cell Prolif ; : e13633, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38528645

RESUMO

Hair cell (HC) damage is a leading cause of sensorineural hearing loss, and in mammals supporting cells (SCs) are unable to divide and regenerate HCs after birth spontaneously. Procollagen C-endopeptidase enhancer 2 (Pcolce2), which encodes a glycoprotein that acts as a functional procollagen C protease enhancer, was screened as a candidate regulator of SC plasticity in our previous study. In the current study, we used adeno-associated virus (AAV)-ie (a newly developed adeno-associated virus that targets SCs) to overexpress Pcolce2 in SCs. AAV-Pcolce2 facilitated SC re-entry into the cell cycle both in cultured cochlear organoids and in the postnatal cochlea. In the neomycin-damaged model, regenerated HCs were detected after overexpression of Pcolce2, and these were derived from SCs that had re-entered the cell cycle. These findings reveal that Pcolce2 may serve as a therapeutic target for the regeneration of HCs to treat hearing loss.

14.
Adv Sci (Weinh) ; 11(11): e2306788, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38189623

RESUMO

Mutations in OTOFERLIN (OTOF) lead to the autosomal recessive deafness 9 (DFNB9). The efficacy of adeno-associated virus (AAV)-mediated OTOF gene replacement therapy is extensively validated in Otof-deficient mice. However, the clinical safety and efficacy of AAV-OTOF is not reported. Here, AAV-OTOF is generated using good manufacturing practice and validated its efficacy and safety in mouse and non-human primates in order to determine the optimal injection dose, volume, and administration route for clinical trials. Subsequently, AAV-OTOF is delivered into one cochlea of a 5-year-old deaf patient and into the bilateral cochleae of an 8-year-old deaf patient with OTOF mutations. Obvious hearing improvement is detected by the auditory brainstem response (ABR) and the pure-tone audiometry (PTA) in these two patients. Hearing in the injected ear of the 5-year-old patient can be restored to the normal range at 1 month after AAV-OTOF injection, while the 8-year-old patient can hear the conversational sounds. Most importantly, the 5-year-old patient can hear and recognize speech only through the AAV-OTOF-injected ear. This study is the first to demonstrate the safety and efficacy of AAV-OTOF in patients, expands and optimizes current OTOF-related gene therapy and provides valuable information for further application of gene therapies for deafness.


Assuntos
Surdez , Perda Auditiva Neurossensorial , Humanos , Animais , Camundongos , Dependovirus/genética , Perda Auditiva Neurossensorial/genética , Perda Auditiva Neurossensorial/terapia , Audição , Surdez/genética , Surdez/terapia , Terapia Genética
15.
Int J Audiol ; 52(2): 134-8, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23151031

RESUMO

OBJECTIVE: To detect genetic cause of two Chinese siblings (patient 1 and 2) with Pendred syndrome. DESIGN: Patients and their parents underwent clinical and genetic evaluations. To identify genetic mutations, sequencing of SLC26A4 was carried out. STUDY SAMPLE: Two siblings and their parents. RESULTS: Clinical evaluations showed that patient 1 suffered from bilateral postlingual progressive sensorineural hearing loss with enlarged vestibular aqueduct and slight diffuse multinodular goiter with euthyroid, and patient 2 suffered from bilateral prelingual progressive sensorineural hearing loss with enlarged vestibular aqueduct and no goiter with euthyroid. Furthermore, the sequence analysis of SLC26A4 indicated that either of the two siblings presented a compound heterozygote for the c.919A>G mutation in the splice site of intron 7 and for the c.1548insC mutation in exon 14. Their mother was a heterozygous carrier of the splice site mutation in intron 7, and their father was a heterozygous carrier of the insertion mutation in exon 14. CONCLUSIONS: Mutation analysis identified a compound heterozygous mutation (c.919A>G/c.1548insC) in SLC26A4 in two Chinese siblings with Pendred syndrome. Also, c.1548insC was first reported in the Chinese population. Although the two siblings from the same family carried the same genotype, they presented different phenotypes.


Assuntos
Povo Asiático/genética , Bócio Nodular/genética , Perda Auditiva Neurossensorial/genética , Audição/genética , Heterozigoto , Proteínas de Membrana Transportadoras/genética , Mutação , Adulto , Audiometria de Tons Puros , China/epidemiologia , Análise Mutacional de DNA , Éxons , Feminino , Predisposição Genética para Doença , Bócio Nodular/diagnóstico , Bócio Nodular/etnologia , Bócio Nodular/fisiopatologia , Perda Auditiva Neurossensorial/diagnóstico , Perda Auditiva Neurossensorial/etnologia , Perda Auditiva Neurossensorial/fisiopatologia , Hereditariedade , Humanos , Íntrons , Masculino , Linhagem , Fenótipo , Transportadores de Sulfato , Tomografia Computadorizada por Raios X , Adulto Jovem
16.
Ear Nose Throat J ; : 1455613231183882, 2023 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-37522341

RESUMO

Objective: Laryngeal neuroendocrine neoplasms (NENs) are rare diseases. A single institution retrospective study was done of the outcome of patients with laryngeal NENs who undergo primary surgery as the first treatment modality. Methods: Retrospective analysis of medical records of patients with laryngeal NENs between 2009 and 2018. Cases were classified by applying the 2022 World Health organization Classification of Head and Neck Tumors (5th edition). Results: Six patients were eligible at our tertiary center: 1 large cell neuroendocrine carcinoma (NEC), 3 small cell NEC, 1 neuroendocrine tumor grade 1, and 1 neuroendocrine tumor grade 2. All admitted patients received upfront surgeries, including 3 transoral CO2 laser surgeries and 3 total laryngectomies with or without elective neck dissection. Four patients underwent subsequent chemoradiotherapy. Although 3 patients had recurrent disease and distal metastasis, the overall survival was generally improved. Conclusion: According to our institutional experience, upfront surgery in the first-line setting of a multi-modality approach with adjuvant chemoradiotherapy plays a very important role in managing laryngeal NECs, and may confer additional survival benefit in some patients of the large cell carcinoma subgroup.

17.
Artigo em Zh | MEDLINE | ID: mdl-36843516

RESUMO

Congenital temporal bone cholesteatoma is a rare lesion in otolaryngology.The disease is locally invasive and may lead to significant complications,including hearing loss(conductive or sensorineural), temporal bone destruction and intracranial invasion. This article reviews the characteristic symptoms of congenital temporal bone cholesteatoma, testing and imaging of the disease, stage and the current treatment options in order to promote awareness to this rare disease entity and perform early surgical treatment, effectively avoid the destruction of the temporal bone and its surrounding structures, thereby reducing the occurrence of complications. By improving the understanding of the disease and performing early surgical treatment, the destruction of the temporal bone and its surrounding structures can be effectively avoided, thereby reducing the occurrence of complications.


Assuntos
Colesteatoma , Surdez , Perda Auditiva , Humanos , Colesteatoma/diagnóstico , Colesteatoma/cirurgia , Colesteatoma/congênito , Osso Temporal
18.
Front Neurosci ; 17: 1185033, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37304035

RESUMO

Objective: To describe the characteristics of large vestibular aqueduct syndrome (LVAS) in wideband acoustic immittance (WAI) and to explore whether inner ear deformity has an impact on WAI results. Methods: Subjects with typical LVAS (LVAS group) and control subjects with a normal anatomical structure of the inner ear (control group) were screened from pediatric patients with cochlear implants using thin-slice computed tomography (CT) images of the temporal bone. With inflammation of the auditory canal and middle ear excluded by routine ear examination and 226 Hz acoustic immittance, WAI data were acquired. Then, the maximum absorbance as the major observation indicator on the mean tympanogram was compared between the LVAS group and control group, and a descriptive comparison of the mean tympanogram and frequency-absorbance curve at peak pressure was performed between the two groups. Results: The LVAS group included 21 cases (38 ears), and the control group included 27 cases (45 ears). All LVAS subjects met the Valvassori criteria, and the VA at the horizontal semicircular canal displayed flared expansion. On the mean tympanogram, the maximum absorbance in the LVAS group (0.542 ± 0.087) was significantly higher than that in the control group (0.455 ± 0.087) (p < 0.001). The tympanogram in the LVAS group showed an overall elevation, and the absorbance at all pressure sampling points was significantly higher than that in the control group (p < 0.001). The frequency-absorbance curve at peak pressure first increased and then decreased in both groups, and the LVAS group showed higher absorbance than the control group in the frequency range below 2,828 Hz. The absorbance at 343-1,124 Hz was significantly different between the two groups (p < 0.001), and 343-1,124 Hz was the major frequency range at which the maximum absorbance on the mean tympanogram increased in the LVAS group. Conclusion: Large vestibular aqueduct syndrome (LVAS) shows increased absorbance in low and medium frequency ranges in WAI. The maximum absorbance on the mean tympanogram can serve as a reliable evaluation indicator. Inner ear factors must be considered when middle ear lesions are analyzed by WAI.

19.
Autophagy ; 19(1): 75-91, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-35471096

RESUMO

Aminoglycosides exhibit ototoxicity by damaging mitochondria, which in turn generate reactive oxygen species that induce hair cell death and subsequent hearing loss. It is well known that damaged mitochondria are degraded by mitophagy, an important mitochondrial quality control system that maintains mitochondrial homeostasis and ensures cell survival. However, it is unclear whether dysregulation of mitophagy contributes to aminoglycoside-induced hair cell injury. In the current study, we found that PINK1-PRKN-mediated mitophagy was impaired in neomycin-treated hair cells. Our data suggested that mitochondrial recruitment of PRKN and phagophore recognition of damaged mitochondria during mitophagy were blocked following neomycin treatment. In addition, the degradation of damaged mitochondria by lysosomes was significantly decreased as indicated by the mitophagic flux reporter mt-mKeima. Moreover, we demonstrated that neomycin disrupted mitophagy through transcriptional inhibition of Pink1 expression, the key initiator of mitophagy. Moreover, we found that neomycin impaired mitophagy by inducing ATF3 expression. Importantly, treatment with a mitophagy activator could rescue neomycin-treated hair cells by increasing mitophagy, indicating that genetic modulation or drug intervention in mitophagy may have therapeutic potential for aminoglycoside-induced hearing loss.Abbreviations: AAV: adeno-associated virus; ABR: auditory brainstem response; ATF3: activating transcription factor 3; ATOH1/MATH1: atonal bHLH transcription factor 1; BafA1: bafilomycin A1; CCCP: carbonyl cyanide m-chlorophenyl hydrazone; COX4I1/COXIV: cytochrome c oxidase subunit 4I1; CTBP2/RIBEYE: C-terminal binding protein 2; DFP: deferiprone; EGFP: enhanced green fluorescent protein; FOXO3: forkhead box O3; GRIA2/GLUR2: glutamate receptor, ionotropic, AMPA2 (alpha 2); HC: hair cell; HSPD1/HSP60: heat shock protein 1 (chaperonin); IHC: inner hair cell; MAP1LC3B/LC3B: microtubule-associated protein 1 light chain 3 beta; MYO7A: myosin VIIA; OPTN: optineurin; OMM: outer mitochondrial membrane; PRKN: parkin RBR E3 ubiquitin protein ligase; PINK1: PTEN induced putative kinase 1; RT-qPCR: real-time quantitative polymerase chain reaction; TOMM20/TOM20: translocase of outer mitochondrial membrane 20; TUNEL: Terminal deoxynucleotidyl transferase (TdT) dUTP nick-end labeling; USP30: ubiquitin specific peptidase 30; XBP1: X-box binding protein 1.


Assuntos
Autofagia , Mitofagia , Mitofagia/genética , Aminoglicosídeos/toxicidade , Proteínas Quinases/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Antibacterianos/farmacologia , Neomicina/toxicidade , Células Ciliadas Auditivas
20.
EMBO Mol Med ; 15(11): e17611, 2023 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-37691516

RESUMO

Cingulin (CGN) is a cytoskeleton-associated protein localized at the apical junctions of epithelial cells. CGN interacts with major cytoskeletal filaments and regulates RhoA activity. However, physiological roles of CGN in development and human diseases are currently unknown. Here, we report a multi-generation family presenting with autosomal dominant non-syndromic hearing loss (ADNSHL) that co-segregates with a CGN heterozygous truncating variant, c.3330delG (p.Leu1110Leufs*17). CGN is normally expressed at the apical cell junctions of the organ of Corti, with enriched localization at hair cell cuticular plates and circumferential belts. In mice, the putative disease-causing mutation results in reduced expression and abnormal subcellular localization of the CGN protein, abolishes its actin polymerization activity, and impairs the normal morphology of hair cell cuticular plates and hair bundles. Hair cell-specific Cgn knockout leads to high-frequency hearing loss. Importantly, Cgn mutation knockin mice display noise-sensitive, progressive hearing loss and outer hair cell degeneration. In summary, we identify CGN c.3330delG as a pathogenic variant for ADNSHL and reveal essential roles of CGN in the maintenance of cochlear hair cell structures and auditory function.


Assuntos
Surdez , Perda Auditiva , Animais , Humanos , Camundongos , Proteínas do Citoesqueleto , Surdez/genética , Células Ciliadas Auditivas/metabolismo , Audição/fisiologia , Perda Auditiva/genética , Perda Auditiva/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA