Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 282
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Brief Bioinform ; 23(6)2022 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-36252922

RESUMO

Identification of new chemical compounds with desired structural diversity and biological properties plays an essential role in drug discovery, yet the construction of such a potential space with elements of 'near-drug' properties is still a challenging task. In this work, we proposed a multimodal chemical information reconstruction system to automatically process, extract and align heterogeneous information from the text descriptions and structural images of chemical patents. Our key innovation lies in a heterogeneous data generator that produces cross-modality training data in the form of text descriptions and Markush structure images, from which a two-branch model with image- and text-processing units can then learn to both recognize heterogeneous chemical entities and simultaneously capture their correspondence. In particular, we have collected chemical structures from ChEMBL database and chemical patents from the European Patent Office and the US Patent and Trademark Office using keywords 'A61P, compound, structure' in the years from 2010 to 2020, and generated heterogeneous chemical information datasets with 210K structural images and 7818 annotated text snippets. Based on the reconstructed results and substituent replacement rules, structural libraries of a huge number of near-drug compounds can be generated automatically. In quantitative evaluations, our model can correctly reconstruct 97% of the molecular images into structured format and achieve an F1-score around 97-98% in the recognition of chemical entities, which demonstrated the effectiveness of our model in automatic information extraction from chemical patents, and hopefully transforming them to a user-friendly, structured molecular database enriching the near-drug space to realize the intelligent retrieval technology of chemical knowledge.


Assuntos
Mineração de Dados , Bases de Dados de Compostos Químicos , Mineração de Dados/métodos , Bases de Dados Factuais , Descoberta de Drogas
2.
Angew Chem Int Ed Engl ; 63(26): e202402949, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38644342

RESUMO

Photoimmunotherapy is a promising cancer treatment modality. While potent 1-e- oxidative species are known to induce immunogenic cell death (ICD), they are also associated with unspecific oxidation and collateral tissue damage. This difficulty may be addressed by post-generation radical reinforcement. Namely, non-oxidative radicals are first generated and subsequently activated into powerful oxidative radicals to induce ICD. Here, we developed a photo-triggered molecular donor (NPCD565) of nitrosoperoxycarbonate (ONOOCO2 -), the first of its class to our knowledge, and further evaluated its feasibility for immunotherapy. Upon irradiation of NPCD565 by light within a broad spectral region from ultraviolet to red, ONOOCO2 - is released along with a bright rhodamine dye (RD565), whose fluorescence is a reliable and convenient build-in reporter for the localization, kinetics, and dose of ONOOCO2 - generation. Upon photolysis of NPCD565 in 4T1 cells, damage-associated molecular patterns (DAMPs) indicative of ICD were observed and confirmed to exhibit immunogenicity by induced maturation of dendritic cells. In vivo studies with a bilateral tumor-bearing mouse model showcased the potent tumor-killing capability of NPCD565 of the primary tumors and growth suppression of the distant tumors. This work unveils the potent immunogenicity of ONOOCO2 -, and its donor (NPCD565) has broad potential for photo-immunotherapy of cancer.


Assuntos
Carbono , Imunoterapia , Rodaminas , Animais , Camundongos , Rodaminas/química , Carbono/química , Fototerapia , Linhagem Celular Tumoral , Humanos , Estrutura Molecular , Corantes Fluorescentes/química
3.
J Am Chem Soc ; 145(22): 12013-12022, 2023 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-37216464

RESUMO

The shortwave infrared (SWIR) spectral region beyond 1200 nm offers optimal tissue penetration depth and has broad potential in diagnosis, therapy, and surgery. Here, we devised a novel class of fluorochromic scaffold, i.e., a tetra-benzannulated xanthenoid (EC7). EC7 absorbs/emits maximally at 1204/1290 nm in CH2Cl2 and exhibits an unparalleled molar absorptivity of 3.91 × 105 cm-1 M-1 and high transparency to light at 400-900 nm. It also exhibited high resistance toward both photobleaching and symmetry breaking due to its unique structural rigidity. It is feasible for in vivo bioimaging and particularly suitable to couple with the shorter-wavelength analogues for high-contrast multiplexing. High-contrast dual-channel intraoperative imaging of the hepatobiliary system and three-channel in vivo imaging of the intestine, the stomach, and the vasculature were showcased. EC7 is a benchmark fluorochrome for facile biomedical exploitation of the SWIR region beyond 1200 nm.


Assuntos
Corantes Fluorescentes , Raios Infravermelhos , Ondas de Rádio
4.
Anal Chem ; 95(25): 9722-9728, 2023 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-37314854

RESUMO

Design principles of two-channel fluorescence probes are limited. Herein, we report a new principle, i.e., PET/d-PET (PdP) pairing, for the rational design of two-channel probes. Two fluorophores are required in such a PdP-type probe. They mutually quench their fluorescence via PET and d-PET. In the presence of an analyte-of-interest, such a PdP pair is converted into a FRET pair for signaling. The embodiment of such a principle is Rh-TROX, by tethering a rhodamine fluorophore with an ROS-sensitive probe (TotalROX). Fluorescence of both fluorophores in Rh-TROX was quenched as expected. The addition of highly reactive oxidative species led to the recovery of the fluorescence properties of both. The simultaneous fluorescence enhancement in two channels is a viable way to avoid false-positive signals. The new PdP principle could potentially be applied to the development of probes for another range of substrates.


Assuntos
Transferência Ressonante de Energia de Fluorescência , Corantes Fluorescentes , Corantes Fluorescentes/química , Espectrometria de Fluorescência , Rodaminas , Oxirredução
5.
Anal Chem ; 95(32): 11953-11959, 2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37490273

RESUMO

To develop small molecular fluorogenic tools for the chemoselective labeling of vicinal dithiol-containing proteins (VDPs) in live cells is important for studying intracellular redox homeostasis. With this research, we developed small molecule-based fluorescent probes, achieving selective labeling of VDPs through thiol-thiol substitutions on bisvinylogous thioester conjugated acceptors (IDAs). Initially, IDAs demonstrated its ability to bridge vicinal cysteine-sulfhydryls on a peptide as a mimic. Then, the peptide complex could be decoupled to recover the original peptide-SH in the presence of dithiothreitol. Furthermore, fluorometric signal amplification of the fluorescent probes occurred with high sensitivity, low limit of detection, and selectivity toward vicinal dithiols on reduced bovine serum albumin, as an example of real world VDPs. More importantly, the probes were utilized successfully for labeling of endogenous VDPs at different redox states in live cells. Thus, the bisvinylogous thioester-based receptor as a functional probe represents a new platform for uncovering the function of VDPs in live cells.


Assuntos
Corantes Fluorescentes , Compostos de Sulfidrila , Corantes Fluorescentes/química , Compostos de Sulfidrila/química , Soroalbumina Bovina , Peptídeos
6.
Chembiochem ; 24(10): e202300147, 2023 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-37041126

RESUMO

Phase separation is a crucial biophysical process that governs cellular signaling and function. This process allows biomolecules to separate and form membraneless compartments in response to both extra- and intra-cellular stimuli. Recently, the identification of phase separation in different immune signaling pathways, including the cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) signaling pathway, has shed light on its tight association with pathological processes such as viral infections, cancers, and inflammatory diseases. In this review, we present the phase separation in cGAS-STING signaling, along with its related cellular regulatory functions. Furthermore, we discuss the introduction of therapeutics targeting cGAS-STING signaling, which plays a pivotal role in cancer progression.


Assuntos
DNA , Transdução de Sinais , DNA/metabolismo , Transdução de Sinais/genética , Nucleotidiltransferases/metabolismo , Imunidade Inata
7.
Anal Bioanal Chem ; 415(18): 3693-3702, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36624196

RESUMO

Sensitive detection of the minute and yet pathologically significant pH variation is important and in fact challenging for the conventional pH probes following the Henderson-Hasselbalch equation, i.e., HH-type probes. A paradigm shift to Hill-type pH probes is ongoing. Bestowed by their positive cooperative acid-base chemistry, their pH-responsive profile follows the Hill equation, which exhibits a narrower acid/base transition width than HH-type probes and warrants a higher detection sensitivity. A polymer-based Hill-type pH-responsive material was first developed. More recently, there emerged several distinct small-molecular approaches to achieve Hill-type pH-responsive profiles. They complement the polymer-based sensing materials in applications where membrane permeability is a concern. In this trends article, we rationalize the molecular origins of their positive cooperativity in pH sensing and highlight some interesting proof-of-concept applications. We also discussed future directions of this dynamic research area.


Assuntos
Polímeros , Polímeros/química , Concentração de Íons de Hidrogênio
8.
Pestic Biochem Physiol ; 197: 105680, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38072537

RESUMO

We applied a new RNA interference (RNAi) system using rolling circle transcription (RCT) technology to generate RNA microspheres (RMS) for targeting two key chitin synthetic pathway genes [chitin synthase A (CHSA), chitin synthase B (CHSB)] in the larvae of the oriental armyworm (Mythimna separate), a RNAi-unsusceptible agriculturally important lepidopteran pest. Feeding the third-instar larvae with the RMS-CHSA- or RMS-CHSB-treated corn leaf discs suppressed the expression of CHSA by 81.7% or CHSB by 88.1%, respectively, at 72 h. The silencing of CHSA consequently affected the larval development, including the reduced body weight (54.0%) and length (41.3%), as evaluated on the 7th day, and caused significant larval mortalities (51.1%) as evaluated on the 14th day. Similar results were obtained with the larvae fed RMS-CHSB. We also compared RNAi efficiencies among different strategies: 1) two multi-target RMS [i.e., RMS-(CHSA + CHSB), RMS-CHSA + RMS-CHSB], and 2) multi-target RMS and single-target RMS (i.e., either RMS-CHSA or RMS-CHSB) and found no significant differences in RNAi efficiency. By using Cy3-labeled RMS, we confirmed that RMS can be rapidly internalized into Sf9 cells (<6 h). The rapid cellular uptake of RMS accompanied with significant RNAi efficiency through larval feeding suggests that the RCT-based RNAi system can be readily applied to study the gene functions and further developed as bio-pesticides for insect pest management. Additionally, our new RNAi system takes the advantage of the microRNA (miRNA)-mediated RNAi pathway using miRNA duplexes generated in vivo from the RMS by the target insect. The system can be used for RNAi in a wide range of insect species, including lepidopteran insects which often exhibit extremely low RNAi efficiency using other RNAi approaches.


Assuntos
MicroRNAs , Mariposas , Animais , Interferência de RNA , Quitina Sintase/genética , Quitina Sintase/metabolismo , Microesferas , Mariposas/genética , Mariposas/metabolismo , Insetos/genética , Larva/metabolismo , RNA de Cadeia Dupla
9.
J Am Chem Soc ; 144(5): 2114-2119, 2022 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-35080381

RESUMO

Ischemia-reperfusion (I/R) injuries are from the secondary radicals of ONOO-. Direct radical scavenging is difficult because of their high reactivity. ONOO- is longer-lived than the radicals in the biological milieu. Scavenging ONOO- suppresses radical generation preventively. CO is neuroprotective during ischemia. With the scaffold of carbon-caged xanthene, we designed an OONO--triggered CO donor (PCOD585). Notably, PCOD585 exhibited a concomitant fluorescence turn-on upon ONOO-detection, facilitating microscopic monitoring. PCOD585 was cytoprotective in oxygen-glucose deprivation (OGD)-insulted PC-12 cells. It was permeable to the blood-brain barrier and further exhibited neuroprotective effects to MCAO rats by reducing infarction volume, cell apoptosis, and brain edema.


Assuntos
Isquemia Encefálica/tratamento farmacológico , Isquemia Encefálica/patologia , Monóxido de Carbono/química , AVC Isquêmico/tratamento farmacológico , Fármacos Neuroprotetores/farmacologia , Ácido Peroxinitroso/química , Animais , Linhagem Celular , Corantes Fluorescentes , Humanos , Fármacos Neuroprotetores/química , Ratos
10.
J Am Chem Soc ; 144(31): 14351-14362, 2022 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-35905456

RESUMO

Near-infrared (NIR) fluorophores absorbing maximally in the region beyond 800 nm, i.e., deep-NIR spectral region, are actively sought for biomedical applications. Ideal dyes are bright, nontoxic, photostable, biocompatible, and easily derivatized to introduce functionalities (e.g., for bioconjugation or aqueous solubility). The rational design of such fluorophores remains a major challenge. Silicon-substituted rhodamines have been successful for bioimaging applications in the red spectral region. The longer-wavelength silicon-substituted congeners for the deep-NIR spectral region are unknown to date. We successfully prepared four silicon-substituted bis-benzannulated rhodamine dyes (ESi5a-ESi5d), with an efficient five-step cascade on a gram-scale. Because of the extensive overlapping of their HOMO-LUMO orbitals, ESi5a-ESi5d are highly absorbing (λabs ≈ 865 nm and ε > 105 cm-1 M-1). By restraining both the rotational freedom via annulation and the vibrational freedom via silicon-imparted strain, the fluorochromic scaffold of ESi5 is highly rigid, resulting in an unusually long fluorescence lifetime (τ > 700 ps in CH2Cl2) and a high fluorescence quantum yield (ϕ = 0.14 in CH2Cl2). Their half-lives toward photobleaching are 2 orders of magnitude longer than the current standard (ICG in serum). They are stable in the presence of biorelevant concentration of nucleophiles or reactive oxygen species. They are minimally toxic and readily metabolized. Upon tail vein injection of ESi5a (as an example), the vasculature of a nude mouse was imaged with a high signal-to-background ratio. ESi5 dyes have broad potentials for bioimaging in the deep-NIR spectral region.


Assuntos
Corantes Fluorescentes , Silício , Animais , Fluorescência , Camundongos , Rodaminas
11.
Biomacromolecules ; 23(3): 1251-1258, 2022 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-35084834

RESUMO

Diabetic patients with type 1 or advanced type 2 stages need timely and precise insulin injection to regulate the daily blood glucose levels (BGLs). Otherwise, risks of serious or even deadly diabetes-associated complications occur. To achieve prolonged glucose regulation and low hypoglycemia risks, a novel on-demand glucose-responsive glycopolymer system was constructed for insulin delivery, which was self-assembled into nanoparticles by dynamic covalent bonds between two polymers: fluorophenylboronic acid-grafted polymer (poly-F) and polyol polymer (poly-G). Insulin was loaded during the assembly process. The nanoparticles showed excellent glucose responsiveness in vitro, with controlled insulin release at different glucose concentrations. In vivo treatment on type 1 diabetic mice showed prolonged BGL regulation and lower hypoglycemia risks. The mild preparation of the nanoparticles and outstanding glucose control shed light on the optional diabetic treatment for further clinical use.


Assuntos
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 1 , Hipoglicemia , Nanopartículas , Animais , Glicemia , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Tipo 1/tratamento farmacológico , Glucose/química , Humanos , Hipoglicemia/induzido quimicamente , Hipoglicemia/tratamento farmacológico , Insulina , Camundongos , Nanopartículas/química , Polímeros/química
12.
Biomacromolecules ; 23(3): 937-947, 2022 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-35195416

RESUMO

The balance between drug efficiency and its side effects on normal tissues is still a challenging problem to be solved in current cancer therapies. Among different strategies, cancer therapeutic methods based on nanomedicine delivery systems have received extensive attention due to their unique advantages such as improved circulation and reduced toxicity of drugs in the body. Herein, we constructed dual-responsive polymeric micelles DOX&ALS@MFM based on an upper critical solution temperature (UCST) polymer to simultaneously combine chemotherapy, photothermal therapy (PTT), and photodynamic therapy (PDT). Amphiphilic block copolymer P(AAm-co-AN)-b-PEI-ss-PEG-FA with a critical point of 42 °C was able to self-assemble into polymeric micelles under physiological conditions, which further encapsulated anticancer drug doxorubicin (DOX) and photosensitizer ALS to obtain drug-loaded micelles DOX&ALS@MFM. Micelles aggregated at tumor sites due to folate targeting and an enhanced permeability retention (EPR) effect. After that, the high intracellular concentration of glutathione (GSH) and near-infrared (NIR) light prompted disassembly of the polymer to release DOX and ALS. ALS not only plays a role in PTT but also produces singlet oxygen, therefore killing tumor cells by PDT. Both in vitro and in vivo studies demonstrated the photothermal conversion and reactive oxygen species generation ability of DOX&ALS@MFM micelles, at the same time as the excellent inhibitory effect on tumor growth with NIR light irradiation. Thus, our research substantiated a new strategy for the biomedical application of UCST polymers in the cited triple modal tumor therapy.


Assuntos
Neoplasias , Linhagem Celular Tumoral , Doxorrubicina , Humanos , Micelas , Neoplasias/tratamento farmacológico , Polímeros/uso terapêutico , Temperatura
13.
J Org Chem ; 87(1): 85-93, 2022 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-34958219

RESUMO

Sensitivity is an important parameter for a molecular probe. Hill-type pH probes exhibit improved detection sensitivity compared to the traditional pH probes following the Henderson-Hasselbalch equation. Exploiting positive cooperativity, we recently devised a novel molecular scaffold (PHX) to offer such an unconventional Hill-type pH titration profile. We previously confirmed that PHX is not a pure Hill-type probe yet. Only 64% of its absorbance/fluorescence turn-on is the result of a Hill-type pathway. The remaining 36% is from an undesired Henderson-Hasselbalch-type pathway (HH pathway). In this work, the Thorpe-Ingold dialkylation was harnessed to further suppress the percent contribution of the HH pathway down to 16%. We also propose that PHX is a viable molecular model for assessing the efficacy of the steric compressing effect induced by different Thorpe-Ingold dialkylations.


Assuntos
Sondas Moleculares , Concentração de Íons de Hidrogênio , Modelos Moleculares
14.
Bioorg Med Chem Lett ; 76: 128991, 2022 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-36130661

RESUMO

Cyclin-dependent kinases play an important role in the regulation of cell cycle and transcription. Selective CDK4/6 inhibitors have been demonstrated to be effective in the treatment of cancer. In this article, we described the design and synthesis of a series of pteridine-7(8H)-one derivatives as dual CDK4/6 inhibitors. Among them, the most promising compound L2 exhibited significant inhibitory activity against CDK4 and CDK6 with IC50 values of 16.7 nM and 30.5 nM respectively and showed excellent selectivity to CDK1/2/7/9. Moreover, compound L2 displayed potent antiproliferative activities at low digital micromolar range via inducing apoptosis in breast and colon cancer cells. In all, we developed a new series of pteridine-7(8H)-one derivatives which exhibited promising antitumor activities as selective CDK4/6 inhibitors.


Assuntos
Antineoplásicos , Pteridinas , Pteridinas/farmacologia , Quinase 4 Dependente de Ciclina/metabolismo , Proliferação de Células , Ciclo Celular , Apoptose , Inibidores de Proteínas Quinases/farmacologia , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Relação Estrutura-Atividade
15.
Chem Soc Rev ; 50(1): 9-38, 2021 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-33169731

RESUMO

Indicator displacement assays (IDAs) offer a unique and innovative approach to molecular sensing. IDAs can facilitate the detection of a range of biologically/environmentally important species, provide a method for the detection of complex analytes or for the determination and discrimination of unknown sample mixtures. These attributes often cannot be achieved by traditional molecular sensors i.e. reaction-based sensors/chemosensors. The IDA pioneers Inouye, Shinkai, and Anslyn inspired researchers worldwide to develop various extensions of this idea. Since their early work, the field of indicator displacement assays has expanded to include: enantioselective indicator displacement assays (eIDAs), fluorescent indicator displacement assays (FIDAs), reaction-based indicator displacement assays (RIAs), DimerDye disassembly assays (DDAs), intramolecular indicator displacement assays (IIDAs), allosteric indicator displacement assay (AIDAs), mechanically controlled indicator displacement assays (MC-IDAs), and quencher displacement assays (QDAs). The simplicity of these IDAs, coupled with low cost, high sensitivity, and ability to carry out high-throughput automation analysis (i.e., sensing arrays) has led to their ubiquitous use in molecular sensing, alongside the other common approaches such as reaction-based sensors and chemosensors. In this review, we highlight the various design strategies that have been used to develop an IDA, including the design strategies for the newly reported extensions to these systems. To achieve this, we have divided this review into sections based on the target analyte, the importance of each analyte and then the reported IDA system is discussed. In addition, each section includes details on the benefit of the IDAs and perceived limitations for each system. We conclude this Tutorial Review by highlighting the current challenges associated with the development of new IDAs and suggest potential future avenues of research.

16.
Angew Chem Int Ed Engl ; 61(38): e202205509, 2022 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-35866521

RESUMO

Targeted protein degradation via proteasomal and lysosomal pathways is a promising therapeutic approach, and proteins in cytoplasm or on the cell membrane can be easily contacted and have become the major targets. However, degradation of disease-related proteins that exist in membrane-bound organelles (MBO) such as the endoplasmic reticulum (ER) remains unsolved due to the membrane limits. Here we describe a DNA nanodevice that shows ER targeting capacity and undergoes new intracellular degradation via the autophagy-dependent pathway. Then the DNA nanostructure functionalized with specific ligands is used to selectively catch ER-localized proteins and then transport them to the lysosome for degradation. Through this technique, the degradation of both exogenous ER-resident protein (ER-eGFP) and endogenous overexpressed molecular chaperone (glucose-regulated protein 78) in cancer cells has been successfully executed with high efficiency.


Assuntos
Autofagia , Retículo Endoplasmático , DNA/metabolismo , Retículo Endoplasmático/metabolismo , Lisossomos/metabolismo , Chaperonas Moleculares/metabolismo
17.
J Am Chem Soc ; 143(51): 21622-21629, 2021 12 29.
Artigo em Inglês | MEDLINE | ID: mdl-34905350

RESUMO

In this Article, we present a strategy to visually track chemically triggered covalent bonding processes in gelation, remodeling, and degradation of soft materials, i.e., hydrogels, based on a new photoluminescence platform. Initially in the development of photoluminophors named "indanonalkenes", turn-on emission can be tracked and quantified in the optical reaction between a conjugate acceptor and amine derivatives. On this basis, fluorescence enhancement and mechanical changes were recorded during the gelation process through amine-thiol exchanges under organic and aqueous conditions. Next in macromolecular remodeling, we realized a stimulus-induced transformation of one architecture into another one, exploiting the orthogonality of chemical covalent bonding that could be visualized using luminescence. Furthermore, the hydrogel network can be degraded to release the coupling partner induced by ethylene diamine, and the process can be monitored using fluorescence changes and quantified through gel permeation chromatography, while the released components can be utilized again to regenerate a new hydrogel. In addition, the photographic images provide alternatives to fluorescence spectra and can be digitally processed to quantify the macroscopic changes, resulting in a photographic imaging approach. The real-time observation and quantification of chemically triggered polymeric formation, morphology, and degradation through luminescence in spatial and time scales herald a new generation of "smart" materials.

18.
Soft Matter ; 17(5): 1184-1188, 2021 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-33527954

RESUMO

A series of short intrinsically disordered polypeptide conjugated oligonucleotides (IDPOCs) were rationally developed and assembled into well-defined nanospheres. The nanospheres exhibited excellent reversible thermoresponsive regulation of their contraction and expansion. Furthermore, the nanospheres showed biocompatibility, drug encapsulation and effective cellular uptake.


Assuntos
Nanosferas , Oligonucleotídeos , Peptídeos , Temperatura
19.
Bioorg Med Chem Lett ; 44: 128114, 2021 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-34015501

RESUMO

Crop pathogens reduce the yield and quality of agricultural production. The development of new fungicides will help to sustain this protection and overcome fungicide resistance. Sydnone is a kind of mesoionic, which has a wide range of biological activities. The application of sydnones in agriculture is less, and the study of these compounds will lead to the discovery of new active compounds. In this study, we designed and synthesized a series of noval sydnone mesoionic derivatives by active substructure splicing. All compounds were characterized using 1H and 13C NMR spectroscopy. Among them, trifluoromethyl compound D17 showed good bioactivity against Pseudoperonospora cubensis (EC50 = 49 mg L-1) in vivo, the activity was similar to that of the control Kresoxim-methyl (EC50 = 44 mg L-1). However, the target of these compounds should not only be tyrosinase, and the mode of action needs to be further studied. In addition, the structure-activity relationship indicated that the trifluoromethyl group was more beneficial for antifungal activity. This is the first report that fluorine-containing N(3)-benzyl sydnone compounds have good fungicidal activity. These results will provide a basis for the development of sydnone mesoionic as new lead fungicidal agents.


Assuntos
Antifúngicos/farmacologia , Desenho de Fármacos , Fungos/efeitos dos fármacos , Fungicidas Industriais/farmacologia , Sidnonas/farmacologia , Antifúngicos/síntese química , Antifúngicos/química , Cucurbitaceae , Relação Dose-Resposta a Droga , Fungicidas Industriais/síntese química , Fungicidas Industriais/química , Estrutura Molecular , Relação Estrutura-Atividade , Sidnonas/síntese química , Sidnonas/química
20.
Bioorg Med Chem Lett ; 51: 128371, 2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34534673

RESUMO

Malignant gliomas are the most common brain tumors, with generally dismal prognosis, early clinical deterioration and high mortality. Recently, 2-aminoquinoline scaffold derivatives have shown pronounced activity in central nervous system disorders. We herein reported a series of 2-aminoquinoline-3-carboxamides as novel non-alkylator anti-glioblastoma agents. The synthesized compounds showed comparable activity to cisplatin against glioblastoma cell line U87 MG in vitro. Among them, we found that 6a displayed good inhibitory activity against A172 and U118 MG glioblastoma cell lines and induced cell cycle arrest in the G2/M phase and apoptosis in U87 MG by flow cytometry analysis. Additionally, 6a displayed low cytotoxicity to several normal human cell lines. In silico study showed 6a had promising physicochemical properties and was predicted to cross the blood-brain barrier. Moreover, preliminary structure-activity relationships are also investigated, shedding light on further modifications towards more potent agents on this series of compounds. Our results suggest this compound has a promising potential as an anti-glioblastoma agent with a differential effect between tumor and non-malignant cells.


Assuntos
Aminoquinolinas/farmacologia , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Neoplasias Encefálicas/tratamento farmacológico , Desenho de Fármacos , Glioblastoma/tratamento farmacológico , Aminoquinolinas/síntese química , Aminoquinolinas/química , Antineoplásicos/síntese química , Antineoplásicos/química , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Glioblastoma/metabolismo , Glioblastoma/patologia , Humanos , Modelos Moleculares , Estrutura Molecular , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA