Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Biochem Biophys Res Commun ; 705: 149670, 2024 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-38442444

RESUMO

Cholestasis is characterized by impaired bile secretion and flow, leading to the accumulation of toxic bile acids in the liver, further causing inflammatory reaction, fibrosis, and ultimately liver transplantation. Although first-line clinical agents such as Ursodeoxycholic acid (UDCA) and Obeticholic acid (OCA) are available, serious side effects still exist. Therefore, pharmacologic treatment of cholestatic liver disease remains challenging. Here, we used a murine model of cholestasis treated with or without intraperitoneal injection of baicalein and found that baicalein could attenuate 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC) diet-induced inflammatory response, ductular reaction, liver fibrosis, and bile acid metabolism disorders. Furthermore, the therapeutic effect of baicalein was hampered in the presence of Guggulsterone (GS), an Farnesoid X receptor (FXR) antagonist. These results indicated that baicalein alleviated DDC diet-induced cholestatic liver injury in an FXR-dependent manner.


Assuntos
Colestase Intra-Hepática , Colestase , Flavanonas , Animais , Camundongos , Colestase Intra-Hepática/induzido quimicamente , Colestase Intra-Hepática/tratamento farmacológico , Colestase/tratamento farmacológico , Ácidos e Sais Biliares
2.
Arch Toxicol ; 2024 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-39395921

RESUMO

Drug-induced liver injury (DILI) is an acute liver injury that poses a significant threat to human health. In severe cases, it can progress into chronic DILI or even lead to liver failure. DILI is typically caused by either intrinsic hepatotoxicity or idiosyncratic metabolic or immune responses. In addition to the direct damage drugs inflict on hepatocytes, the immune responses and liver inflammation triggered by hepatocyte death can further exacerbate DILI. Initially, we briefly discussed the differences in immune cell activation based on the type of liver cell death (hepatocytes, cholangiocytes, and LSECs). We then focused on the role of various immune cells (including macrophages, monocytes, neutrophils, dendritic cells, liver sinusoidal endothelial cells, eosinophils, natural killer cells, and natural killer T cells) in both the liver injury and liver regeneration stages of DILI. This article primarily reviews the role of innate immune regulation mediated by these immune cells in resolving inflammation and promoting liver regeneration during DILI, as well as therapeutic approaches targeting these immune cells for the treatment of DILI. Finally, we discussed the activation and function of liver progenitor cells (LPCs) during APAP-induced massive hepatic necrosis and the involvement of chronic inflammation in DILI.

3.
Am J Pathol ; 192(12): 1745-1762, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36174680

RESUMO

Ischemia/reperfusion (I/R) injury, aggravated by innate immune cell-mediated inflammatory response, is a major problem in liver transplantation. Stimulator of interferon gene (STING) is a crucial regulatory signaling molecule in the DNA-sensing pathway, and its activation can produce strong innate immunity. However, the STING-mediated innate immune pathway in hepatic I/R injury has not been fully elucidated. In this study, we first examined the STING expression changes in the liver tissues of mice after hepatic I/R injury by using quantitative polymerase chain reaction and Western blot assays. We then investigated the role of STING in I/R injury by using a murine hepatic I/R model. STING up-regulation in mouse liver tissues in response to I/R injury and STING deficiency in myeloid cells was found to significantly ameliorate I/R-induced liver injury and inflammatory responses. STING inhibitors were also able to ameliorate hepatic I/R injury. Mechanically, STING may have a protective effect on hepatic I/R injury by the inhibition of hypoxia-inducible factor-1 alpha and enhancement of phosphorylated AMP-activated protein kinase to reduce macrophage activation. These findings show the potential regulatory effects of STING in hepatic I/R and suggest a new method for clinical protection of hepatic I/R injury.


Assuntos
Hepatite , Hepatopatias , Traumatismo por Reperfusão , Animais , Camundongos , Hepatite/metabolismo , Inflamação/metabolismo , Fígado/metabolismo , Hepatopatias/metabolismo , Macrófagos/metabolismo , Camundongos Endogâmicos C57BL , Traumatismo por Reperfusão/genética
4.
Hepatology ; 76(6): 1706-1722, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35288960

RESUMO

BACKGROUND AND AIMS: Liver regeneration (LR) is vital for the recovery of liver function after hepatectomy. Limited regeneration capacity, together with insufficient remnant liver volume, is a risk factor for posthepatectomy liver failure (PHLF) resulting from small-for-size syndrome. Although inflammation plays an important role in controlling LR, the underlying mechanisms still remain obscure. APPROACH AND RESULTS: We identified C-C motif chemokine ligand (CCL) 5 as an important negative regulator for LR. CCL5 levels were elevated after partial hepatectomy (PHx), both in healthy donors of living donor liver transplantation (LT) and PHx mouse models. Ccl5 knockout mice displayed improved survival after 90% PHx and enhanced LR 36 h after 70% PHx. However, primary hepatocytes from Ccl5-/- mice exposed to growth factors in vitro showed no proliferation advantage compared to those from wild-type (WT) mice. Flow cytometry analysis showed that proportions of Ly6Clo macrophages were significantly increased in Ccl5-/- mice after 70% PHx. RNA-sequencing analysis revealed that sorted macrophages (CD11b+ Ly6Clo&hi ) manifested enhanced expression of reparative genes in Ccl5-/- mice compared to WT mice. Mechanistically, CCL5 induced macrophages toward proinflammatory Ly6Chi phenotype, thereby inhibiting the production of hepatocyte growth factor (HGF) through the C-C motif chemokine receptor (CCR) 1- and CCR5-mediated forkhead box O (FoxO) 3a pathways. Finally, blockade of CCL5 greatly optimized survival and boosted LR in the mouse PHx model. CONCLUSIONS: Our findings suggest that inhibition of CCL5 is a promising strategy to improve regeneration restoration by enhancing HGF secretion from reparative macrophages through the FoxO3a pathway, which may potentially reduce the mortality of PHLF.


Assuntos
Falência Hepática , Transplante de Fígado , Animais , Humanos , Camundongos , Proliferação de Células , Hepatectomia , Fator de Crescimento de Hepatócito , Hepatócitos/metabolismo , Ligantes , Fígado/metabolismo , Falência Hepática/cirurgia , Regeneração Hepática/fisiologia , Doadores Vivos , Macrófagos , Camundongos Endogâmicos C57BL , Camundongos Knockout
5.
Phytomedicine ; 123: 155183, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37992491

RESUMO

BACKGROUND: Nonalcoholic fatty liver disease (NAFLD) is the leading cause of chronic liver disease worldwide. Shenge Formula (SGF) is a traditional Chinese medicine that has been used in the clinical treatment of NAFLD, and its therapeutic potential in patients and NAFLD animal models has been demonstrated in numerous studies. However, its underlying mechanism for treating NAFLD remains unclear. PURPOSE: The aim of this study was to investigate the mechanism of SGF in the treatment of NAFLD using the proteomics strategy. METHODS: Ultra-high performance liquid chromatography-mass spectrometry (UPLC-MS) was used to determine the main components of SGF. A mouse model of nonalcoholic fatty liver disease was constructed by feeding mice with a high-fat diet for 16 weeks. SGF was administered for an additional 8 weeks, and metformin was used as a positive control. Liver sections were subjected to histopathological assessments. LC-MS/MS was used for the label-free quantitative proteomic analysis of liver tissues. Candidate proteins and pathways were validated both in vivo and in vitro through qRT-PCR, western blot, and immunohistochemistry. The functions of the validated pathways were further investigated using the inhibition strategy. RESULTS: Thirty-nine ingredients were identified in SGF extracts, which were considered to be key compounds in the treatment of NAFLD. SGF administration attenuated obesity and fatty liver by reducing the body weight and liver weight in HFD-fed mice. It also relieved HFD-induced insulin resistance. More importantly, hepatic steatosis was significantly attenuated by SGF administration both in vivo and in vitro. Proteomic profiling of mouse liver tissues identified 184 differential expressed proteins (DEPs) associated with SGF treatment. Bioinformatic analysis of DEPs revealed that regulating the lipid metabolism and energy consumption process of hepatocytes was the main role of SGF in NAFLD treatment. This also indicated that ACOX1 might be the potential target of SGF, which was subsequently verified both in vitro and in vivo. The results demonstrated that SGF inhibited ACOX1 activity, thereby activating PPARα and upregulating CPT1A expression. Increased CPT1A expression promoted mitochondrial ß-oxidation, leading to reduced lipid accumulation in hepatocytes. CONCLUSIONS: Overall, our findings confirmed the protective effect of SGF against NAFLD and revealed the underlying molecular mechanism of regulating lipid metabolism.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Humanos , Camundongos , Animais , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/etiologia , Hepatopatia Gordurosa não Alcoólica/patologia , Dieta Hiperlipídica/efeitos adversos , Cromatografia Líquida , Proteômica , Espectrometria de Massas em Tandem , Fígado , Metabolismo dos Lipídeos , Obesidade/complicações , Camundongos Endogâmicos C57BL
6.
J Adv Res ; 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38735388

RESUMO

INTRODUCTION: Hepatic ischemia-reperfusion injury (IRI) is an inevitable adverse event following liver surgery, leading to liver damage and potential organ failure. Despite advancements, effective interventions for hepatic IRI remain elusive, posing a significant clinical challenge. The innate immune response significantly contributes to the pathogenesis of hepatic IRI by promoting an inflammatory cytotoxic cycle. We have reported that blocking GSDMD-induced pyroptosis in innate immunity cells protected hepatic IRI from inflammatory injury. However, the search for effective pyroptosis inhibitors continues. OBJECTIVES: This study aims to evaluate whether quercetin, a natural flavonoid, can inhibit GSDMD-induced pyroptosis and mitigate hepatic IRI. METHODS: We established the hepatic IRI murine model and cellular pyroptosis model to evaluate the efficacy of quercetin. RESULTS: Quercetin effectively alleviated hepatic IRI-induced tissue necrosis and inflammation. We found that during hepatic IRI, the cleavage of GSDMD occurred in hepatic macrophages, but not in other non-parenchymal cells. Quercetin inhibited the cleavage of GSDMD in macrophages. Moreover, we found that quercetin blocked the ASC assembly to inhibit the formation of NLRP3 inflammasomes and AIM2 inflammasomes, suppressing macrophage pyroptosis. Co-immunoprecipitation experiments confirmed that quercetin inhibited the interaction between ASC and Caspase-8, which is the mechanism of ASC complex and inflammasome formation. Overexpression of Caspase-8 abolished the anti-pyroptosis effect of quercetin in NLRP3 and AIM2 inflammasome signaling. Furthermore, we found that the hepatoprotective activity of quercetin was reduced in myelocytic GSDMD-deficient mice. CONCLUSION: Our findings suggest that quercetin has beneficial effects on hepatic IRI. Quercetin could attenuate hepatic IRI and target inhibition of macrophage pyroptosis via blocking Caspase-8/ASC interaction. We recommend that quercetin might serve as a targeted approach for the prevention and personalized treatment of hepatic IRI in perioperative patients.

7.
J Ethnopharmacol ; 329: 118165, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38588984

RESUMO

BACKGROUND: Xiaozhi formula (XZF) is a practical Chinese herbal formula for the treatment of non-alcoholic fatty liver disease (NAFLD), which possesses an authorized patent certificate issued by the State Intellectual Property Office of China (ZL202211392355.0). However, the underlying mechanism by which XZF treats NAFLD remains unclear. PURPOSE: This study aimed to explore the main component of XZF and its mechanism of action in NAFLD treatment. METHODS: UHPLC-Q-Orbitrap HRMS was used to identify the components of the XZF. A high-fat diet (HFD)-induced NAFLD mouse model was used to demonstrate the effectiveness of XZF. Body weight, liver weight, and white fat weight were recorded to evaluate the therapeutic efficacy of XZF. H&E and Oil Red O staining were applied to observe the extent of hepatic steatosis. Liver damage, lipid metabolism, and glucose metabolism were detected by relevant assay kits. Moreover, the intraperitoneal insulin tolerance test and the intraperitoneal glucose tolerance test were employed to evaluate the efficacy of XZF in insulin homeostasis. Hepatocyte oxidative damage markers were detected to assess the efficacy of XZF in preventing oxidative stress. Label-free proteomics was used to investigate the underlying mechanism of XZF in NAFLD. RT-qPCR was used to calculate the expression levels of lipid metabolism genes. Western blot analysis was applied to detect the hepatic protein expression of AMPK, p-AMPK, PPARɑ, CPT1, and PPARγ. RESULTS: 120 compounds were preliminarily identified from XZF by UHPLC-Q-Orbitrap HRMS. XZF could alleviate HFD-induced obesity, white adipocyte size, lipid accumulation, and hepatic steatosis in mice. Additionally, XZF could normalize glucose levels, improve glucolipid metabolism disorders, and prevent oxidative stress damage induced by HFD. Furthermore, the proteomic analysis showed that the major pathways in fatty acid metabolism and the PPAR signaling pathway were significantly impacted by XZF treatment. The expression levels of several lipolytic and ß-oxidation genes were up-regulated, while the expression of fatty acid synthesis genes declined in the HFD + XZF group. Mechanically, XZF treatment enhanced the expression of p-AMPK, PPARɑ, and CPT-1 and suppressed the expression of PPARγ in the livers of NAFLD mice, indicating that XZF could activate the AMPK and PPAR pathways to attenuate NALFD progression. CONCLUSION: XZF could attenuate NAFLD by moderating lipid metabolism by activating AMPK and PPAR signaling pathways.


Assuntos
Proteínas Quinases Ativadas por AMP , Dieta Hiperlipídica , Medicamentos de Ervas Chinesas , Metabolismo dos Lipídeos , Camundongos Endogâmicos C57BL , Hepatopatia Gordurosa não Alcoólica , Animais , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/metabolismo , Medicamentos de Ervas Chinesas/farmacologia , Metabolismo dos Lipídeos/efeitos dos fármacos , Proteínas Quinases Ativadas por AMP/metabolismo , Masculino , Camundongos , Dieta Hiperlipídica/efeitos adversos , Transdução de Sinais/efeitos dos fármacos , Fígado/efeitos dos fármacos , Fígado/metabolismo , Fígado/patologia , Estresse Oxidativo/efeitos dos fármacos , Receptores Ativados por Proliferador de Peroxissomo/metabolismo , Modelos Animais de Doenças
8.
PLoS One ; 18(10): e0291718, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37824506

RESUMO

Population aging and migration are two important phenomena in the process of social development in China, which have a significant impact on industrial structure upgrading. This study explores the moderating effect of the population migration on the population aging impacting the industrial structure upgrading based on Chinese provincial panel data from 2000 to 2021. The results demonstrate that the population aging has become a development trend of China's population, and it has a significantly hinder industrial structure upgrading. Furthermore, the population migration resulting diffusion and convergence of economic factors has a meaningful moderating effects on the population aging impacting the industrial structure upgrading. Our study suggests that a reasonable and orderly population migration is critical in achieving stable and sustainable industrial structure upgrading, especially in the context of the China's population aging.


Assuntos
Envelhecimento , População do Leste Asiático , Migração Humana , Mudança Social , Humanos , China , Desenvolvimento Econômico
9.
Front Pharmacol ; 14: 1016129, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37033635

RESUMO

Non-alcoholic fatty liver disease (NAFLD) is a predominant contributor to end-stage liver disease in the forthcoming decades. Polygonum perfoliatum L. (PPL) is an herbal medicine with anti-lipid peroxidation and anti-inflammatory properties. However, detailed hepatoprotective effects of PPL against NAFLD and its underlying mechanisms are not fully understood. Here, we found that PPL protects against high fat diet (HFD)-induced hepatic steatosis, lipid peroxidation, and glucose-lipid metabolism dysfunction in NAFLD mice. We therefore performed a label-free quantitative proteomic profiling analysis to determine the effect of PPL treatment on liver tissue proteomics and identified that activated PPARs/CPT1A/CPT2-mediated hepatic fatty acid ß-oxidation (FAO) process was significantly altered. In vitro treatment of hepatocytes with PPL confirmed this altered process and FAO inhibitor etomoxir (ETO) attenuated the lipid-lowering activity of PPL in hepatocytes. Ultra-high-performance liquid chromatography/Q Exactive-HFX (UPLC/QE-HFX) was used to determine the material basis of anti-NAFLD activity of PPL. Our results have demonstrated the efficacy and potential mechanisms of PPL as an effective pharmacological therapy of NAFLD.

10.
J Inflamm Res ; 16: 1595-1610, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37092126

RESUMO

Background and Purpose: Current pharmacological approaches to prevent hepatic ischemia/reperfusion injury (IRI) are limited. To mitigate hepatic injury, more research is needed to improve the understanding of hepatic IRI. Depending on traditional Chinese medicine (TCM) theory, acupuncture therapy has been used for the treatment of ischemic diseases with good efficacy. However, the efficacy and mechanism of acupuncture for hepatic IRI are still unclear. Methods: Blood provided to the left and middle lobe of mice livers was blocked with a non-invasive clamp and then the clamps were removed for reperfusion to establish a liver IRI model. Quantitative proteomics approach was used to evaluate the impact of EA pretreatment on liver tissue proteome in the IRI group. Serum biochemistry was used to detect liver injury, inflammation, and oxidative stress levels. H&E staining and TUNEL staining were used to detect hepatocyte injury and apoptosis. Immunohistochemistry and ELISA were used to detect the degree of inflammatory cell infiltration and the level of inflammation. The anti-inflammatory and antioxidant capacities were detected by Quantitative RT-PCR and Western blotting. Results: We found that EA at Zusanli (ST36) has a protective effect on hepatic IRI in mice by alleviating oxidative stress, hepatocyte death, and inflammation response. Nuclear factor E2-related factor 2 (Nrf2) as a crucial target was regulated by EA and was then successfully validated. The Nrf2 inhibitor ML385 and cervical vagotomy eliminated the protective effect in the EA treatment group. Conclusion: This study firstly demonstrated that EA pretreatment at ST36 significantly ameliorates hepatic IRI in mice by inhibiting oxidative stress via activating the Nrf2 signal pathway, which was vagus nerve-dependent.

11.
Cell Mol Gastroenterol Hepatol ; 14(5): 971-981, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35738473

RESUMO

BACKGROUND & AIMS: Liver regeneration is a necessary but complex process involving multiple cell types besides hepatocytes. Mechanisms underlying liver regeneration after partial hepatectomy and acute liver injury have been well-described. However, in patients with chronic and severe liver injury, the remnant liver cannot completely restore the liver mass and function, thereby involving liver progenitor-like cells (LPLCs) and various immune cells. RESULTS: Macrophages are beneficial to LPLCs proliferation and the differentiation of LPLCs to hepatocytes. Also, cells expressing natural killer (NK) cell markers have been studied in promoting both liver injury and liver regeneration. NK cells can promote LPLC-induced liver regeneration, but the excessive activation of hepatic NK cells may lead to high serum levels of interferon-γ, thus inhibiting liver regeneration. CONCLUSIONS: This review summarizes the recent research on 2 important innate immune cells, macrophages and NK cells, in LPLC-induced liver regeneration and the mechanisms of liver regeneration during chronic liver injury, as well as the latest macrophage- and NK cell-based therapies for chronic liver injury. These novel findings can further help identify new treatments for chronic liver injury, saving patients from the pain of liver transplantations.


Assuntos
Hepatopatias , Regeneração Hepática , Humanos , Interferon gama , Células Matadoras Naturais , Macrófagos
12.
Front Med (Lausanne) ; 9: 972518, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36160154

RESUMO

Drug-induced liver injury (DILI) is a disease that remains difficult to predict and prevent from a clinical perspective, as its occurrence is hard to fully explain by the traditional mechanisms. In recent years, the risk of the DILI for microbiota dysbiosis has been recognized as a multifactorial process. Amoxicillin-clavulanate is the most commonly implicated drug in DILI worldwide with high causality gradings based on the use of RUCAM in different populations. Antibiotics directly affect the structure and diversity of gut microbiota (GM) and changes in metabolites. The depletion of probiotics after antibiotics interference can reduce the efficacy of hepatoprotective agents, also manifesting as liver injury. Follow-up with liver function examination is essential during the administration of drugs that affect intestinal microorganisms and their metabolic activities, such as antibiotics, especially in patients on a high-fat diet. In the meantime, altering the GM to reconstruct the hepatotoxicity of drugs by exhausting harmful bacteria and supplementing with probiotics/prebiotics are potential therapeutic approaches. This review will provide an overview of the current evidence between gut microbiota and DILI events, and discuss the potential mechanisms of gut microbiota-mediated drug interactions. Finally, this review also provides insights into the "double-edged sword" effect of antibiotics treatment against DILI and the potential prevention and therapeutic strategies.

13.
Front Pharmacol ; 13: 907271, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35754480

RESUMO

Lithocholic acid (LCA), alpha-naphthyl isothiocyanate (ANIT), 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC), and ethinyl estradiol (EE) are four commonly used chemicals for the construction of acute intrahepatic cholestasis. In order to better understand the mechanisms of acute cholestasis caused by these chemicals, the metabolic characteristics of each model were summarized using lipidomics and metabolomics techniques. The results showed that the bile acid profile was altered in all models. The lipid metabolism phenotype of the LCA group was most similar to that of primary biliary cirrhosis (PBC) patients. The ANIT group and the DDC group had similar metabolic disorder characteristics, which were speculated to be related to hepatocyte necrosis and inflammatory pathway activation. The metabolic profile of the EE group was different from other models, suggesting that estrogen-induced cholestasis had its special mechanism. Ceramide and acylcarnitine accumulation was observed in all model groups, indicating that acute cholestasis was closely related to mitochondrial dysfunction. With a deeper understanding of the mechanism of acute intrahepatic cholestasis, this study also provided a reference for the selection of appropriate chemicals for cholestatic liver disease models.

14.
Front Oncol ; 12: 791867, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35847907

RESUMO

The prognosis of patients with cholangiocarcinoma (CCA) is closely related to both immune cell infiltration and mRNA expression. Therefore, we aimed at conducting multi-immune-related gene analyses to improve the prediction of CCA recurrence. Immune-related genes were selected from the Gene Expression Omnibus (GEO), The Cancer Genome Atlas (TCGA), and the Immunology Database and Analysis Portal (ImmPort). The least absolute shrinkage and selection operator (LASSO) regression model was used to establish the multi-gene model that was significantly correlated with the recurrence-free survival (RFS) in two test series. Furthermore, compared with single genes, clinical characteristics, tumor immune dysfunction and exclusion (TIDE), and tumor inflammation signature (TIS), the 8-immune-related differentially expressed genes (8-IRDEGs) signature had a better prediction value. Moreover, the high-risk subgroup had a lower density of B-cell, plasma, B-cell naïve, CD8+ T-cell, CD8+ T-cell naïve, and CD8+ T-cell memory infiltration, as well as more severe immunosuppression and higher mutation counts. In conclusion, the 8-IRDEGs signature was a promising biomarker for distinguishing the prognosis and the molecular and immune features of CCA, and could be beneficial to the individualized immunotherapy for CCA patients.

15.
Cells ; 11(21)2022 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-36359765

RESUMO

BACKGROUND: Acute liver failure (ALF) and acute-on-chronic liver failure (ACLF) are characterized by systemic inflammation and high mortality, but there is no effective clinical treatment. As a classic traditional Chinese medicine (TCM) formula, MaHuang-LianQiao-ChiXiaoDou decoction (MHLQD) has been used clinically for centuries to treat liver diseases. METHODS: The LPS/D-GalN-induced ALF mice model and the CCl4+LPS/D-GalN-induced ACLF mice model were used to observe the therapeutic effects of MHLQD on mice mortality, hepatocytes death, liver injury, and immune responses. RESULTS: MHLQD treatment significantly improved mice mortality. Liver injury and systemic and hepatic immune responses were also ameliorated after MHLQD treatment. Mechanistically, proteomic changes in MHLQD-treated liver tissues were analyzed and the result showed that the thrombogenic von Willebrand factor (VWF) was significantly inhibited in MHLQD-treated ALF and ACLF models. Histological staining and western blotting confirmed that VWF/RAP1B/ITGB3 signaling was suppressed in MHLQD-treated ALF and ACLF models. Furthermore, mice treated with the VWF inhibitor ADAMTS13 showed a reduced therapeutic effect from MHLQD treatment. CONCLUSIONS: Our study indicated that MHLQD is an effective herbal formula for the treatment of ALF and ACLF, which might be attributed to the protection of hepatocytes from death via VWF/RAP1B/ITGB3 signaling.


Assuntos
Insuficiência Hepática Crônica Agudizada , Medicamentos de Ervas Chinesas , Fator de von Willebrand , Animais , Camundongos , Insuficiência Hepática Crônica Agudizada/tratamento farmacológico , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico , Lipopolissacarídeos , Proteômica , Transdução de Sinais , Fator de von Willebrand/efeitos dos fármacos , Fator de von Willebrand/metabolismo
16.
Int J Biol Sci ; 18(15): 5698-5712, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36263164

RESUMO

Background: Cholangiocarcinoma (CCA) is a type of hepatobiliary cancer characterized by uncontrolled cell proliferation, with a poor prognosis and high mortality. Nobiletin (NBT) is a promising anti-tumor compound derived from the peels of oranges and other citrus plants, citrus plant. But the effect of NBT on CCA remains unknown. Results: Our data showed that NBT suppressed CCA cell proliferation in vitro and in vivo. Colony formation and Edu assay indicated that NBT inhibited cell proliferation. Cell cycle analysis showed that NBT arrested the cell cycle in G0/G1 phase. Target prediction showed that GSK3ß was a direct target. Western blot and immunofluorescence confirmed that NBT reduced the phosphorylation of GSK3ß. The antiproliferative effect of NBT was intercepted in GSK3ß knockdown CCA cells. The cellular thermal shift assay (CETSA) showed NBT directly bound to GSK3ß. Finally, NBT showed an anti-proliferative effect in tumor-bearing mice with no hepatotoxicity. Conclusion: NBT could inhibit CCA proliferation, and the pharmacological activity of NBT in CCA was attributed to its direct binding to GSK3ß. We suggested that NBT might be a potential natural medicine in CCA treatment.


Assuntos
Neoplasias dos Ductos Biliares , Colangiocarcinoma , Camundongos , Animais , Glicogênio Sintase Quinase 3 beta , Linhagem Celular Tumoral , Colangiocarcinoma/metabolismo , Proliferação de Células , Neoplasias dos Ductos Biliares/tratamento farmacológico , Neoplasias dos Ductos Biliares/metabolismo , Neoplasias dos Ductos Biliares/patologia , Ductos Biliares Intra-Hepáticos/metabolismo , Ductos Biliares Intra-Hepáticos/patologia , Apoptose
17.
Brain Sci ; 11(10)2021 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-34679383

RESUMO

Our previous work has shown that monoamine oxidase A (MAO A) is overexpressed in glioma and prostate cancer. Near-infrared dye conjugate MAO A Inhibitor (NMI) inhibited the growth of these cancers. This study investigated the effects of NMI on other cancers by NCI60 screening. Our results showed that 48 out of 59 screened cell lines from nine types of cancer had 100% growth inhibition at 10 µM NMI treatment. The in vitro efficacy of NMI determined by growth inhibition (GI50 and TGI) and lethal doses (LC50) has been further studied in various cell lines of CNS cancer, prostate cancer, and non-small cell lung cancer (NSCLC), these three cancers showed increased MAO A expression in tumors compared to normal tissues. Based on the waterfall plots and the 3D scatter plot of GI50, TGI, and LC50 data, NMI showed higher potency to several CNS cancer and NSCLC cell lines than prostate cancer cell lines. In vitro efficacy of NMI outperformed FDA-approved drugs for CNS cancer, prostate cancer, and NSCLC, respectively. The Pairwise Pearson Correlation Coefficient (PCC) showed that NMI has a unique mechanism compared to the existing anticancer drugs. This study shows that NMI is a novel theragnostic drug with high potency and unique mechanisms for brain, prostate, NSCLC, and other cancers.

18.
Cell Mol Gastroenterol Hepatol ; 7(3): 623-639, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30630119

RESUMO

BACKGROUND & AIMS: Chemokine-mediated immune cell recruitment plays pivotal roles in liver inflammation. C-C motif chemokine ligand 5 (CCL5) has been shown to be responsible for the recruitment of monocytes/macrophages and has been implicated in various liver diseases, including nonalcoholic fatty liver disease, fibrosis, and hepatocellular carcinoma. Previous studies have also shown that inhibition of CCL5 appears to be a promising therapeutic approach for several chronic liver diseases. However, whether blocking CCL5 could benefit immune cell-mediated hepatitis remains largely elusive. METHODS: By adopting a specific agonist, alpha-galactosylceramide (α-Galcer), of invariant natural killer T cells (iNKTs), we investigated the function and mechanism of CCL5 in the iNKT induced murine hepatitis model. RESULTS: We found significantly increased CCL5 expression in α-Galcer-induced hepatitis murine model. Such an increase in CCL5 is mainly enriched in non-parenchymal cells such as macrophages and iNKTs but not in hepatocytes. Surprisingly, CCL5 blockage by genetic deletion of Ccl5 does not affect the α-Galcer-induced iNKT activation but greatly worsens α-Galcer-induced liver injury accompanied by an increased hepatic neutrophil infiltration. Mechanistically, we demonstrated that greater neutrophil accumulation in the liver is responsible for the enhanced liver injury in Ccl5-/- mice. Such an increased hepatic neutrophil infiltration is mainly caused by an enhanced CXCL1-CXCR2 signal in Ccl5-/- mice. Therapeutically, either antibody-mediated neutrophil depletion or a CXCR2 antagonist, SB225002, mediated CXCR2 signaling blockage significantly ameliorated α-Galcer-induced liver injury in Ccl5-/- mice. CONCLUSIONS: Our present study demonstrates that (1) α-Galcer-induced murine hepatitis could greatly induce CCL5 production in macrophages and iNKT cells; (2) loss of CCL5 could enhance CXCL1 expression in hepatocytes and activate CXCL1-CXCR2 axis in neutrophils to augment their hepatic infiltration; and (3) neutrophil depletion or blockage of CXCL1-CXCR2 axis greatly improves α-Galcer-induced liver injury in Ccl5-/- mice. This study suggests that clinical utilization of CCL5 blockage may compensatorily induce the activation of other chemokine pathways to enhance neutrophil recruitment and liver injury in hepatitis.


Assuntos
Quimiocina CCL5/deficiência , Deleção de Genes , Hepatite/imunologia , Células T Matadoras Naturais/imunologia , Receptores de Interleucina-8B/genética , Regulação para Cima , Adulto , Idoso , Animais , Quimiocina CCL5/metabolismo , Quimiocina CXCL1/genética , Quimiocina CXCL1/metabolismo , Citocinas/biossíntese , Modelos Animais de Doenças , Galactosilceramidas/administração & dosagem , Hepatite/sangue , Hepatite/patologia , Hepatócitos/metabolismo , Hepatócitos/patologia , Humanos , Fígado/lesões , Fígado/metabolismo , Fígado/patologia , Ativação Linfocitária/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Infiltração de Neutrófilos , Neutrófilos/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Receptores de Interleucina-8B/metabolismo , Baço/metabolismo , Adulto Jovem
19.
Front Pharmacol ; 9: 1428, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30670963

RESUMO

Oxidative stress and inflammation are the most important pathogenic events in the development and progression of liver diseases. Nuclear erythroid 2-related factor 2 (Nrf2) is the master regulator of the cellular protection via induction of anti-inflammatory, antioxidant, and cyto-protective genes expression. Multiple studies have shown that activation or suppression of this transcriptional factor significantly affect progression of liver diseases. Comprehensive understanding the roles of Nrf2 activation/expression and the outcomes of its activators/inhibitors are indispensable for defining the mechanisms and therapeutic strategies against liver diseases. In this current review, we discussed recent advances in the function and principal mechanisms by regulating Nrf2 in liver diseases, including acute liver failure, hepatic ischemia-reperfusion injury (IRI), alcoholic liver disease (ALD), viral hepatitis, non-alcoholic fatty liver disease (NAFLD), non-alcoholic steatohepatitis (NASH), and hepatocellular carcinoma (HCC).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA