Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Crit Rev Anal Chem ; : 1-20, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38978228

RESUMO

Bladder cancer (BC) is the tenth most common cancer globally, predominantly affecting men. Early detection and treatment are crucial due to high recurrence rates and poor prognosis for advanced stages. Traditional diagnostic methods like cystoscopy and imaging have limitations, leading to the exploration of noninvasive methods such as liquid biopsy. This review highlights the application of biosensors in BC, including electrochemical and optical sensors for detecting tumor markers like proteins, nucleic acids, and other biomolecules, noting their clinical relevance. Emerging therapeutic approaches, such as antibody-drug conjugates, targeted therapy, immunotherapy, and gene therapy, are also explored, the role of biosensors in detecting corresponding biomarkers to guide these treatments is examined. Finally, the review addresses the current challenges and future directions for biosensor applications in BC, highlighting the need for large-scale clinical trials and the integration of advanced technologies like deep learning to enhance diagnostic accuracy and treatment efficacy.

2.
Clin Chim Acta ; 560: 119718, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38718852

RESUMO

Bladder cancer (BC) is ranked as the ninth most common malignancy worldwide, with approximately 570,000 new cases reported annually and over 200,000 deaths. Cystoscopy remains the gold standard for the diagnosis of BC, however, its invasiveness, cost, and discomfort have driven the demand for the development of non-invasive, cost-effective alternatives. Nuclear matrix protein 22 (NMP22) is a promising non-invasive diagnostic tool, having received FDA approval. Traditional methods for detecting NMP22 require a laboratory environment equipped with specialized equipment and trained personnel, thus, the development of NMP22 detection devices holds substantial potential for application. In this review, we evaluate the NMP22 sensors developed over the past decade, including electrochemical, colorimetric, and fluorescence biosensors. These sensors have enhanced detection sensitivity and overcome the limitations of existing diagnostic methods. However, many emerging devices exhibit deficiencies that limit their potential clinical use, therefore, we propose how sensor design can be optimized to enhance the likelihood of clinical translation and discuss the future applications of NMP22 as a legacy biomarker, providing insights for the design of new sensors.


Assuntos
Proteínas Nucleares , Neoplasias da Bexiga Urinária , Humanos , Neoplasias da Bexiga Urinária/diagnóstico , Proteínas Nucleares/análise , Biomarcadores Tumorais/análise , Técnicas Biossensoriais/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA