Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Sep Sci ; 47(8): e2300669, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38651549

RESUMO

Exosomes-like nanoparticles (ELNs) (exosomes or extracellular vesicles) are vesicle-like bodies secreted by cells. Plant ELNs (PENs) are membrane vesicles secreted by plant cells, with a lipid bilayer as the basic skeleton, enclosing various active substances such as proteins and nucleic acids, which have many physiological and pathological functions. Recent studies have found that the PENs are widespread within different plant species and their biological functions are increasingly recognized. The effective separation method is also necessary for its function and application. Ultracentrifugation, sucrose density gradient ultracentrifugation, ultrafiltration, polymer-based precipitation methods, etc., are commonly used methods for plant exosome-like nanoparticle extraction. In recent years, emerging methods such as size exclusion chromatography, immunoaffinity capture-based technique, and microfluidic technology have shown advancements compared to traditional methods. The standardized separation process for PENs continues to evolve. In this review, we summarized the recent progress in the biogenesis, components, separation methods, and some functions of PENs. When the research on the separation method of PENs and their unique biological structure is further studied. A brand-new idea for the efficient separation and utilization of PENs can be provided in the future, which has a very broad prospect.


Assuntos
Exossomos , Nanopartículas , Plantas , Nanopartículas/química , Exossomos/química , Exossomos/metabolismo , Plantas/química , Plantas/metabolismo , Tamanho da Partícula , Ultracentrifugação , Cromatografia em Gel
2.
Braz J Med Biol Res ; 54(3): e10023, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33470387

RESUMO

The objective of this study was to investigate the inhibitory effect of miR-135a in regulating JAK/STAT signaling pathway on airway inflammation in asthmatic mice. An asthma model was established by sensitization and stimulation with ovalbumin (OVA), and the corresponding drug intervention was given from the day of stimulation by means of nasal drops. Airway hyperresponsiveness was tested. The content of miR-135a in the lung tissue of mice was detected by RT-PCR. The pathological changes of lung tissue were evaluated by HE staining. Tumor necrosis factor (TNF)-α, interleukin (IL)-6, IL-5, and eotaxin in bronchoalveolar lavage fluid (BALF) and lung tissue were detected by ELISA and immunohistochemistry, respectively. The expression of JAK/STAT signaling pathway-related protein in lung tissue was detected by western blot. To further validate the effect of miR-135a overexpression on the JAK/STAT signaling pathway, pathway activators and inhibitors were added. Compared with the OVA group, the airway hyperresponsiveness of the mice was significantly decreased after treatment with the miR-135a agonist. The expression of miR-135a was significantly increased in the lung tissue and the pathological changes of the lung tissue were alleviated. The contents of TNF-α, IL-6, IL-5, and eotaxin in BALF and lung tissues were decreased. The expression of JAK/STAT signaling pathway-related proteins p-JAK3/JAK3, p-STAT1/STAT1, and p-STAT3/STAT3 were significantly reduced in lung tissue (P<0.05). Addition of JAK inhibitor AG490 reduced airway inflammation in asthmatic mice. miR-135a agonists inhibit airway inflammation in asthmatic mice by regulating the JAK/STAT signaling pathway.


Assuntos
Asma , Animais , Asma/tratamento farmacológico , Líquido da Lavagem Broncoalveolar , Modelos Animais de Doenças , Pulmão , Camundongos , Camundongos Endogâmicos BALB C , MicroRNAs , Ovalbumina , Transdução de Sinais
3.
Phys Rev E ; 100(4-1): 043202, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31770946

RESUMO

We investigate the precession of electron spins during beam-driven plasma-wakefield acceleration based on density down-ramp injection by means of full three-dimensional (3D) particle-in-cell (PIC) simulations. A relativistic electron beam generated via, e.g., laser wakefield acceleration, serves as the driving source. It traverses the prepolarized gas target and accelerates polarized electrons via the excited wakefield. We derive the criteria for the driving beam parameters and the limitation on the injected beam flux to preserve a high degree of polarization for the accelerated electrons, which are confirmed by our 3D PIC simulations and single-particle modeling. The electron-beam driver is free of the prepulse issue associated with a laser driver, thus eliminating possible depolarization of the prepolarized gas due to ionization by the prepulse. These results provide guidance for future experiments towards generating a source of polarized electrons based on wakefield acceleration.

4.
Braz. j. med. biol. res ; 54(3): e10023, 2021. graf
Artigo em Inglês | LILACS | ID: biblio-1153521

RESUMO

The objective of this study was to investigate the inhibitory effect of miR-135a in regulating JAK/STAT signaling pathway on airway inflammation in asthmatic mice. An asthma model was established by sensitization and stimulation with ovalbumin (OVA), and the corresponding drug intervention was given from the day of stimulation by means of nasal drops. Airway hyperresponsiveness was tested. The content of miR-135a in the lung tissue of mice was detected by RT-PCR. The pathological changes of lung tissue were evaluated by HE staining. Tumor necrosis factor (TNF)-α, interleukin (IL)-6, IL-5, and eotaxin in bronchoalveolar lavage fluid (BALF) and lung tissue were detected by ELISA and immunohistochemistry, respectively. The expression of JAK/STAT signaling pathway-related protein in lung tissue was detected by western blot. To further validate the effect of miR-135a overexpression on the JAK/STAT signaling pathway, pathway activators and inhibitors were added. Compared with the OVA group, the airway hyperresponsiveness of the mice was significantly decreased after treatment with the miR-135a agonist. The expression of miR-135a was significantly increased in the lung tissue and the pathological changes of the lung tissue were alleviated. The contents of TNF-α, IL-6, IL-5, and eotaxin in BALF and lung tissues were decreased. The expression of JAK/STAT signaling pathway-related proteins p-JAK3/JAK3, p-STAT1/STAT1, and p-STAT3/STAT3 were significantly reduced in lung tissue (P<0.05). Addition of JAK inhibitor AG490 reduced airway inflammation in asthmatic mice. miR-135a agonists inhibit airway inflammation in asthmatic mice by regulating the JAK/STAT signaling pathway.


Assuntos
Animais , Ratos , Asma/tratamento farmacológico , Líquido da Lavagem Broncoalveolar , Transdução de Sinais , Ovalbumina , MicroRNAs , Modelos Animais de Doenças , Pulmão , Camundongos Endogâmicos BALB C
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA