Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
PLoS Biol ; 22(5): e3002195, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38754078

RESUMO

People tend to intervene in others' injustices by either punishing the transgressor or helping the victim. Injustice events often occur under stressful circumstances. However, how acute stress affects a third party's intervention in injustice events remains open. Here, we show a stress-induced shift in third parties' willingness to engage in help instead of punishment by acting on emotional salience and central-executive and theory-of-mind networks. Acute stress decreased the third party's willingness to punish the violator and the severity of the punishment and increased their willingness to help the victim. Computational modeling revealed a shift in preference of justice recovery from punishment the offender toward help the victim under stress. This finding is consistent with the increased dorsolateral prefrontal engagement observed with higher amygdala activity and greater connectivity with the ventromedial prefrontal cortex in the stress group. A brain connectivity theory-of-mind network predicted stress-induced justice recovery in punishment. Our findings suggest a neurocomputational mechanism of how acute stress reshapes third parties' decisions by reallocating neural resources in emotional, executive, and mentalizing networks to inhibit punishment bias and decrease punishment severity.


Assuntos
Punição , Estresse Psicológico , Humanos , Punição/psicologia , Masculino , Estresse Psicológico/fisiopatologia , Estresse Psicológico/psicologia , Feminino , Adulto , Adulto Jovem , Córtex Pré-Frontal/fisiologia , Córtex Pré-Frontal/fisiopatologia , Emoções/fisiologia , Justiça Social , Encéfalo/fisiologia , Imageamento por Ressonância Magnética
2.
Proc Natl Acad Sci U S A ; 121(31): e2400678121, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39052838

RESUMO

Recollecting painful or traumatic experiences can be deeply troubling. Sleep may offer an opportunity to reduce such suffering. We developed a procedure to weaken older aversive memories by reactivating newer positive memories during sleep. Participants viewed 48 nonsense words each paired with a unique aversive image, followed by an overnight sleep. In the next evening, participants learned associations between half of the words and additional positive images, creating interference. During the following non-rapid-eye-movement sleep, auditory memory cues were unobtrusively delivered. Upon waking, presenting cues associated with both aversive and positive images during sleep, as opposed to not presenting cues, weakened aversive memory recall while increasing positive memory intrusions. Substantiating these memory benefits, computational modeling revealed that cueing facilitated evidence accumulation toward positive affect judgments. Moreover, cue-elicited theta brain rhythms during sleep predominantly predicted the recall of positive memories. A noninvasive sleep intervention can thus modify aversive recollection and affective responses.


Assuntos
Sinais (Psicologia) , Rememoração Mental , Sono , Humanos , Feminino , Sono/fisiologia , Masculino , Rememoração Mental/fisiologia , Adulto , Adulto Jovem , Memória/fisiologia
3.
Cereb Cortex ; 34(2)2024 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-38220574

RESUMO

Parent-child interaction is crucial for children's cognitive and affective development. While bio-synchrony models propose that parenting influences interbrain synchrony during interpersonal interaction, the brain-to-brain mechanisms underlying real-time parent-child interactions remain largely understudied. Using functional near-infrared spectroscopy, we investigated interbrain synchrony in 88 parent-child dyads (Mage children = 8.07, 42.0% girls) during a collaborative task (the Etch-a-Sketch, a joint drawing task). Our findings revealed increased interbrain synchrony in the dorsolateral prefrontal cortex and temporo-parietal areas during interactive, collaborative sessions compared to non-interactive, resting sessions. Linear regression analysis demonstrated that interbrain synchrony in the left temporoparietal junction was associated with enhanced dyadic collaboration, shared positive affect, parental autonomy support, and parental emotional warmth. These associations remained significant after controlling for demographic variables including child age, child gender, and parent gender. Additionally, differences between fathers and mothers were observed. These results highlight the significant association between brain-to-brain synchrony in parent-child dyads, the quality of the parent-child relationship, and supportive parenting behaviors. Interbrain synchrony may serve as a neurobiological marker of real-time parent-child interaction, potentially underscoring the pivotal role of supportive parenting in shaping these interbrain synchrony mechanisms.


Assuntos
Poder Familiar , Espectroscopia de Luz Próxima ao Infravermelho , Feminino , Humanos , Masculino , Poder Familiar/psicologia , Espectroscopia de Luz Próxima ao Infravermelho/métodos , Relações Pais-Filho , Encéfalo/diagnóstico por imagem , Diencéfalo
4.
Neuroimage ; 290: 120565, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38453102

RESUMO

People tend to perceive the same information differently depending on whether it is expressed in an individual or a group frame. It has also been found that the individual (vs. group) frame of expression tends to lead to more charitable giving and greater tolerance of wealth inequality. However, little is known about whether the same resource allocation in social interactions elicits distinct responses depending on proposer type. Using the second-party punishment task, this study examined whether the same allocation from different proposers (individual vs. group) leads to differences in recipient behavior and the neural mechanisms. Behavioral results showed that reaction times were longer in the unfair (vs. fair) condition, and this difference was more pronounced when the proposer was the individual (vs. group). Neural results showed that proposer type (individual vs. group) influenced early automatic processing (indicated by AN1, P2, and central alpha band), middle processing (indicated by MFN and right frontal theta band), and late elaborative processing (indicated by P3 and parietal alpha band) of fairness in resource allocation. These results revealed more attentional resources were captured by the group proposer in the early stage of fairness processing, and more cognitive resources were consumed by processing group-proposed unfair allocations in the late stage, possibly because group proposers are less identifiable than individual proposers. The findings provide behavioral and neural evidence for the effects of "individual/group" framing leading to cognitive differences. They also deliver insights into social governance issues, such as punishing individual and/or group violations.


Assuntos
Eletroencefalografia , Jogos Experimentais , Humanos , Potenciais Evocados/fisiologia , Interação Social , Punição/psicologia
5.
BMC Med ; 22(1): 223, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38831366

RESUMO

BACKGROUND: The trajectory of attention-deficit hyperactivity disorder (ADHD) symptoms in children and adolescents, encompassing descending, stable, and ascending patterns, delineates their ADHD status as remission, persistence or late onset. However, the neural and genetic underpinnings governing the trajectory of ADHD remain inadequately elucidated. METHODS: In this study, we employed neuroimaging techniques, behavioral assessments, and genetic analyses on a cohort of 487 children aged 6-15 from the Children School Functions and Brain Development project at baseline and two follow-up tests for 1 year each (interval 1: 1.14 ± 0.32 years; interval 2: 1.14 ± 0.30 years). We applied a Latent class mixed model (LCMM) to identify the developmental trajectory of ADHD symptoms in children and adolescents, while investigating the neural correlates through gray matter volume (GMV) analysis and exploring the genetic underpinnings using polygenic risk scores (PRS). RESULTS: This study identified three distinct trajectories (ascending-high, stable-low, and descending-medium) of ADHD symptoms from childhood through adolescence. Utilizing the linear mixed-effects (LME) model, we discovered that attention hub regions served as the neural basis for these three developmental trajectories. These regions encompassed the left anterior cingulate cortex/medial prefrontal cortex (ACC/mPFC), responsible for inhibitory control; the right inferior parietal lobule (IPL), which facilitated conscious focus on exogenous stimuli; and the bilateral middle frontal gyrus/precentral gyrus (MFG/PCG), accountable for regulating both dorsal and ventral attention networks while playing a crucial role in flexible modulation of endogenous and extrinsic attention. Furthermore, our findings revealed that individuals in the ascending-high group exhibited the highest PRS for ADHD, followed by those in the descending-medium group, with individuals in the stable-low group displaying the lowest PRS. Notably, both ascending-high and descending-medium groups had significantly higher PRS compared to the stable-low group. CONCLUSIONS: The developmental trajectory of ADHD symptoms in the general population throughout childhood and adolescence can be reliably classified into ascending-high, stable-low, and descending-medium groups. The bilateral MFG/PCG, left ACC/mPFC, and right IPL may serve as crucial brain regions involved in attention processing, potentially determining these trajectories. Furthermore, the ascending-high pattern of ADHD symptoms exhibited the highest PRS for ADHD.


Assuntos
Transtorno do Deficit de Atenção com Hiperatividade , Humanos , Transtorno do Deficit de Atenção com Hiperatividade/genética , Transtorno do Deficit de Atenção com Hiperatividade/fisiopatologia , Criança , Adolescente , Masculino , Feminino , Imageamento por Ressonância Magnética , Encéfalo/diagnóstico por imagem , Encéfalo/crescimento & desenvolvimento , Substância Cinzenta/diagnóstico por imagem , Substância Cinzenta/patologia , Neuroimagem , Estudos de Coortes
7.
Neurosci Bull ; 40(7): 981-991, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38261252

RESUMO

Emotion and executive control are often conceptualized as two distinct modes of human brain functioning. Little, however, is known about how the dynamic organization of large-scale functional brain networks that support flexible emotion processing and executive control, especially their interactions. The amygdala and prefrontal systems have long been thought to play crucial roles in these processes. Recent advances in human neuroimaging studies have begun to delineate functional organization principles among the large-scale brain networks underlying emotion, executive control, and their interactions. Here, we propose a dynamic brain network model to account for interactive competition between emotion and executive control by reviewing recent resting-state and task-related neuroimaging studies using network-based approaches. In this model, dynamic interactions among the executive control network, the salience network, the default mode network, and sensorimotor networks enable dynamic processes of emotion and support flexible executive control of multiple processes; neural oscillations across multiple frequency bands and the locus coeruleus-norepinephrine pathway serve as communicational mechanisms underlying dynamic synergy among large-scale functional brain networks. This model has important implications for understanding how the dynamic organization of complex brain systems and networks empowers flexible cognitive and affective functions.


Assuntos
Encéfalo , Emoções , Função Executiva , Rede Nervosa , Humanos , Função Executiva/fisiologia , Emoções/fisiologia , Encéfalo/fisiologia , Rede Nervosa/fisiologia , Vias Neurais/fisiologia , Mapeamento Encefálico
8.
Elife ; 122024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38875004

RESUMO

People form impressions about others during daily social encounters and infer personality traits from others' behaviors. Such trait inference is thought to rely on two universal dimensions: competence and warmth. These two dimensions can be used to construct a 'social cognitive map' organizing massive information obtained from social encounters efficiently. Originating from spatial cognition, the neural codes supporting the representation and navigation of spatial cognitive maps have been widely studied. Recent studies suggest similar neural mechanism subserves the map-like architecture in social cognition as well. Here we investigated how spatial codes operate beyond the physical environment and support the representation and navigation of social cognitive map. We designed a social value space defined by two dimensions of competence and warmth. Behaviorally, participants were able to navigate to a learned location from random starting locations in this abstract social space. At the neural level, we identified the representation of distance in the precuneus, fusiform gyrus, and middle occipital gyrus. We also found partial evidence of grid-like representation patterns in the medial prefrontal cortex and entorhinal cortex. Moreover, the intensity of grid-like response scaled with the performance of navigating in social space and social avoidance trait scores. Our findings suggest a neurocognitive mechanism by which social information can be organized into a structured representation, namely cognitive map and its relevance to social well-being.


Assuntos
Encéfalo , Imageamento por Ressonância Magnética , Humanos , Masculino , Feminino , Encéfalo/fisiologia , Adulto Jovem , Adulto , Mapeamento Encefálico , Navegação Espacial/fisiologia , Cognição Social , Cognição/fisiologia
9.
Transl Psychiatry ; 14(1): 117, 2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38403656

RESUMO

The substantia nigra (SN), subthalamic nucleus (STN), and red nucleus (RN) have been widely studied as important biomarkers of degenerative diseases. However, how they develop in childhood and adolescence and are affected by emotional behavior has not been studied thus far. This population-based longitudinal cohort study used data from a representative sample followed two to five times. Emotional and behavioral problems were assessed with the Strengths and Difficulties Questionnaire (SDQ). Linear mixed models were used to map developmental trajectories and behavioral regulation. Using an innovative automated image segmentation technique, we quantified the volumes and asymmetries of the SN, STN and RN with 1226 MRI scans of a large longitudinal sample of 667 subjects aged 6-15 years and mapped their developmental trajectories. The results showed that the absolute and relative volumes of the bilateral SN and right STN showed linear increases, while the absolute volume of the right RN and relative volume of the bilateral RN decreased linearly, these effects were not affected by gender. Hyperactivity/inattention weakened the increase in SN volume and reduced the absolute volume of the STN, conduct problems impeded the RN volume from decreasing, and emotional symptoms changed the direction of SN lateralization. This longitudinal cohort study mapped the developmental trajectories of SN, STN, and RN volumes and asymmetries from childhood to adolescence, and found the association of emotional symptoms, conduct problems, and hyperactivity/inattention with these trajectories, providing guidance for preventing and intervening in cognitive and emotional behavioral problems.


Assuntos
Comportamento Problema , Núcleo Subtalâmico , Humanos , Adolescente , Núcleo Subtalâmico/diagnóstico por imagem , Estudos Longitudinais , Núcleo Rubro , Substância Negra/diagnóstico por imagem , Estudos de Coortes
10.
Artigo em Inglês | MEDLINE | ID: mdl-38960280

RESUMO

BACKGROUND: Adolescents raised in families with different maternal and paternal parenting combinations exhibit variations in neurocognition and psychopathology; however, whether neural differences exist remains unexplored. This study used a longitudinal twin sample to delineate how different parenting combinations influence adolescent brain structure and to elucidate the genetic contribution. METHODS: A cohort of 216 twins participated in parenting assessments during early adolescence and underwent MRI scanning during middle adolescence. We utilized latent profile analysis to distinguish between various maternal and paternal parenting profiles and subsequently investigated their influences on brain anatomy. Biometric analysis was applied to assess the genetic influences on brain structure, and associations with internalizing symptoms were explored. RESULTS: In early adolescence, four parenting profiles emerged characterized by levels of harshness and hostility in one or both parents. Compared to adolescents in "catparent" families (low harshness/hostility in both parents), those raised in "tigermom" families (harsh/hostile mother only) exhibited smaller nucleus accumbens volume and larger temporal cortex surface area; those in "tigerdad" families demonstrated larger thalamus volumes; those in "tigerparent" families displayed smaller volumes in the mid-anterior corpus callosum. Genetic risk factors contributed significantly to the observed brain structural heterogeneity and internalizing symptoms. However, the influences of parenting profiles and brain structure on internalizing symptoms were not significant. CONCLUSIONS: The findings underscore distinct brain structural features linked to maternal and paternal parenting combinations, particularly in terms of subcortical volume and cortical surface area. This study suggests an interdependent role of maternal and paternal parenting in shaping adolescent neurodevelopment.

11.
Biol Psychiatry ; 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38718879

RESUMO

BACKGROUND: The right middle frontal gyrus (MFG) has been proposed as a convergence site for the dorsal attention network (DAN) and ventral attention network (VAN), regulating both networks and enabling flexible modulation of attention. However, it is unclear whether the connections between the right MFG and these networks can predict changes in attention-deficit/hyperactivity disorder (ADHD) symptoms. METHODS: This study used data from the Children School Functions and Brain Development project (N = 713, 56.2% boys). Resting-state functional magnetic resonance imaging was employed to analyze the connections of the right MFG with the DAN/VAN; connectome-based predictive modeling was applied for longitudinal prediction, and ADHD polygenic risk scores were used for genetic analysis. RESULTS: ADHD symptoms were associated with the connections between the right MFG and DAN subregion, including the frontal eye field, as well as the VAN subregions, namely the inferior parietal lobule and inferior frontal gyrus. Furthermore, these connections of the right MFG with the frontal eye field, the inferior parietal lobule, and the inferior frontal gyrus could significantly predict changes in ADHD symptoms over 1 year and mediate the prediction of ADHD symptom changes by polygenic risk scores for ADHD. Finally, the validation samples confirmed that the functional connectivity between the right MFG and the frontal eye field/inferior parietal lobule in patients with ADHD was significantly weaker than that in typically developing control participants, and this difference disappeared after medication. CONCLUSIONS: The connection of the right MFG with the DAN and VAN can serve as a predictive indicator for changes in ADHD symptoms over the following year, while also mediating the prediction of ADHD symptom changes by a polygenic risk score for ADHD. These findings hold promise as potential biomarkers for early identification of children who are at risk of developing ADHD.

12.
Dev Cogn Neurosci ; 66: 101346, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38290421

RESUMO

Risk-taking often occurs in childhood as a compex outcome influenced by individual, family, and social factors. The ability to govern risky decision-making in a balanced manner is a hallmark of the integrity of cognitive and affective development from childhood to adulthood. The Triadic Neural Systems Model posits that the nuanced coordination of motivational approach, avoidance and prefrontal control systems is crucial to regulate adaptive risk-taking and related behaviors. Although widely studied in adolescence and adulthood, how these systems develop in childhood remains elusive. Here, we show heterogenous age-related differences in the triadic neural systems involved in risky decision-making in 218 school-age children relative to 80 young adults. Children were generally less reward-seeking and less risk-taking than adults, and exhibited gradual increases in risk-taking behaviors from 6 to 12 years-old, which are associated with age-related differences in brain activation patterns underlying reward and risk processing. In comparison to adults, children exhibited weaker activation in control-related prefrontal systems, but stronger activation in reward-related striatal systems. Network analyses revealed that children showed greater reward-related functional connectivity within and between the triadic systems. Our findings support an immature and unbalanced developmental view of the core neurocognitive systems involved in risky decision-making and related behaviors in middle to late childhood.

13.
Nat Commun ; 15(1): 784, 2024 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-38278807

RESUMO

Cortical thinning is an important hallmark of the maturation of brain morphology during childhood and adolescence. However, the connectome-based wiring mechanism that underlies cortical maturation remains unclear. Here, we show cortical thinning patterns primarily located in the lateral frontal and parietal heteromodal nodes during childhood and adolescence, which are structurally constrained by white matter network architecture and are particularly represented using a network-based diffusion model. Furthermore, connectome-based constraints are regionally heterogeneous, with the largest constraints residing in frontoparietal nodes, and are associated with gene expression signatures of microstructural neurodevelopmental events. These results are highly reproducible in another independent dataset. These findings advance our understanding of network-level mechanisms and the associated genetic basis that underlies the maturational process of cortical morphology during childhood and adolescence.


Assuntos
Conectoma , Substância Branca , Humanos , Adolescente , Encéfalo/diagnóstico por imagem , Encéfalo/anatomia & histologia , Conectoma/métodos , Afinamento Cortical Cerebral , Substância Branca/diagnóstico por imagem , Substância Branca/anatomia & histologia , Imageamento por Ressonância Magnética
14.
Am Psychol ; 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38300575

RESUMO

From childhood to adulthood, the human brain develops highly specialized yet interacting neural modules that give rise to nuanced attention and other cognitive functions. Each module can specialize over development to support specific functions, yet also coexist in multiple neurobiological modes to support distinct processes. Advances in cognitive neuroscience have conceptualized human attention as a set of cognitive processes anchored in highly specialized yet interacting neural systems. The underlying mechanisms of how these systems interplay to support children's cognitive development of multiple attention processes remain unknown. Leveraging developmental functional magnetic resonance imaging with attention network test paradigm, we demonstrate differential neurocognitive development of three core attentional processes from childhood to adulthood, with alerting reaching adult-like level earlier, followed by orienting and executive attention with more protracted development throughout middle and late childhood. Relative to adults, young children exhibit immature specialization with less pronounced dissociation of neural systems specific to each attentional process. Children manifest adult-like distributed representations in the ventral attention and cingulo-opercular networks, but less stable and weaker generalizable representations across multiple processes in the dorsal attention network. Our findings provide insights into the functional specialization and generalization of neural representations scaffolding cognitive development of core attentional processes from childhood to adulthood. (PsycInfo Database Record (c) 2024 APA, all rights reserved).

16.
Trends Neurosci Educ ; 10: 19-29, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38596747

RESUMO

Objective: A goal of developmental cognitive neuroscience is to uncover brain mechanisms underlying successful learning. While longitudinal studies capture brain changes following 'schooling as usual', short-term training studies can more directly link learning to brain changes. We investigated whether eight weeks of cognitive training recapitulates longitudinal changes in hippocampal engagement and connectivity. Methods: Nineteen children underwent a training program focused on improving arithmetic skills, along with fifteen children in a no-contact control group. Before and after training, or no-contact, both groups performed an arithmetic task during neuroimaging and a strategy assessment. Results: Training increased activity in the anterior hippocampus, and gains in memory-based strategies were associated with decreased lateral fronto-parietal activity and increased hippocampus-parietal connectivity. No changes were observed in the no-contact control group. Conclusions: Our results demonstrate that short-term training can recapitulate long-term neurodevelopmental changes accompanying learning and identifies plasticity of hippocampal responses as a common locus of cognitive skill development in children.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA