RESUMO
Like many complex human diseases, esophageal squamous cell carcinoma (ESCC) is known to cluster in families. Familial ESCC cases often show early onset and worse prognosis than the sporadic cases. However, the molecular genetic basis underlying the development of familial ESCC is mostly unknown. We reported that SLC22A3 is significantly down-regulated in nontumor esophageal tissues from patients with familial ESCC compared with tissues from patients with sporadic ESCCs. A-to-I RNA editing of the SLC22A3 gene results in its reduced expression in the nontumor esophageal tissues of familial ESCCs and is significantly correlated with lymph node metastasis. The RNA-editing enzyme ADAR2, a familial ESCC susceptibility gene identified by our post hoc genome-wide association study, is positively correlated with the editing level of SLC22A3 Moreover, functional studies showed that SLC22A3 is a metastasis suppressor in ESCC, and deregulation of SLC22A3 facilitates cell invasion and filopodia formation by reducing its direct association with α-actinin-4 (ACTN4), leading to the increased actin-binding activity of ACTN4 in normal esophageal cells. Collectively, we now show that A-to-I RNA editing of SLC22A3 contributes to the early development and progression of familial esophageal cancer in high-risk individuals.
Assuntos
Carcinoma de Células Escamosas/genética , Neoplasias Esofágicas/genética , Proteínas de Transporte de Cátions Orgânicos/genética , Edição de RNA , Actinina/metabolismo , Adenosina Desaminase/genética , Adenosina Desaminase/metabolismo , Adulto , Idoso , Animais , Carcinoma de Células Escamosas/patologia , Carcinoma de Células Escamosas/secundário , Linhagem Celular , Linhagem Celular Tumoral , Movimento Celular , Progressão da Doença , Regulação para Baixo , Neoplasias Esofágicas/patologia , Neoplasias Esofágicas/secundário , Carcinoma de Células Escamosas do Esôfago , Esôfago/citologia , Esôfago/metabolismo , Técnicas de Silenciamento de Genes , Estudo de Associação Genômica Ampla , Humanos , Metástase Linfática/genética , Masculino , Camundongos , Camundongos SCID , Pessoa de Meia-Idade , Invasividade Neoplásica/genética , Proteínas de Transporte de Cátions Orgânicos/deficiência , Proteínas de Transporte de Cátions Orgânicos/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Fatores de RiscoRESUMO
5-Fluorouracil (5-FU) is a chemotherapeutic agent commonly used to treat esophageal squamous cell carcinoma (ESCC), but acquisition of chemoresistance frequently occurs and the underlying mechanisms are not fully understood. We found that microRNA (miR)-338-5p was underexpressed in ESCC cells with acquired 5-FU chemoresistance. Forced expression of miR-338-5p in these cells resulted in downregulation of Id-1, and restoration of both in vitro and in vivo sensitivity to 5-FU treatment. The effects were abolished by reexpression of Id-1. In contrast, miR-338-5p knockdown induced 5-FU resistance in chemosensitive esophageal cell lines, and knockdown of both miR-338-5p and Id-1 resensitized the cells to 5-FU. In addition, miR-338-5p had suppressive effects on migration and invasion of ESCC cells. Luciferase reporter assay confirmed a direct interaction between miR-338-5p and the 3'-UTR of Id-1. We also found that miR-338-5p was significantly downregulated in tumor tissue and serum samples of patients with ESCC. Notably, low serum miR-338-5p expression level was associated with poorer survival and poor response to 5-FU/cisplatin-based neoadjuvant chemoradiotherapy. In summary, we found that miR-338-5p can modulate 5-FU chemoresistance and inhibit invasion-related functions in ESCC by negatively regulating Id-1, and that serum miR-338-5p could be a novel noninvasive prognostic and predictive biomarker in ESCC.
Assuntos
Neoplasias Esofágicas/genética , Carcinoma de Células Escamosas do Esôfago/genética , Proteína 1 Inibidora de Diferenciação/genética , MicroRNAs/fisiologia , Adulto , Idoso , Animais , Linhagem Celular Tumoral , Movimento Celular , Resistencia a Medicamentos Antineoplásicos , Neoplasias Esofágicas/tratamento farmacológico , Neoplasias Esofágicas/mortalidade , Neoplasias Esofágicas/patologia , Carcinoma de Células Escamosas do Esôfago/tratamento farmacológico , Carcinoma de Células Escamosas do Esôfago/mortalidade , Carcinoma de Células Escamosas do Esôfago/patologia , Feminino , Fluoruracila/farmacologia , Humanos , Masculino , Camundongos , MicroRNAs/sangue , Pessoa de Meia-Idade , Invasividade NeoplásicaRESUMO
Oesophageal squamous cell carcinoma (ESCC) is the most common histological subtype of oesophageal cancer. The disease is particularly prevalent in southern China. The incidence of the disease is on the rise and its overall survival rate remains dismal. Identification and characterization of better molecular markers for early detection and therapeutic targeting are urgently needed. Here, we report levels of transmembrane and soluble neuropilin-2 (NRP2) to be significantly up-regulated in ESCC, and to correlate positively with advanced tumour stage, lymph node metastasis, less favourable R category and worse overall patient survival. NRP2 up-regulation in ESCC was in part a result of gene amplification at chromosome 2q. NRP2 overexpression promoted clonogenicity, angiogenesis and metastasis in ESCC in vitro, while NRP2 silencing by lentiviral knockdown or neutralizing antibody resulted in a contrary effect. This observation was extended in vivo in animal models of subcutaneous tumourigenicity and tail vein metastasis. Mechanistically, overexpression of NRP2 induced expression of ERK MAP kinase and the transcription factor ETV4, leading to enhanced MMP-2 and MMP-9 activity and, as a consequence, suppression of E-cadherin. In summary, NRP2 promotes tumourigenesis and metastasis in ESCC through deregulation of ERK-MAPK-ETV4-MMP-E-cadherin signalling. NRP2 represents a potential diagnostic or prognostic biomarker and therapeutic target for ESCC. Copyright © 2016 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Assuntos
Proteínas E1A de Adenovirus/metabolismo , Biomarcadores Tumorais/metabolismo , Caderinas/metabolismo , Carcinoma de Células Escamosas/genética , Neoplasias Esofágicas/genética , Sistema de Sinalização das MAP Quinases/genética , Neuropilina-2/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Proteínas E1A de Adenovirus/genética , Animais , Antígenos CD , Biomarcadores Tumorais/genética , Caderinas/genética , Carcinogênese , Carcinoma de Células Escamosas/patologia , Linhagem Celular Tumoral , Estudos de Coortes , Neoplasias Esofágicas/patologia , Carcinoma de Células Escamosas do Esôfago , Regulação Neoplásica da Expressão Gênica , Humanos , Metástase Linfática , Neuropilina-2/genética , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas c-ets , Transcriptoma , Regulação para CimaRESUMO
Esophageal squamous cell carcinoma (ESCC) is an aggressive malignancy; its mechanisms of development and progression are poorly understood. By high-throughput transcriptome sequencing (RNA-Seq) profiling of three pairs of primary ESCCs and their corresponding non-tumorous tissues, we identified that prostate stem cell antigen (PSCA), a gene that encodes a glycosylphosphatidylinositol-anchored protein, is significantly downregulated in ESCC. Here, we reported decreased expression of PSCA in 188/218 (86.2%) of primary ESCC cases and was negatively regulated by its transcription factor sex-determining region Y-box5 that was significantly associated with the poor differentiation (P = 0.003), increased lymph node metastasis (P < 0.0001), advanced stage (P = 0.007), and disease-specific survival (P < 0.0001), but not associated with the recently reported transcrible rs2294008 (C > T) polymorphism in ESCC. Functional studies showed that PSCA could arrest cell cycle progression and promote cell differentiation independent of the start codon polymorphism. Further mechanistic studies revealed that retinoblastoma 1-inducible coiled-coil 1 (RB1CC1), a key signaling node to regulate cellular proliferation and differentiation, interacted specifically with PSCA in ESCC cells. Binding of PSCA and RB1CC1 in cytoplasm resulted in stabilization and translocation of RB1CC1 into nucleus, thereby activating key factors involved in cell cycle arrest and differentiation. Collectively, our data provide a novel molecular mechanism for the tumor suppressor role of PSCA and may help design effective therapy targeting PSCA-RB1CC1 pathway to control esophageal cancer growth and differentiation.
Assuntos
Antígenos de Neoplasias/metabolismo , Carcinoma de Células Escamosas/patologia , Neoplasias Esofágicas/patologia , Proteínas de Neoplasias/metabolismo , Transporte Proteico/fisiologia , Proteínas Tirosina Quinases/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Animais , Proteínas Relacionadas à Autofagia , Imunoprecipitação da Cromatina , Ensaio de Desvio de Mobilidade Eletroforética , Carcinoma de Células Escamosas do Esôfago , Proteínas Ligadas por GPI/metabolismo , Xenoenxertos , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Imuno-Histoquímica , Camundongos , Camundongos Nus , Análise Serial de TecidosRESUMO
Here, we report the characterization of a candidate tumor suppressor gene leucine-rich glioma inactivated 1 (LGI1) in human esophageal squamous cell carcinoma (ESCC). Downregulation of LGI1 has been detected in approximately 50% of primary ESCCs, which was significantly associated with advanced clinical stage (P < 0.001), lymph node metastasis (P < 0.001), tumor invasion (P = 0.009) and poor disease-specific survival (P < 0.001). Functional studies found that LGI1 could inhibit cell growth, clonogenicity, cell motility and tumor formation in nude mice. Mechanistic investigations suggested that LGI1 acted through extracellular signal-regulated kinase (ERK1/2) signaling to downregulate matrix metalloproteinase (MMP)-3 expression and subsequently suppressed tumor metastasis. Taken together, our study revealed that LGI1 plays an important tumor suppressive role in the development and progression of ESCC, with possible application in clinics as a biomarker and a potential new therapeutic target.
Assuntos
Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/patologia , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/patologia , Regulação Neoplásica da Expressão Gênica , Proteínas/genética , Adulto , Idoso , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/mortalidade , Linhagem Celular Tumoral , Movimento Celular/genética , Regulação para Baixo , Neoplasias Esofágicas/metabolismo , Neoplasias Esofágicas/mortalidade , Carcinoma de Células Escamosas do Esôfago , Feminino , Inativação Gênica , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Sistema de Sinalização das MAP Quinases , Masculino , Metaloproteinase 3 da Matriz/metabolismo , Pessoa de Meia-Idade , Gradação de Tumores , Metástase Neoplásica , Estadiamento de Neoplasias , Prognóstico , Interferência de RNA , Proteínas Supressoras de Tumor/genéticaRESUMO
BACKGROUND & AIMS: Esophageal squamous cell carcinoma (ESCC) is the most commonly observed histologic subtype of esophageal cancer. ESCC is believed to develop via accumulation of numerous genetic alterations, including inactivation of tumor suppressor genes and activation of oncogenes. We searched for transcripts that were altered in human ESCC samples compared with nontumor tissues. METHODS: We performed integrative transcriptome sequencing (RNA-Seq) analysis using ESCC samples from 3 patients and adjacent nontumor tissues to identify transcripts that were altered in ESCC tissue. We performed molecular and functional studies of the transcripts identified and investigated the mechanisms of alteration. RESULTS: We identified protein tyrosine kinase 6 (PTK6) as a transcript that was significantly down-regulated in ESCC tissues and cell lines compared with nontumor tissues or immortalized normal esophageal cell lines. The promoter of the PTK6 gene was inactivated in ESCC tissues at least in part via hypermethylation and histone deacetylation. Knockdown of PTK6 in KYSE30 ESCC cells using small hairpin RNAs increased their ability to form foci, migrate, and invade extracellular matrix in culture and form tumors in nude mice. Overexpression of PTK6 in these cells reduced their proliferation in culture and tumor formation in mice. PTK6 reduced phosphorylation of Akt and glycogen synthase kinase (GSK)3ß, leading to activation of ß-catenin. CONCLUSIONS: PTK6 was identified as a transcript that is down-regulated in human ESCC tissues via epigenetic modification at the PTK6 locus. Its product appears to regulate cell proliferation by reducing phosphorylation of Akt and GSK3ß, leading to activation of ß-catenin. Reduced levels of PTK6 promote growth of xenograft tumors in mice; it might be developed as a marker of ESCC.
Assuntos
Carcinoma de Células Escamosas/enzimologia , Neoplasias Esofágicas/enzimologia , Proteínas de Neoplasias/metabolismo , Proteínas Tirosina Quinases/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Acetilação , Adulto , Animais , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/patologia , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Metilação de DNA , Epigênese Genética , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/patologia , Matriz Extracelular/metabolismo , Feminino , Pontos de Checagem da Fase G1 do Ciclo Celular , Perfilação da Expressão Gênica , Regulação Enzimológica da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Técnicas de Silenciamento de Genes , Quinase 3 da Glicogênio Sintase/metabolismo , Glicogênio Sintase Quinase 3 beta , Histonas/metabolismo , Humanos , Masculino , Camundongos , Camundongos Nus , Pessoa de Meia-Idade , Invasividade Neoplásica , Proteínas de Neoplasias/genética , Fosforilação , Regiões Promotoras Genéticas , Proteínas Tirosina Quinases/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Interferência de RNA , RNA Mensageiro/metabolismo , Análise de Sequência de RNA , Transdução de Sinais , Transcrição Gênica , Transfecção , Proteínas Supressoras de Tumor/genética , beta Catenina/metabolismoRESUMO
Many epidemiological studies have studied the associations between adiponectin rs1501299G/T, rs822395A/C, and rs822396A/G polymorphisms and risk of cancer development, while conflicting results have been reported. Therefore, we conducted a meta-analysis to assess the associations. We retrieved the following databases: Medline, Embase, Web of Science, and Wanfang, and the latest update date was 15th of August 2012. Odds ratio (OR) and corresponding 95 % confidence interval (95 % CI) were calculated by using fixed- or random-effect model. Overall, there were 13 case-control studies consisting of 7,902 subjects for adiponectin rs1501299G/T, seven studies consisting of 6,209 subjects for rs822395A/C, and seven studies consisting of 5,791 subjects for rs822396A/G polymorphism in this study. Combined analyses indicated that neither adiponectin rs822395A/C nor rs822396A/G was associated with risk of cancer incidence (OR (95 % CI) 0.91 (0.77-1.77), P z test = 0.26 for CC vs. AA and 0.96 (0.87-1.05) for C carriers vs. A carriers, P z test = 0.33 for rs822395A/C; 0.88 (0.53-1.47) for GG vs. AA, P z test = 0.63 and 0.94 (0.84-1.04) for G carriers vs. A carriers, P z test = 0.24 for rs822396A/G polymorphism). Similarly, combined analysis also indicated that adiponectin rs1501299G/T polymorphism was not associated with risk of cancer development (OR (95 % CI) 0.86 (0.73-1.01) for TT vs. GG, P z test = 0.07 and 1.17 (0.98-1.39), P z test = 0.08). However, when stratified analyses were conducted, the result indicated that T allele was significantly associated with increased cancer risk for Caucasians (OR (95 % CI) 1.28 (1.06-1.64) and P z test = 0.01 for G carriers vs. T carriers) and associated with increased risk of colorectal cancer development while with decreased risk of prostate cancer incidence compared to G allele (OR (95 % CI) 1.34 (1.14-1.57), P z test < 0.01 for G carriers vs. T carriers for colorectal cancer; 0.80 (0.65-0.97), P z test = 0.03 for TG vs. GG for prostate cancer). In summary, this meta-analysis indicated that adiponectin rs1501299G/T, rather than rs822395A/C and rs822396A/G polymorphism, was associated with risk of cancer development, especially for colorectal and prostate cancer.
Assuntos
Adiponectina/genética , Repetições de Microssatélites/genética , Neoplasias/etiologia , Polimorfismo Genético/genética , Estudos de Casos e Controles , Predisposição Genética para Doença , Humanos , Fatores de RiscoRESUMO
BACKGROUND: To understand the involvement of micro-RNA (miRNA) in the development and progression of oesophageal squamous cell carcinoma (ESCC), miRNA profiles were compared between tumour and corresponding non-tumour tissues. METHODS: miRCURY LNA array was used to generate miRNA expressing profile. Real-time quantitative PCR was applied to detectthe expression of miR-375 in ESCC samples and its correlation with insulin-like growth factor 1 receptor (IGF1R). Methylation-specific PCR was used to study the methylation status in the promoter region of miR-375. The tumour-suppressive effect of miR-375 was determined by both in-vitro and in-vivo assays. RESULTS: The downregulation of miR-375 was frequently detected in primary ESCC, which was significantly correlated with advanced stage (p=0.003), distant metastasis (p<0.0001), poor overall survival (p=0.048) and disease-free survival (p=0.0006). Promoter methylation of miR-375 was detected in 26 of 45 (57.8%) ESCC specimens. Functional assays demonstrated that miR-375 could inhibit clonogenicity, cell motility, cell proliferation, tumour formation and metastasis in mice. Further study showed that miR-375 could interact with the 3'-untranslated region of IGF1R and downregulate its expression. In clinical specimens, the expression of IGF1R was also negatively correlated with miR-375 expression (p=0.008). CONCLUSIONS: This study demonstrates that miR-375 has a strong tumour-suppressive effect through inhibiting the expression of IGF1R. The downregulation of miR-375, which is mainly caused by promoter methylation, is one of the molecular mechanisms involved in the development and progression of ESCC.
Assuntos
Biomarcadores Tumorais/metabolismo , Carcinoma de Células Escamosas/genética , Neoplasias Esofágicas/genética , MicroRNAs/metabolismo , Receptor IGF Tipo 1/metabolismo , Animais , Biomarcadores Tumorais/química , Western Blotting , Carcinoma de Células Escamosas/mortalidade , Carcinoma de Células Escamosas/patologia , Linhagem Celular Tumoral , Intervalo Livre de Doença , Regulação para Baixo , Neoplasias Esofágicas/mortalidade , Neoplasias Esofágicas/patologia , Humanos , Metilação , Camundongos , Camundongos SCID , MicroRNAs/química , Metástase Neoplásica , Análise de Sequência com Séries de Oligonucleotídeos , Prognóstico , Reação em Cadeia da Polimerase em Tempo Real , Análise de SobrevidaRESUMO
Cutaneous melanoma represents around over 90% of all melanoma. With more effective treatments able to extend patients' survival, health-related quality of life (HRQOL) is increasingly becoming an important endpoint in cancer clinical trials. They are often secondary outcomes measured in phase III randomized controlled trials and their implementation, collection, analysis, and reporting can be challenging methodologically. For these reasons, an increasing number of international recommendations introduced the standards regarding the conduct of HRQOL. In this systematic review, we appraise the adequacy of HRQOL reporting in phase III randomized controlled trials of stage III-IV cutaneous melanoma and the clinical issues of immunotherapy and small-molecular-targeted therapy on HRQOL. Our search strategy totally got 55 articles, and only 13 studies met all inclusion criteria. Findings suggest that most treatments did not yield significant improvements in HRQOL but kept baseline levels, accompanied by prolonged survival and acceptable toxicity. Except for some existing limitations, reporting of HRQOL has made encouraging progress during the period covered by our search, but some aspects still need further optimization.
Assuntos
Melanoma , Neoplasias Cutâneas , Humanos , Melanoma/terapia , Qualidade de Vida , Ensaios Clínicos Controlados Aleatórios como Assunto , Imunoterapia , Melanoma Maligno CutâneoRESUMO
BACKGROUND: Intra-tumor heterogeneity (ITH) contributes to lung cancer progression and resistance to therapy. To evaluate ITH and determine whether it may be employed as a predictive biomarker of prognosis in patients with advanced non-small cell lung cancer (NSCLC), we used a novel algorithm called mutant-allele dispersion (MAD). METHODS: In the study, 103 patients with advanced NSCLC were enrolled. Using a panel of 425 cancer-related genes, next-generation sequencing (NGS) was performed on tumor specimens that had been collected. From NGS data, we derived MAD values, and we next looked into their relationships with clinical variables and different mutation subtypes. RESULTS: The median MAD among 103 NSCLC patients was 0.73. EGFR mutation, tyrosine kinase inhibitor (TKI) therapy, radiotherapy, and chemotherapy cycles were all substantially correlated with the MAD score. In patients with lung adenocarcinoma (LUAD), correlation analysis revealed that the MAD score was substantially linked with Notch pathway mutation (P = 0.021). A significant relationship between high MAD and shorter progression-free survival (PFS) was found (HR = 2.004, 95%CI 1.269-3.163, P = 0.003). In patients with advanced NSCLC, histological type (P = 0.004), SMARCA4 mutation (P = 0.038), and LRP1B mutation (P = 0.006) were all independently associated with prognosis. The disease control rate was considerably greater in the low MAD group compared to the high MAD group in 19 LUAD patients receiving immunotherapy (92.9% vs. 40%, P = 0.037). TKI-PFS was longer in 37 patients with low MAD who received first-line TKI therapy (P = 0.014). CONCLUSION: Our findings suggested that MAD is a practical and simple algorithm for assessing ITH, and populations with high MAD values are more likely to have EGFR mutations. MAD can be used as a potential biomarker to predict not only the prognosis of NSCLC but also the efficacy of immunotherapy and TKI therapy in patients with advanced NSCLC.
Assuntos
Adenocarcinoma de Pulmão , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Alelos , Inibidores de Proteínas Quinases/farmacologia , Prognóstico , Adenocarcinoma de Pulmão/genética , Mutação , Receptores ErbB/genética , DNA Helicases/genética , Proteínas Nucleares/genética , Fatores de Transcrição/genéticaRESUMO
BACKGROUND: Metastasis is one of the most lethal hallmarks of esophageal squamous cell carcinoma (ESCC), yet the mechanisms remain unclear due to a lack of reliable experimental models and systematic identification of key drivers. There is urgent need to develop useful therapies for this lethal disease. METHODS: A genome-wide CRISPR/Cas9 screening, in combination with gene profiling of highly invasive and metastatic ESCC sublines, as well as PDX models, was performed to identify key regulators of cancer metastasis. The Gain- and loss-of-function experiments were taken to examine gene function. Protein interactome, RNA-seq, and whole genome methylation sequencing were used to investigate gene regulation and molecular mechanisms. Clinical significance was analyzed in tumor tissue microarray and TCGA databases. Homology modeling, modified ELISA, surface plasmon resonance and functional assays were performed to identify lead compound which targets MEST to suppress cancer metastasis. FINDINGS: High MEST expression was associated with poor patient survival and promoted cancer invasion and metastasis in ESCC. Mechanistically, MEST activates SRCIN1/RASAL1-ERK-snail signaling by interacting with PURA. miR-449a was identified as a direct regulator of MEST, and hypermethylation of its promoter led to MEST upregulation, whereas systemically delivered miR-449a mimic could suppress tumor metastasis without overt toxicity. Furthermore, molecular docking and computational screening in a small-molecule library of 1,500,000 compounds and functional assays showed that G699-0288 targets the MEST-PURA interaction and significantly inhibits cancer metastasis. INTERPRETATION: We identified the MEST-PURA-SRCIN1/RASAL1-ERK-snail signaling cascade as an important mechanism underlying cancer metastasis. Blockade of MEST-PURA interaction has therapeutic potential in management of cancer metastasis. FUNDING: This work was supported by National Key Research and Development Program of China (2021YFC2501000, 2021YFC2501900, 2017YFA0505100); National Natural Science Foundation of China (31961160727, 82073196, 81973339, 81803551); NSFC/RGC Joint Research Scheme (N_HKU727/19); Natural Science Foundation of Guangdong Province (2021A1515011158, 2021A0505030035); Key Laboratory of Guangdong Higher Education Institutes of China (2021KSYS009).
Assuntos
Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , MicroRNAs , Humanos , Carcinoma de Células Escamosas do Esôfago/patologia , Neoplasias Esofágicas/genética , Simulação de Acoplamento Molecular , Sistemas CRISPR-Cas , Detecção Precoce de Câncer , MicroRNAs/genética , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Proliferação de Células , Movimento Celular/genética , Proteínas de Ligação a DNA/genética , Fatores de Transcrição/genéticaRESUMO
BACKGROUND: Cancer-associated fibroblast (CAF) is an ideal target for cancer treatment. Recent studies have focused on eliminating CAFs and their effects by targeting their markers or blocking individual CAF-secreted factors. However, these strategies have been limited by their specificity for targeting CAFs and effectiveness in blocking widespread influence of CAFs. To optimize CAF-targeted therapeutic strategies, we tried to explore the molecular mechanisms of CAF generation in this study. METHODS: Using FGFR2 as a tracing marker, we identified a novel origin of CAFs in esophageal squamous cell carcinoma (ESCC). Furthermore, we successfully isolated CAF precursors from peripheral blood of ESCC patients and explored the mechanisms underlying their expansion, recruitment, and differentiation via RNA-sequencing and bioinformatics analysis. The mechanisms were further verified by using different models both in vitro and in vivo. RESULTS: We found that FGFR2+ hematopoietic stem cell (HSC)-derived fibrocytes could be induced by ESCC cells, recruited into tumor xenografts, and differentiated into functional CAFs. They were mobilized by cancer-secreted FGF2 and recruited into tumor sites via the CXCL12/CXCR4 axis. Moreover, they differentiated into CAFs through the activation of YAP-TEAD complex, which is triggered by directly contracting with tumor cells. FGF2 and CXCR4 neutralizing antibodies could effectively block the mobilization and recruitment process of FGFR2+ CAFs. The YAP-TEAD complex-based mechanism hold promise for locally activation of genetically encoded therapeutic payloads at tumor sites. CONCLUSIONS: We identified a novel CAF origin and systematically studied the process of mobilization, recruitment, and maturation of CAFs in ESCC under the guidance of tumor cells. These findings give rise to new approaches that target CAFs before their incorporation into tumor stroma and use CAF-precursors as cellular vehicles to target tumor cells.
Assuntos
Fibroblastos Associados a Câncer , Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Fibroblastos Associados a Câncer/metabolismo , Linhagem Celular Tumoral , Neoplasias Esofágicas/metabolismo , Carcinoma de Células Escamosas do Esôfago/patologia , Fator 2 de Crescimento de Fibroblastos/metabolismo , Fibroblastos/metabolismo , Células-Tronco Hematopoéticas/metabolismo , Humanos , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos/genética , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos/metabolismo , Microambiente TumoralRESUMO
BACKGROUND: Establish patient-derived tumor xenograft (PDTX) from advanced GICs and assess the clinical value and applicability of PDTX for the treatment of advanced gastrointestinal cancers. METHODS: Patients with advanced GICs were enrolled in a registered multi-center clinical study (ChiCTR-OOC-17012731). The performance of PDTX was evaluated by analyzing factors that affect the engraftment rate, comparing the histological consistency between primary tumors and tumorgrafts, examining the concordance between the drug effectiveness in PDTXs and clinical responses, and identifying genetic variants and other factors associated with prognosis. RESULTS: Thirty-three patients were enrolled in the study with the engraftment rate of 75.8% (25/33). The success of engraftment was independent of age, cancer types, pathological stages of tumors, and particularly sampling methods. Tumorgrafts retained the same histopathological characteristics as primary tumors. Forty-nine regimens involving 28 drugs were tested in seventeen tumorgrafts. The median time for drug testing was 134.5 days. Follow-up information was obtained about 10 regimens from 9 patients. The concordance of drug effectiveness between PDTXs and clinical responses was 100%. The tumor mutation burden (TMB) was correlated with the effectiveness of single drug regimens, while the outgrowth time of tumorgrafts was associated with the effectiveness of combined regimens. CONCLUSION: The engraftment rate in advanced GICs was higher than that of other cancers and meets the acceptable standard for applying personalized therapeutic strategies. Tumorgrafts from PDTX kept attributes of the primary tumor. Predictions from PDTX modeling closely agreed with clinical drug responses. PDTX may already be clinically applicable for personalized medication in advanced GICs.
Assuntos
Antineoplásicos/farmacologia , Biomarcadores Tumorais/genética , Neoplasias Gastrointestinais/tratamento farmacológico , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Adulto , Idoso , Animais , Feminino , Seguimentos , Neoplasias Gastrointestinais/genética , Neoplasias Gastrointestinais/patologia , Humanos , Masculino , Camundongos Endogâmicos NOD , Pessoa de Meia-Idade , Medicina de Precisão , Prognóstico , Estudos Prospectivos , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de XenoenxertoRESUMO
Background: The impact of hospital volume on the long-term survival of esophageal squamous cell carcinoma (ESCC) has not been well assessed in China, especially for stage I-III stage ESCC. We performed a large sample size study to assess the relationships between hospital volume and the effectiveness of ESCC treatment and the hospital volume value at the lowest risk of all-cause mortality after esophagectomy in China. Aim: To investigate the prognostic value of hospital volume for assessing postoperative long-term survival of ESCC patients in China. Methods: The date of 158,618 patients with ESCC were collected from a database (1973-2020) established by the State Key Laboratory for Esophageal Cancer Prevention and Treatment, the database includes 500,000 patients with detailed clinical information of pathological diagnosis and staging, treatment approaches and survival follow-up for esophageal and gastric cardia cancers. Intergroup comparisons of patient and treatment characteristics were conducted with the X2 test and analysis of variance. The Kaplan-Meier method with the log-rank test was used to draw the survival curves for the variables tested. A Multivariate Cox proportional hazards regression model was used to analyze the independent prognostic factors for overall survival. The relationship between hospital volume and all-cause mortality was assessed using restricted cubic splines from Cox proportional hazards models. The primary outcome was all-cause mortality. Results: In both 1973-1996 and 1997-2020, patients with stage I-III stage ESCC who underwent surgery in high volume hospitals had better survival than those who underwent surgery in low volume hospitals (both P<0.05). And high volume hospital was an independent factor for better prognosis in ESCC patients. The relationship between hospital volume and the risk of all-cause mortality was half-U-shaped, but overall, hospital volume was a protective factor for esophageal cancer patients after surgery (HR<1). The concentration of hospital volume associated with the lowest risk of all-cause mortality was 1027 cases/year in the overall enrolled patients. Conclusion: Hospital volume can be used as an indicator to predict the postoperative survival of ESCC patients. Our results suggest that the centralized management of esophageal cancer surgery is meaningful to improve the survival of ESCC patients in China, but the hospital volume should preferably not be higher than 1027 cases/year. Core tip: Hospital volume is considered to be a prognostic factor for many complex diseases. However, the impact of hospital volume on long-term survival after esophagectomy has not been well evaluated in China. Based on a large sample size of 158,618 ESCC patients in China spanning 47 years (1973-2020), We found that hospital volume can be used as a predictor of postoperative survival in patients with ESCC, and identified hospital volume thresholds with the lowest risk of death from all causes. This may provide an important basis for patients to choose hospitals and have a significant impact on the centralized management of hospital surgery.
RESUMO
BACKGROUND: There is no consensus on whether triplet regimen is better than doublet regimen in the first-line treatment of advanced gastric cancer (AGC). We aimed to compare the efficacy and safety of oxaliplatin plus capecitabine (XELOX) and epirubicin, oxaliplatin, plus capecitabine (EOX) regimens in treating AGC. METHODS: This phase III trial enrolled previously untreated patients with AGC who were randomly assigned to receive the XELOX or EOX regimen. The primary endpoint was non-inferiority in progression-free survival (PFS) for XELOX as compared with EOX on an intention-to-treat basis. RESULTS: Between April 10, 2015 and August 20, 2020, 448 AGC patients were randomized to receive XELOX (n = 222) or EOX (n = 226). The median PFS (mPFS) was 5.0 months (95% confidence interval [CI] = 4.5-6.0 months) in the XELOX arm and 5.5 months (95% CI = 5.0-6.0 months) in the EOX arm (hazard ratio [HR] = 0.989, 95% CI = 0.812-1.203; Pnon-inferiority = 0.003). There was no significant difference in median overall survival (mOS) (12.0 vs. 12.0 months, P = 0.384) or objective response rate (37.4% vs. 45.1%, P = 0.291) between the two groups. In patients with poorly differentiated adenocarcinoma and liver metastasis, the EOX arm had a significantly longer mOS (P = 0.021) and a trend of longer mPFS (P = 0.073) than the XELOX arm. The rate of grade 3/4 adverse events (AEs) was 42.2% (90/213) in the XELOX arm and 72.5% (156/215) in the EOX arm (P = 0.001). The global health-related quality of life (QoL) score was significantly higher in the XELOX arm than in the EOX arm during chemotherapy. CONCLUSIONS: This non-inferiority trial demonstrated that the doublet regimen was as effective as the triplet regimen and had a better safety profile and QoL as a first-line treatment for AGC patients. However, the triplet regimen might have a survival advantage in patients with poorly differentiated adenocarcinoma and liver metastasis.
Assuntos
Adenocarcinoma , Neoplasias Hepáticas , Neoplasias Gástricas , Adenocarcinoma/tratamento farmacológico , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos , Capecitabina , Humanos , Neoplasias Hepáticas/tratamento farmacológico , Oxaliplatina , Oxaloacetatos , Estudos Prospectivos , Qualidade de Vida , Neoplasias Gástricas/patologiaRESUMO
BACKGROUND: By using cDNA microarray analysis, we identified a G protein-coupled receptor, GPR39, that is significantly up-regulated in ESCC. The aim of this study is to investigate the role of GPR39 in human esophageal cancer development, and to examine the prevalence and clinical significance of GPR39 overexpression in ESCC. METHODS: The mRNA expression level of GPR39 was analyzed in 9 ESCC cell lines and 50 primary ESCC tumors using semi-quantitative RT-PCR. Immunohistochemistry was used to assess GPR39 protein expression in tissue arrays containing 300 primary ESCC cases. In vitro and in vivo studies were done to elucidate the tumorigenic role of GPR39 in ESCC cells. RESULTS: We found that GPR39 was frequently overexpressed in primary ESCCs in both mRNA level (27/50, 54%) and protein level (121/207, 58.5%), which was significantly associated with the lymph node metastasis and advanced TNM stage (P < 0.01). Functional studies showed that GPR39 has a strong tumorigenic ability. Introduction of GPR39 gene into ESCC cell line KYSE30 could promote cell proliferation, increase foci formation, colony formation in soft agar, and tumor formation in nude mice. The mechanism by which amplified GPR39 induces tumorigenesis was associated with its role in promoting G1/S transition via up-regulation of cyclin D1 and CDK6. Further study found GPR39 could enhance cell motility and invasiveness by inducing EMT and remodeling cytoskeleton. Moreover, depletion of endogenous GPR39 by siRNA could effectively decrease the oncogenicity of ESCC cells. CONCLUSIONS: The present study suggests that GPR39 plays an important tumorigenic role in the development and progression of ESCC.
Assuntos
Carcinoma de Células Escamosas/genética , Neoplasias Esofágicas/genética , Receptores Acoplados a Proteínas G/genética , Animais , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/patologia , Linhagem Celular Tumoral , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/metabolismo , Transformação Celular Neoplásica/patologia , Neoplasias Esofágicas/metabolismo , Neoplasias Esofágicas/patologia , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Humanos , Camundongos , Camundongos Nus , Análise em Microsséries , Receptores Acoplados a Proteínas G/metabolismo , Receptores Acoplados a Proteínas G/fisiologia , Análise Serial de Tecidos , Transplante Heterólogo , Regulação para Cima/genética , Regulação para Cima/fisiologiaRESUMO
BACKGROUND: Esophageal cancer is currently the eighth most common tumor in the world and a leading cause of cancer death. SULT2B1 plays crucial roles in tumorigenesis. The purpose of this study is to explore the role of SULT2B1 in esophageal squamous cell carcinoma (ESCC). METHODS: The expression of SULT2B1 and its clinicopathological characteristics were evaluated in ESCC cohorts. Bisulfite genomic sequencing and methylation specific PCR were used to detect the promoter hypermethylation of the SULT2B1 gene. The effects of SULT2B1 on the biological characters of ESCC cells were identified on functional assays. Subcutaneous xenograft models revealed the role of SULT2B1 in vivo with tumor growth. RNA-Seq analysis and qRT-PCR were performed to recognize the targeted effect of SULT2B1 on PER1. RESULTS: SULT2B1 was not expressed or at a low level in most patients with ESCC or in ESCC cell lines, and this was accompanied by poor clinical prognosis. Furthermore, the downregulation of SULT2B1 occurred in promoter hypermethylation. According to the functional results, overexpression of SULT2B1 could inhibit tumoral proliferation in vitro and retard tumor growth in vivo, whereas SULT2B1 knockdown could accelerate ESCC progression. Mechanistically, SULT2B1 targeted PER1 at the mRNA level during post-transcriptional regulation. Finally, PER1 was verified as a suppressor and poor-prognosis factor in ESCC. CONCLUSIONS: SULT2B1 loss is a consequence owing to its ability to promote hypermethylation. In addition, it serves as a suppressor and poor-prognosis factor because of the post-transcriptional regulation of PER1 in ESCC.
Assuntos
Carcinogênese/genética , Metilação de DNA/genética , Neoplasias Esofágicas/genética , Carcinoma de Células Escamosas do Esôfago/genética , Proteínas Circadianas Period/genética , Sulfotransferases/genética , Idoso , Animais , Linhagem Celular Tumoral , Proliferação de Células/genética , Regulação para Baixo , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Pessoa de Meia-Idade , Ensaios Antitumorais Modelo de XenoenxertoRESUMO
PD-1/PD-L1 blockade therapies provide notable clinical benefits for patients with advanced cancers, but the factors influencing the effectiveness of the treatment remain incompletely cataloged. Here, the up-regulation of laminin γ2 (Ln-γ2) predicted the attenuated efficacy of anti-PD-1 drugs and was associated with unfavorable outcomes in patients with lung cancer or esophageal cancer. Furthermore, Ln-γ2 was transcriptionally activated by transforming growth factor-ß1 (TGF-ß1) secreted from cancer-associated fibroblasts via JNK/AP1 signaling, which blocked T cell infiltration into the tumor nests by altering the expression of T cell receptors. Coadministration of the TGF-ß receptor inhibitor galunisertib and chemotherapy drugs provoked vigorous antitumor activity of anti-PD-1 therapy in mouse tumor models. Therefore, Ln-γ2 may represent a useful biomarker to optimize clinical decisions and predict the response of cancer patients to treatment with anti-PD-1 drugs.
RESUMO
Background: Hepatocellular carcinoma (HCC) is a lethal malignancy lacking effective treatment. The Cyclin-dependent kinases 4/6 (CDK4/6) and PI3K/AKT signal pathways play pivotal roles in carcinogenesis and are promising therapeutic targets for HCC. Here we identified a new CDK4/6 and PI3K/AKT multi-kinase inhibitor for the treatment of HCC. Methods: Using a repurposing and ensemble docking methodology, we screened a library of worldwide approved drugs to identify candidate CDK4/6 inhibitors. By MTT, apoptosis, and flow cytometry analysis, we investigated the effects of candidate drug in reducing cell-viability,inducing apoptosis, and causing cell-cycle arrest. The drug combination and thermal proteomic profiling (TPP) method were used to investigate whether the candidate drug produced antagonistic effect. The in vivo anti-cancer effect was performed in BALB/C nude mice subcutaneously xenografted with Huh7 cells. Results: We demonstrated for the first time that the anti-plasmodium drug aminoquinol is a new CDK4/6 and PI3K/AKT inhibitor. Aminoquinol significantly decreased cell viability, induced apoptosis, increased the percentage of cells in G1 phase. Drug combination screening indicated that aminoquinol could produce antagonistic effect with the PI3K inhibitor LY294002. TPP analysis confirmed that aminoquinol significantly stabilized CDK4, CDK6, PI3K and AKT proteins. Finally, in vivo study in Huh7 cells xenografted nude mice demonstrated that aminoquinol exhibited strong anti-tumor activity, comparable to that of the leading cancer drug 5-fluorouracil with the combination treatment showed the highest therapeutic effect. Conclusion: The present study indicates for the first time the discovery of a new CDK4/6 and PI3K/AKT multi-kinase inhibitor aminoquinol. It could be used alone or as a combination therapeutic strategy for the treatment of HCC.
RESUMO
PURPOSE: Inflammation is closely associated with prognosis in gastric cancer (GC). We aimed to assess the predictive value of existing inflammatory and tumor markers in GC, to establish a systemic score based on valuable predictors for early risk stratification of patients, and to create a nomogram for individual risk prediction. PATIENTS AND METHODS: We retrospectively analyzed 401 GC patients who underwent curative gastrectomy from 2007 to 2016. RESULTS: Through univariate and multivariate survival analysis, age (>60 years), depth of invasion (pT3-4), lymph node invasion (pN1-3), histologic classification (poor), adjuvant chemotherapy (no), albumin fibrinogen ratio (AFR) (<13.33), and carbohydrate antigen 19-9 (CA19-9) (>27 U/mL) independently indicated inferior disease-free survival (DFS). In addition, depth of invasion, lymph node invasion, histologic classification, adjuvant chemotherapy, AFR, and CA19-9 were incorporated in the prediction of cancer-specific survival (CSS). A combined AFR and CA19-9 prognostic score (CACPS) was established. Lower AFR (<13.33) and higher CA19-9 (>27 U/mL) were allocated 1 point each in the CACPS (range, 0-2). CACPS can be used as an independent predictor for DFS and CSS in multivariate analysis (for DFS: CACPS 1: HR=2.039, 95% CI: 1.357-3.065, P=0.001; CACPS 2: HR=2.419, 95% CI: 1.397-4.186, P=0.002; for CSS: CACPS 1: HR=2.035, 95% CI: 1.292-3.205, P=0.002; CACPS 2: HR=2.255, 95% CI: 1.252-4.059, P=0.007), with a higher CACPS indicating poor survival according to Kaplan-Meier curves (both P<0.001). Moreover, a nomogram for DFS and CSS was generated using the significant characteristics in the multivariate analysis, which exhibited high accuracy (for DFS: C-index=0.743, 95% CI: 0.698-0.788; for CSS: C-index=0.766, 95% CI: 0.718-0.814) versus tumor-node-metastasis staging (for DFS: C-index=0.692, 95% CI: 0.650-0.734; for CSS: C-index=0.720, 95% CI: 0.675-0.764). CONCLUSION: Preoperative CACPS exhibited high accuracy in predicting prognosis for GC patients who underwent curative resection.