Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Mol Microbiol ; 119(4): 471-491, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36760021

RESUMO

The chromatin structure is generally regulated by chromatin remodelers and histone modifiers, which affect DNA replication, repair, and levels of transcription. The first identified histone acetyltransferase was Hat1/KAT1, which belongs to lysine (K) acetyltransferases. The catalytic subunit Hat1 and the regulatory subunit Hat2 make up the core HAT1 complex. In this study, the results of tandem affinity purification and mass spectrometry and bimolecular fluorescence complementation proved that the Penicillium oxalicum PoHat1-Hat2 is the transcriptional cofactor of the sequence-specific transcription factor PoAmyR, a transcription activator essential for the transcription of amylase gene. ChIP-qPCR results demonstrated that the complex PoHat1-Hat2 is recruited by PoAmyR to the promoters of prominent amylase genes Poamy13A and Poamy15A and performs histone H4 lysine12 acetylation. The result of the yeast two-hybrid test indicated that PoHat2 is the subunit that directly interacts with PoAmyR. PoHat1-Hat2 acts as the molecular brake of the PoAmyR-regulating transcription of amylase genes. A putative model for amylase gene regulation by PoAmyR-Hat2-Hat1 was constructed. Our paper is the first report that the Hat1-Hat2 complex acts as a cofactor for sequence-specific TF to regulate gene expression and explains the mechanism of TF AmyR regulating amylase genes expression.


Assuntos
Proteínas Fúngicas , Histona Acetiltransferases , Penicillium , Fatores de Transcrição , Acetilação , Cromatina , Expressão Gênica , Histona Acetiltransferases/genética , Histona Acetiltransferases/metabolismo , Histonas/genética , Histonas/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Penicillium/metabolismo , Proteínas Fúngicas/metabolismo
2.
Cancer Immunol Immunother ; 73(3): 49, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38349553

RESUMO

T-cell receptor (TCR) engineered T-cell therapy has recently emerged as a promising adoptive immunotherapy approach for tumor treatment, yet hindered by tumor immune evasion resulting in poor therapeutic efficacy. The introduction of ferroptosis-targeted inducers offers a potential solution, as they empower T cells to induce ferroptosis and exert influence over the tumor microenvironment. Atovaquone (ATO) stands as a prospective pharmaceutical candidate with the potential to target ferroptosis, effectively provoking an excessive generation and accumulation of reactive oxygen species (ROS). In this study, we evaluated the effectiveness of a combination therapy comprising ATO and TCR-T cells against hepatocellular carcinoma (HCC), both in vitro and in vivo. The results of lactate dehydrogenase and cytokine assays demonstrated that ATO enhanced cytotoxicity mediated by AFP-specific TCR-T cells and promoted the release of IFN-γ in vitro. Additionally, in an established HCC xenograft mouse model, the combined therapy with low-dose ATO and TCR-T cells exhibited heightened efficacy in suppressing tumor growth, with no apparent adverse effects, comparable to the results achieved through monotherapy. The RNA-seq data unveiled a significant activation of the ferroptosis-related pathway in the combination therapy group in comparison to the TCR-T cells group. Mechanistically, the synergy between ATO and TCR-T cells augmented the release of IFN-γ by TCR-T cells, while concurrently elevating the intracellular and mitochondrial levels of ROS, expanding the labile iron pool, and impairing the integrity of the mitochondrial membrane in HepG2 cells. This multifaceted interaction culminated in the potentiation of ferroptosis within the tumor, primarily induced by an excess of ROS. In summary, the co-administration of ATO and TCR-T cells in HCC exhibited heightened vulnerability to ferroptosis. This heightened susceptibility led to the inhibition of tumor growth and the stimulation of an anti-tumor immune response. These findings suggest that repurposing atovaquone for adoptive cell therapy combination therapy holds the potential to enhance treatment outcomes in HCC.


Assuntos
Carcinoma Hepatocelular , Ferroptose , Neoplasias Hepáticas , Humanos , Animais , Camundongos , Carcinoma Hepatocelular/terapia , Atovaquona/farmacologia , Atovaquona/uso terapêutico , Espécies Reativas de Oxigênio , Estudos Prospectivos , Neoplasias Hepáticas/terapia , Receptores de Antígenos de Linfócitos T , Modelos Animais de Doenças , Microambiente Tumoral
3.
World J Microbiol Biotechnol ; 40(6): 179, 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38668807

RESUMO

Core histones in the nucleosome are subject to a wide variety of posttranslational modifications (PTMs), such as methylation, phosphorylation, ubiquitylation, and acetylation, all of which are crucial in shaping the structure of the chromatin and the expression of the target genes. A putative histone methyltransferase LaeA/Lae1, which is conserved in numerous filamentous fungi, functions as a global regulator of fungal growth, virulence, secondary metabolite formation, and the production of extracellular glycoside hydrolases (GHs). LaeA's direct histone targets, however, were not yet recognized. Previous research has shown that LaeA interacts with core histone H2B. Using S-adenosyl-L-methionine (SAM) as a methyl group donor and recombinant human histone H2B as the substrate, it was found that Penicillium oxalicum LaeA can transfer the methyl groups to the C-terminal lysine (K) 108 and K116 residues in vitro. The H2BK108 and H2BK116 sites on recombinant histone correspond to P. oxalicum H2BK122 and H2BK130, respectively. H2BK122A and H2BK130A, two mutants with histone H2B K122 or K130 mutation to alanine (A), were constructed in P. oxalicum. The mutants H2BK122A and H2BK130A demonstrated altered asexual development and decreased extracellular GH production, consistent with the findings of the laeA gene deletion strain (ΔlaeA). The transcriptome data showed that when compared to wild-type (WT) of P. oxalicum, 38 of the 47 differentially expressed (fold change ≥ 2, FDR ≤ 0.05) genes that encode extracellular GHs showed the same expression pattern in the three mutants ΔlaeA, H2BK122A, and H2BK130A. The four secondary metabolic gene clusters that considerably decreased expression in ΔlaeA also significantly decreased in H2BK122A or H2BK130A. The chromatin of promotor regions of the key cellulolytic genes cel7A/cbh1 and cel7B/eg1 compacted in the ΔlaeA, H2BK122A, and H2BK130A mutants, according to the results of chromatin accessibility real-time PCR (CHART-PCR). The chromatin accessibility index dropped. The histone binding pocket of the LaeA-methyltransf_23 domain is compatible with particular histone H2B peptides, providing appropriate electrostatic and steric compatibility to stabilize these peptides, according to molecular docking. The findings of the study demonstrate that H2BK122 and H2BK130, which are histone targets of P. oxalicum LaeA in vitro, are crucial for fungal conidiation, the expression of gene clusters encoding secondary metabolites, and the production of extracellular GHs.


Assuntos
Proteínas Fúngicas , Regulação Fúngica da Expressão Gênica , Glicosídeo Hidrolases , Histonas , Lisina , Família Multigênica , Penicillium , Metabolismo Secundário , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Glicosídeo Hidrolases/genética , Glicosídeo Hidrolases/metabolismo , Histona-Lisina N-Metiltransferase/genética , Histona-Lisina N-Metiltransferase/metabolismo , Histonas/metabolismo , Histonas/genética , Lisina/metabolismo , Lisina/biossíntese , Metilação , Penicillium/genética , Penicillium/enzimologia , Penicillium/metabolismo , Penicillium/crescimento & desenvolvimento , Processamento de Proteína Pós-Traducional , Reprodução Assexuada/genética , Metabolismo Secundário/genética
4.
Mol Microbiol ; 117(5): 1002-1022, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35072962

RESUMO

The degradation of lignocellulosic biomass by cellulolytic enzymes is involved in the global carbon cycle. The hydrolysis of lignocellulosic biomass into fermentable sugars is potential as an excellent industrial resource to produce a variety of chemical products. The production of cellulolytic enzymes is regulated mainly at the transcriptional level in filamentous fungi. Transcription factor ClrB and the putative histone methyltransferase LaeA, are both necessary for the expression of cellulolytic genes. However, the mechanism by which transcription factors and methyltransferase coordinately regulate cellulolytic genes is still unknown. Here, we reveal a transcriptional regulatory mechanism involving Penicillium oxalicum transcription factor ClrB (PoClrB), complex Tup1-Cyc8, and putative histone methyltransferase LaeA (PoLaeA). As the transcription factor, PoClrB binds the targeted promoters of cellulolytic genes, recruits PoTup1-Cyc8 complex via direct interaction with PoTup1. PoTup1 interacts with PoCyc8 to form the coactivator complex PoTup1-Cyc8. Then, PoTup1 recruits putative histone methyltransferase PoLaeA to modify the chromatin structure of the upstream region of cellulolytic genes, thereby facilitating the binding of transcription machinery to activating the corresponding cellulolytic gene expression. Our results contribute to a better understanding of complex transcriptional regulation mechanisms of cellulolytic genes and will be valuable for lignocellulosic biorefining.


Assuntos
Regulação Fúngica da Expressão Gênica , Fatores de Transcrição , Histona Metiltransferases/genética , Histona Metiltransferases/metabolismo , Regiões Promotoras Genéticas/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
5.
Inorg Chem ; 62(34): 13867-13876, 2023 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-37589129

RESUMO

Rare-earth (RE)-based honeycomb-lattice materials with strong spin-orbit coupled Jeff = 1/2 moments have attracted great interest as a platform to realize the Kitaev quantum spin liquid (QSL) state. Herein, we report the discovery of a family of RE-based honeycomb-lattice magnets Ba9RE2(SiO4)6 (RE = Ho-Yb), which crystallize into the rhombohedral structure with the space group R3̅. In these serial compounds, magnetic RE3+ ions are arranged on a perfect honeycomb lattice within the ab-plane and stacked in the "ABCABC"-type fashion along the c-axis. All synthesized Ba9RE2(SiO4)6 (RE = Ho-Yb) polycrystals exhibit the dominant antiferromagnetic interaction and absence of magnetic order down to 2 K. In combination with the magnetization and electron spin resonance results, magnetic behaviors are discussed for the compounds with different RE ions. Moreover, the as-grown Ba9Yb2(SiO4)6 single crystals show large magnetic frustration with frustration index f = θCW/TN > 8 and no long-range magnetic ordering down to 0.15 K, being a possible QSL candidate material. These series of compounds are attractive for exploring the exotic magnetic phases of Kitaev materials with 4f electrons.

6.
Oral Dis ; 2023 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-38135895

RESUMO

OBJECTIVE: Midpalatal expansion (MPE) is routinely employed to treat transverse maxillary arch deficiency. Neutrophils are indispensable for recruiting bone marrow stromal cells (BMSCs) at the initial stage of bone regeneration. This study aimed to explore whether neutrophils participate in MPE and how they function during bone formation under mechanical stretching. MATERIALS AND METHODS: The presence and phenotype of neutrophils in the midpalatal suture during expansion were detected by flow cytometry and immunofluorescence staining. The possible mechanism of neutrophil recruitment and polarization was explored in vitro by exposing vascular endothelial cells (VECs) to cyclic tensile strain. RESULTS: The number of neutrophils in the distracted suture peaked on Day 3, and N2-type neutrophils significantly increased on Day 5 after force application. The depletion of circulatory neutrophils reduced bone volume by 43.6% after 7-day expansion. The stretched VECs recruited neutrophils via a CXCR2 mechanism in vitro, which then promoted BMSC osteogenic differentiation through the VEGFA/VEGFR2 axis. Consistently, these neutrophils showed higher expression of canonical N2 phenotype genes, including CD206 and Arg1. CONCLUSIONS: These results suggested that neutrophils participated in early bone formation during MPE. Based on these findings, we propose that stretched VECs recruited and polarized neutrophils, which, in turn, induced BMSC osteogenic differentiation.

7.
World J Surg Oncol ; 21(1): 324, 2023 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-37833694

RESUMO

BACKGROUND: The growth arrest and DNA damage-inducible gene gamma (GADD45G), an important member of GADD45 family, has been connected to the development of certain human cancers. Our previous studies have confirmed that GADD45G expression could be upregulated by 4-methoxydalbergione (4MOD) in liver cancer cells, but its potential pathological role in hepatocellular carcinoma (HCC) has not been fully understood. This study aimed to determine potential role of GADD45G in HCC, and the effects of 4-methoxydalbergione (4MOD) on the regulation of GADD45G expression in vivo were also analyzed. METHODS: Publicly available data and in-house immunohistochemistry (IHC) experiments were utilized to explore the expression profiles and clinical significance of GADD45G in HCC samples. Functional enrichment analysis based on GADD45G co-expression genes was used to excavate the molecular mechanism of GADD45G in HCC. We also conducted in vivo experiment on BALB/c nude mice to excavate the inhibitory effect of 4MOD on HCC and to evaluate the differences in the expression of GADD45G in xenograft tissues between the 4MOD-treated and untreated groups. RESULTS: GADD45G displayed significant low expression in HCC tissues. Downregulated expression of GADD45G was positively correlated with some high risk factors in HCC patients and predicted worse prognosis of HCC patients. There was a close association of GADD45G mRNA expression and immune cells, including neutrophils, NK cells, CD8 T cells, and macrophages. Co-expressed genes of GADD45G were involved in several pathways including cell cycle, carbon metabolism, and peroxisome. 4MOD could significantly suppress the growth of HCC in vivo, and this inhibitory effect was dependent on the upregulation of GADD45G expression. CONCLUSION: GADD45G expression can be used as a new clinical biomarker for HCC and GADD45G may be a potential target for the anti-cancer effect of 4MOD in liver cancer.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Animais , Camundongos , Humanos , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Camundongos Nus , Benzoquinonas , Regulação Neoplásica da Expressão Gênica , Peptídeos e Proteínas de Sinalização Intracelular/genética
8.
Fungal Genet Biol ; 158: 103652, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34920105

RESUMO

Fungi sense environmental signals and coordinate growth, development, and metabolism accordingly. Calcium-calmodulin-calcineurin signaling is a conserved cascade pathway in fungi. One of the most important downstream targets of this pathway is the transcription factor Crz1/CrzA, which plays an essential role in various cellular processes. The putative collaborators of Penicillium oxalicum CrzA (PoCrzA) were found, through tandem affinity purification followed by mass spectrometric analysis (TAP-MS). A total of 50 protein-protein interaction collaborators of PoCrzA were observed. Among them, some collaborators, such as the catalytic subunit of calcineurin (Cna1, calcineurin A), the regulatory catalytic subunit of calcineurin (Cnb1, calcineurin B), and a 14-3-3 protein Bmh1, which were previously reported in yeast, were identified. Some putative collaborators, including two karyopherins (exportin Los1 and importin Srp1), two kinases (Fus3 and Slt2p), and a general transcriptional corepressor (Cyc8), were also found. The CrzA deletion mutant ΔPocrzA exhibited slow hyphal growth, impaired conidiogenesis, and reduced extracellular cellulase synthesis. Phenotype and transcriptome analysis showed that PoCrzA regulated fungal development in a Flbs-BrlA-dependent manner and participated in cellulase synthesis by modulating cellulolytic gene expression. On the basis of the results of TAP-MS, transcriptome, and phenotypic analysis in P. oxalicum, our study was the first to draft the calcineurin-CrzA pathway in cellulolytic fungi.


Assuntos
Calcineurina , Penicillium , Calcineurina/genética , Calcineurina/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Regulação Fúngica da Expressão Gênica , Penicillium/genética , Penicillium/metabolismo , Fenótipo , Transcriptoma
9.
Int J Mol Sci ; 23(21)2022 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-36361955

RESUMO

There is a rising interest in bioethanol production from lignocellulose such as corn stover to decrease the need for fossil fuels, but most research mainly focuses on how to improve ethanol yield and pays less attention to the biorefinery of corn stover. To realize the utilization of different components of corn stover in this study, different pretreatment strategies were used to fractionate corn stover while enhancing enzymatic digestibility and cellulosic ethanol production. It was found that the pretreatment process combining dilute acid (DA) and alkaline sodium sulfite (ASS) could effectively fractionate the three main components of corn stover, i.e., cellulose, hemicellulose, and lignin, that xylose recovery reached 93.0%, and that removal rate of lignin was 85.0%. After the joint pretreatment of DA and ASS, the conversion of cellulose at 72 h of enzymatic hydrolysis reached 85.4%, and ethanol concentration reached 48.5 g/L through fed-batch semi-simultaneous saccharification and fermentation (S-SSF) process when the final concentration of substrate was 18% (w/v). Pretreatment with ammonium sulfite resulted in 83.8% of lignin removal, and the conversion of cellulose and ethanol concentration reached 86.6% and 50 g/L after enzymatic hydrolysis of 72 h and fed-batch S-SSF, respectively. The results provided a reference for effectively separating hemicellulose and lignin from corn stover and producing cellulosic ethanol for the biorefinery of corn stover.


Assuntos
Etanol , Lignina , Ácidos , Celulose , Fermentação , Hidrólise , Lignina/metabolismo , Zea mays/metabolismo
10.
Biotechnol Lett ; 43(2): 495-502, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33048255

RESUMO

OBJECTIVE: To construct convenient CRISPR/Cas9-mediated genome editing systems in industrial enzyme-producing fungi Penicillium oxalicum and Trichoderma reesei. RESULTS: Employing the 5S rRNA promoter from Aspergillus niger for guide RNA expression, the ß-glucosidase gene bgl2 in P. oxalicum was deleted using a donor DNA carrying 40-bp homology arms or a donor containing no selectable marker gene. Using a markerless donor DNA as editing template, precise replacement of a small region was achieved in the creA gene. In T. reesei, the A. niger 5S rRNA promoter was less efficient than that in P. oxalicum when used for gene editing. Using a native 5S rRNA promoter, stop codons were introduced into the lae1 coding region using a markerless donor DNA with an editing efficiency of 36.67%. CONCLUSIONS: Efficient genome editing systems were developed in filamentous fungi P. oxalicum and T. reesei by using heterologous or native 5S rRNA promoters for guide RNA expression.


Assuntos
Edição de Genes , Hypocreales/genética , Penicillium/genética , RNA Guia de Cinetoplastídeos/genética , Sistemas CRISPR-Cas/genética , Regiões Promotoras Genéticas/genética , RNA Ribossômico 5S/genética
11.
J Ind Microbiol Biotechnol ; 48(1-2)2021 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-33693788

RESUMO

Hyphal morphology is considered to have a close relationship with the production level of secreted proteins by filamentous fungi. In this study, the gul1 gene, which encodes a putative mRNA-binding protein, was disrupted in cellulase-producing fungus Trichoderma reesei. The hyphae of Δgul1 strain produced more lateral branches than the parent strain. Under the condition for cellulase production, disruption of gul1 resulted in smaller mycelial clumps and significantly lower viscosity of fermentation broth. In addition, cellulase production was improved by 22% relative to the parent strain. Transcriptome analysis revealed that a set of genes encoding cell wall remodeling enzymes as well as hydrophobins were differentially expressed in the Δgul1 strain. The results suggest that the regulatory role of gul1 in cell morphogenesis is likely conserved in filamentous fungi. To our knowledge, this is the first report on the engineering of gul1 in an industrially important fungus.


Assuntos
Celulase/biossíntese , Proteínas Fúngicas/metabolismo , Hifas/metabolismo , Hypocreales/metabolismo , Parede Celular/metabolismo , Fermentação , Proteínas Fúngicas/genética , Hypocreales/genética , Viscosidade
12.
J Biol Chem ; 294(49): 18685-18697, 2019 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-31659120

RESUMO

Enzymes that degrade lignocellulose to simple sugars are of great interest in research and for biotechnology because of their role in converting plant biomass to fuels and chemicals. The synthesis of cellulolytic enzymes in filamentous fungi is tightly regulated at the transcriptional level, with the transcriptional activator ClrB/CLR-2 playing a critical role in many species. In Penicillium oxalicum, clrB overexpression could not relieve the dependence of cellulase expression on cellulose as an inducer, suggesting that clrB is controlled post-transcriptionally. In this study, using a reporter gene system in yeast, we identified the C-terminal region of ClrB/CLR-2 as a transcriptional activation domain. Expression of clrBID , encoding a ClrB derivative in which the DNA-binding and transcriptional activation domains are fused together to remove the middle region, led to cellulase production in the absence of cellulose in P. oxalicum Strikingly, the clrBID -expressing strain produced cellulase on carbon sources that normally repress cellulase expression, including glucose and glycerol. Results from deletion of the carbon catabolite repressor gene creA in the clrBID -expressing strain suggested that the effect of clrBID is independent of CreA's repressive function. A similar modification of clrB in Aspergillus niger resulted in the production of a mannanase in glucose medium. Taken together, these results indicate that ClrB suppression under noninducing conditions involves its middle region, suggesting a potential strategy to engineer fungal strains for improved cellulase production on commonly used carbon sources.


Assuntos
Celulase/biossíntese , Proteínas Fúngicas/metabolismo , Glucose/metabolismo , Penicillium/enzimologia , Penicillium/metabolismo , Fatores de Transcrição/metabolismo , Aspergillus/enzimologia , Aspergillus/metabolismo , Regulação Fúngica da Expressão Gênica , Lignina/metabolismo , Fatores de Transcrição/genética
13.
Fungal Genet Biol ; 143: 103445, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32822857

RESUMO

Putative methyltranferase LaeA and LaeA-like proteins, which are conserved in many filamentous fungi, regulate the sporogenesis and biosynthesis of secondary metabolites. In this study, we reported the biological function of a LaeA-like methyltransferase, Penicillium oxalicum Mtr23B, which contains a methyltransf_23 domain and an S-adenosylmethionine binding domain, in controlling spore pigment formation and in the expression of secondary metabolic gene cluster and glycoside hydrolase genes. Additionally, we compared Mtr23B and LaeA, and determined their similarities and differences in terms of their roles in regulating the above biological processes. mtr23B had the highest transcriptional level among the 12 members of the methyltransf_23 family in P. oxalicum. The colony color of Δmtr23B (deletion of mtr23B) was lighter than that of ΔlaeA, although Δmtr23B produced ~ 19.2-fold more conidia than ΔlaeA. The transcriptional levels of abrA, abrB/yA, albA/wA, arpA, arpB, and aygA, which are involved in the dihydroxynaphtalene-melanin pathway, decreased in Δmtr23B. However, Mtr23B had a little effect on brush-like structures and conidium formation, and had a different function from LaeA. Mtr23B extensively regulated glycoside hydrolase gene expression. The absence of Mtr23B remarkably repressed prominent cellulase- and amylase-encoding genes in the whole culture period, while the effect of LaeA mainly occurred in the later phases of prolonged batch cultures. Similar to LaeA, Mtr23B was involved in the expression of 10 physically linked regions containing secondary metabolic gene clusters; the highest regulatory activities of Mtr23B and LaeA were observed in BrlA-dependent cascades. Although LaeA interacted with VeA, Mtr23B did not interact with VeA directly. We assumed that Mtr23B regulates cellulase and amylase gene transcription by interacting with the CCAAT-binding transcription factor HAP5 and chromatin remodeling complex.


Assuntos
Proteínas Fúngicas/genética , Glicosídeo Hidrolases/genética , Metiltransferases/genética , Penicillium/genética , Regulação Fúngica da Expressão Gênica/genética , Metiltransferases/biossíntese , Penicillium/metabolismo , Reprodução Assexuada/genética , S-Adenosilmetionina/metabolismo , Metabolismo Secundário/genética , Esporos Fúngicos/genética
14.
Curr Microbiol ; 77(1): 49-54, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31701162

RESUMO

CpcA is a conserved transcriptional activator for the cross-pathway control of amino acid biosynthetic genes in filamentous fungi. Previous studies of this regulator mainly revealed its function under amino acid starvation condition, where amino acid biosynthetic inhibitors were added in the culture. In this study, the biological function of CpcA in Penicillium oxalicum was investigated under different cultivation conditions. Disruption of cpcA led to decreased cell growth either in the presence or absence of histidine biosynthetic inhibitor, and the phenotype could be rescued by the addition of exogenous amino acid sources. In addition, CpcA was required for the rapid production of cellulase when cells were cultured on cellulose. Transcript abundance measurement showed that a set of amino acid biosynthetic genes as well as two major cellulase genes were significantly down-regulated in cpcA deletion mutant relative to wild type. Taken together, the results revealed the biological role of CpcA in supporting normal growth and extracellular enzyme production of P. oxalicum under amino acid non-starvation condition.


Assuntos
Proteínas Fúngicas/metabolismo , Penicillium/enzimologia , Penicillium/metabolismo , Celulase/genética , Celulase/metabolismo , Celulose/genética , Celulose/metabolismo , Eletroforese em Gel de Poliacrilamida , Proteínas Fúngicas/genética , Regulação Fúngica da Expressão Gênica/genética , Regulação Fúngica da Expressão Gênica/fisiologia , Penicillium/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa
15.
Mol Biol Rep ; 46(5): 5443-5454, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31359382

RESUMO

PoCel12A, PoCel12B, and PoCel12C are genes that encode glycoside hydrolase family 12 (GH12) enzymes in Penicillium oxalicum. PoCel12A and PoCel12B are typical GH12 enzymes that belong to fungal subfamilies 12-1 and 12-2, respectively. PoCel12C contains a low-complexity region (LCR) domain, which is not found in PoCel12A or PoCel12B and independent of fungal subfamily 12-1 or 12-2. Recombinant enzymes (named rCel12A, rCel12B and rCel12C) demonstrate existing diversity in the substrate specificities. Although most members in GH family 12 are typical endoglucanases and preferentially hydrolyze ß-1,4-glucan (e.g., carboxymethylcellulose), recombinant PoCel12A is a non-typical endo-(1-4)-ß-glucanase; it preferentially hydrolyzes mix-linked ß-glucan (barley ß-glucan, ß-1,3-1,4-glucan) and slightly hydrolyzes ß-1,4-glucan (carboxymethylcellulose). Recombinant PoCel12B possesses a significantly high activity against xyloglucan. A specific activity of rCel12B toward xyloglucan (239 µmol/min/mg) is the second-highest value known. Recombinant PoCel12C shows low activity toward ß-glucan, carboxymethylcellulose, or xyloglucan. All three enzymes can degrade phosphoric acid-swollen cellulose (PASC). However, the hydrolysis products toward PASC by enzymes are different: the main hydrolysis products are cellotriose, cellotetraose, and cellobiose for rCel12A, rCel12B, and rCel12C, correspondingly. A synergistic action toward PASC among rCel12A and rCel12B is observed, thereby suggesting a potential application for preparing enzyme cocktails used in lignocellulose hydrolysis.


Assuntos
Glicosídeo Hidrolases/genética , Glicosídeo Hidrolases/metabolismo , Especificidade por Substrato/genética , Celulase/genética , Celulose/análogos & derivados , Glucanos , Glicosídeo Hidrolases/química , Concentração de Íons de Hidrogênio , Hidrólise , Lignina , Penicillium/genética , Penicillium/metabolismo , Filogenia , Tetroses , Trioses , Xilanos , beta-Glucanas/metabolismo
16.
PLoS Genet ; 11(9): e1005509, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26360497

RESUMO

Filamentous fungus Penicillium oxalicum produces diverse lignocellulolytic enzymes, which are regulated by the combinations of many transcription factors. Here, a single-gene disruptant library for 470 transcription factors was constructed and systematically screened for cellulase production. Twenty transcription factors (including ClrB, CreA, XlnR, Ace1, AmyR, and 15 unknown proteins) were identified to play putative roles in the activation or repression of cellulase synthesis. Most of these regulators have not been characterized in any fungi before. We identified the ClrB, CreA, XlnR, and AmyR transcription factors as critical dose-dependent regulators of cellulase expression, the core regulons of which were identified by analyzing several transcriptomes and/or secretomes. Synergistic and additive modes of combinatorial control of each cellulase gene by these regulatory factors were achieved, and cellulase expression was fine-tuned in a proper and controlled manner. With one of these targets, the expression of the major intracellular ß-glucosidase Bgl2 was found to be dependent on ClrB. The Bgl2-deficient background resulted in a substantial gene activation by ClrB and proved to be closely correlated with the relief of repression mediated by CreA and AmyR during cellulase induction. Our results also signify that probing the synergistic and dose-controlled regulation mechanisms of cellulolytic regulators and using it for reconstruction of expression regulation network (RERN) may be a promising strategy for cellulolytic fungi to develop enzyme hyper-producers. Based on our data, ClrB was identified as focal point for the synergistic activation regulation of cellulase expression by integrating cellulolytic regulators and their target genes, which refined our understanding of transcriptional-regulatory network as a "seesaw model" in which the coordinated regulation of cellulolytic genes is established by counteracting activators and repressors.


Assuntos
Celulase/genética , Genes Fúngicos , Penicillium/enzimologia , Celulase/metabolismo , Celulose/metabolismo , Regulação Enzimológica da Expressão Gênica , Redes Reguladoras de Genes , Penicillium/genética , Penicillium/metabolismo , Fatores de Transcrição/metabolismo , Transcrição Gênica , Transcriptoma
17.
Appl Microbiol Biotechnol ; 101(9): 3627-3636, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28161729

RESUMO

Efficient deconstruction of lignocellulose is achieved by the synergistic action of various hydrolytic and oxidative enzymes. However, the aldonolactones generated by oxidative enzymes have inhibitory effects on some cellulolytic enzymes. In this work, D-glucono-1,5-lactone was shown to have a much stronger inhibitory effect than D-glucose and D-gluconate on ß-glucosidase, a vital enzyme during cellulose degradation. AltA, a secreted enzyme from Penicillium oxalicum, was identified as an aldonolactonase which can catalyze the hydrolysis of D-glucono-1,5-lactone to D-gluconic acid. In the course of lignocellulose saccharification conducted by cellulases from P. oxalicum or Trichoderma reesei, supplementation of AltA was able to relieve the decrease of ß-glucosidase activity obviously with a stimulation of glucose yield. This boosting effect disappeared when sodium azide and ethylenediaminetetraacetic acid (EDTA) were added to the saccharification system to inhibit the activities of oxidative enzymes. In summary, we describe the first heterologous expression of a fungal secreted aldonolactonase and its application as an efficient supplement of cellulolytic enzyme system for lignocellulose biodegradation.


Assuntos
Hidrolases de Éster Carboxílico/isolamento & purificação , Hidrolases de Éster Carboxílico/metabolismo , Inibidores Enzimáticos/metabolismo , Lignina/metabolismo , Penicillium/enzimologia , beta-Glucosidase/antagonistas & inibidores , beta-Glucosidase/metabolismo , Gluconatos/metabolismo , Glucose/metabolismo , Lactonas/metabolismo , Penicillium/metabolismo , Trichoderma/metabolismo
18.
Fungal Genet Biol ; 86: 91-102, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26724278

RESUMO

Filamentous fungi can initiate vegetative growth on complex plant polysaccharides in nature through secreting a large amount of lignocellulose-degrading enzymes. These fungi develop a large amount of asexual spores to disperse and survive under harsh conditions, such as carbon and nitrogen depletion. Numerous studies report the presence of a cross-talk between asexual development and extracellular enzyme production, especially at the regulation level. This study identified and characterized a C2H2-type transcription factor called PoFlbC, which is an Aspergillus FlbC ortholog, in cellulolytic fungus Penicillium oxalicum. Results showed that the native level of PoFlbC was crucial for the normal growth and asexual development of P. oxalicum. Importantly, deletion of the PoflbC gene substantially reduced cellulase and hemicellulase productions. Comparative transcriptome analysis by RNA sequencing revealed a global downregulation of genes encoding cellulases, hemicellulases, and other proteins with functions in lignocellulose degradation. A similar defect was also observed in the OEPoflbC strain, suggesting that the production of cellulolytic enzymes was maintained by native expression of the PoflbC. In this study, an essential activator for both fungal asexual development and cellulase production was established in P. oxalicum.


Assuntos
Celulase/genética , Proteínas Fúngicas/genética , Penicillium/genética , Fatores de Transcrição/genética , Celulase/biossíntese , Regulação Fúngica da Expressão Gênica , Penicillium/enzimologia
19.
Fungal Genet Biol ; 94: 32-46, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27387217

RESUMO

The morphological development of fungi is a complex process and is often coupled with secondary metabolite production. In this study, we assessed the function of putative methyltransferase LaeA and transcription factor CreA in controlling asexual development and secondary metabolic gene cluster expression in Penicillium oxalicum. The deletion of laeA (ΔlaeA) impaired the conidiation in P. oxalicum, with a downregulated expression of brlA. Overexpression of P. oxalicum brlA in ΔlaeA could upregulate brlA and abaA remarkably, but could not rescue the conidiation defect; therefore, brlA and abaA expression were necessary but not sufficient for conidiation. Deletion of creA in ΔlaeA background (ΔlaeAΔcreA) blocked conidiation with a white fluffy phenotype. Nutrient-rich medium could not rescue developmental defects in ΔlaeAΔcreA mutant but could rescue defects in ΔlaeA. Expression of 10 genes, namely, albA/wA, abrB/yA, arpA, aygA, arpA-like, arpB, arpB-like, rodA, rodA-like, and rodB, for pigmentation and spore wall protein genes was silenced in ΔlaeAΔcreA, whereas only six of them were downregulated in ΔlaeA. Among the 28 secondary metabolism gene clusters in P. oxalicum, four secondary metabolism gene clusters were silenced in ΔlaeA and two were also silenced in ΔbrlA mutant. A total of 10 physically linked and coregulated genes were distributed over five chromosomes in ΔlaeA. Six of these genes were located in subtelomeric regions, thus demonstrating a positional bias for LaeA-regulated clusters toward subtelomeric regions. All of silenced clusters located in subtelomeric regions were derepressed in ΔlaeAΔcreA, hence showing that lack of CreA could remediate the repression of gene clusters in ΔlaeA background. Results show that both putative methyltransferase LaeA and transcription factor CreA are necessary for proper asexual development and controlling secondary metabolic gene cluster expression.


Assuntos
Proteínas Fúngicas/metabolismo , Regulação Fúngica da Expressão Gênica , Genes Fúngicos , Metiltransferases/metabolismo , Família Multigênica , Penicillium/enzimologia , Fatores de Transcrição/metabolismo , Proteínas Fúngicas/genética , Estruturas Fúngicas , Deleção de Genes , Inativação Gênica , Metiltransferases/genética , Mutação , Penicillium/genética , Penicillium/crescimento & desenvolvimento , Fatores de Transcrição/genética
20.
Biotechnol Lett ; 37(2): 409-15, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25257600

RESUMO

An alginate lyase gene, algA, encoding a new poly ß-D-mannuronate (polyM)-specific alginate lyase AlgA, was cloned from Pseudomonas sp. E03. The recombinant AlgA with (His)6-tag, consisting of 364 amino acids (40.4 kDa),was purified using Ni-NTA Sepharose. The purified lyase had maximal activity (222 EU/mg) at pH 8 and 30 °C and also maintained activity between pH 7-9 and below 45 °C. It exclusively and endolytically depolymerized polyM by ß-elimination into oligosaccharides with degrees of polymerization (DP) of 2-5. Due to its high substrate specificity, AlgA could be a valuable tool for production of polyM oligosaccharides with low DP and for determining the fine structure of alginate.


Assuntos
Proteínas de Bactérias/química , Polissacarídeo-Liases/química , Pseudomonas/enzimologia , Proteínas Recombinantes/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/isolamento & purificação , Proteínas de Bactérias/metabolismo , Estabilidade Enzimática , Escherichia coli/genética , Concentração de Íons de Hidrogênio , Polissacarídeo-Liases/genética , Polissacarídeo-Liases/isolamento & purificação , Polissacarídeo-Liases/metabolismo , Pseudomonas/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Especificidade por Substrato , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA