Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 322
Filtrar
1.
Nature ; 630(8015): 77-83, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38750367

RESUMO

Intensity, polarization and wavelength are intrinsic characteristics of light. Characterizing light with arbitrarily mixed information on polarization and spectrum is in high demand1-4. Despite the extensive efforts in the design of polarimeters5-18 and spectrometers19-27, concurrently yielding high-dimensional signatures of intensity, polarization and spectrum of the light fields is challenging and typically requires complicated integration of polarization- and/or wavelength-sensitive elements in the space or time domains. Here we demonstrate that simple thin-film interfaces with spatial and frequency dispersion can project and tailor polarization and spectrum responses in the wavevector domain. By this means, high-dimensional light information can be encoded into single-shot imaging and deciphered with the assistance of a deep residual network. To the best of our knowledge, our work not only enables full characterization of light with arbitrarily mixed full-Stokes polarization states across a broadband spectrum with a single device and a single measurement but also presents comparable, if not better, performance than state-of-the-art single-purpose miniaturized polarimeters or spectrometers. Our approach can be readily used as an alignment-free retrofit for the existing imaging platforms, opening up new paths to ultra-compact and high-dimensional photodetection and imaging.

2.
Nature ; 613(7944): 474-478, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36653568

RESUMO

Photons with spin angular momentum possess intrinsic chirality, which underpins many phenomena including nonlinear optics1, quantum optics2, topological photonics3 and chiroptics4. Intrinsic chirality is weak in natural materials, and recent theoretical proposals5-7 aimed to enlarge circular dichroism by resonant metasurfaces supporting bound states in the continuum that enhance substantially chiral light-matter interactions. Those insightful works resort to three-dimensional sophisticated geometries, which are too challenging to be realized for optical frequencies8. Therefore, most of the experimental attempts9-11 showing strong circular dichroism rely on false/extrinsic chirality by using either oblique incidence9,10 or structural anisotropy11. Here we report on the experimental realization of true/intrinsic chiral response with resonant metasurfaces in which the engineered slant geometry breaks both in-plane and out-of-plane symmetries. Our result marks, to our knowledge, the first observation of intrinsic chiral bound states in the continuum with near-unity circular dichroism of 0.93 and a high quality factor exceeding 2,663 for visible frequencies. Our chiral metasurfaces may lead to a plethora of applications in chiral light sources and detectors, chiral sensing, valleytronics and asymmetric photocatalysis.

3.
Nature ; 613(7942): 53-59, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36600061

RESUMO

Interlayer electronic coupling in two-dimensional materials enables tunable and emergent properties by stacking engineering. However, it also results in significant evolution of electronic structures and attenuation of excitonic effects in two-dimensional semiconductors as exemplified by quickly degrading excitonic photoluminescence and optical nonlinearities in transition metal dichalcogenides when monolayers are stacked into van der Waals structures. Here we report a van der Waals crystal, niobium oxide dichloride (NbOCl2), featuring vanishing interlayer electronic coupling and monolayer-like excitonic behaviour in the bulk form, along with a scalable second-harmonic generation intensity of up to three orders higher than that in monolayer WS2. Notably, the strong second-order nonlinearity enables correlated parametric photon pair generation, through a spontaneous parametric down-conversion (SPDC) process, in flakes as thin as about 46 nm. To our knowledge, this is the first SPDC source unambiguously demonstrated in two-dimensional layered materials, and the thinnest SPDC source ever reported. Our work opens an avenue towards developing van der Waals material-based ultracompact on-chip SPDC sources as well as high-performance photon modulators in both classical and quantum optical technologies1-4.

4.
Nature ; 597(7875): 187-195, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34497390

RESUMO

Polaritons are hybrid excitations of matter and photons. In recent years, polaritons in van der Waals nanomaterials-known as van der Waals polaritons-have shown great promise to guide the flow of light at the nanoscale over spectral regions ranging from the visible to the terahertz. A vibrant research field based on manipulating strong light-matter interactions in the form of polaritons, supported by these atomically thin van der Waals nanomaterials, is emerging for advanced nanophotonic and opto-electronic applications. Here we provide an overview of the state of the art of exploiting interface optics-such as refractive optics, meta-optics and moiré engineering-for the control of van der Waals polaritons. This enhanced control over van der Waals polaritons at the nanoscale has not only unveiled many new phenomena, but has also inspired valuable applications-including new avenues for nano-imaging, sensing, on-chip optical circuitry, and potentially many others in the years to come.

5.
Nature ; 596(7872): 362-366, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34408329

RESUMO

Polaritons in anisotropic materials result in exotic optical features, which can provide opportunities to control light at the nanoscale1-10. So far these polaritons have been limited to two classes: bulk polaritons, which propagate inside a material, and surface polaritons, which decay exponentially away from an interface. Here we report a near-field observation of ghost phonon polaritons, which propagate with in-plane hyperbolic dispersion on the surface of a polar uniaxial crystal and, at the same time, exhibit oblique wavefronts in the bulk. Ghost polaritons are an atypical non-uniform surface wave solution of Maxwell's equations, arising at the surface of uniaxial materials in which the optic axis is slanted with respect to the interface. They exhibit an unusual bi-state nature, being both propagating (phase-progressing) and evanescent (decaying) within the crystal bulk, in contrast to conventional surface waves that are purely evanescent away from the interface. Our real-space near-field imaging experiments reveal long-distance (over 20 micrometres), ray-like propagation of deeply subwavelength ghost polaritons across the surface, verifying long-range, directional and diffraction-less polariton propagation. At the same time, we show that control of the out-of-plane angle of the optic axis enables hyperbolic-to-elliptic topological transitions at fixed frequency, providing a route to tailor the band diagram topology of surface polariton waves. Our results demonstrate a polaritonic wave phenomenon with unique opportunities to tailor nanoscale light in natural anisotropic crystals.

6.
Proc Natl Acad Sci U S A ; 121(12): e2319465121, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38466854

RESUMO

In conventional thin materials, the diffraction limit of light constrains the number of waveguide modes that can exist at a given frequency. However, layered van der Waals (vdW) materials, such as hexagonal boron nitride (hBN), can surpass this limitation due to their dielectric anisotropy, exhibiting positive permittivity along one optic axis and negativity along the other. This enables the propagation of hyperbolic rays within the material bulk and an unlimited number of subdiffractional modes characterized by hyperbolic dispersion. By employing time-domain near-field interferometry to analyze ultrafast hyperbolic ray pulses in thin hBN, we showed that their zigzag reflection trajectories bound within the hBN layer create an illusion of backward-moving and leaping behavior of pulse fringes. These rays result from the coherent beating of hyperbolic waveguide modes but could be mistakenly interpreted as negative group velocities and backward energy flow. Moreover, the zigzag reflections produce nanoscale (60 nm) and ultrafast (40 fs) spatiotemporal optical vortices along the trajectory, presenting opportunities to chiral spatiotemporal control of light-matter interactions. Supported by experimental evidence, our simulations highlight the potential of hyperbolic ray reflections for molecular vibrational absorption nanospectroscopy. The results pave the way for miniaturized, on-chip optical spectrometers, and ultrafast optical manipulation.

7.
Nature ; 582(7811): 209-213, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32528096

RESUMO

Twisted two-dimensional bilayer materials exhibit many exotic electronic phenomena. Manipulating the 'twist angle' between the two layers enables fine control of the electronic band structure, resulting in magic-angle flat-band superconductivity1,2, the formation of moiré excitons3-8 and interlayer magnetism9. However, there are limited demonstrations of such concepts for photons. Here we show how analogous principles, combined with extreme anisotropy, enable control and manipulation of the photonic dispersion of phonon polaritons in van der Waals bilayers. We experimentally observe tunable topological transitions from open (hyperbolic) to closed (elliptical) dispersion contours in bilayers of α-phase molybdenum trioxide (α-MoO3), arising when the rotation between the layers is at a photonic magic twist angle. These transitions are induced by polariton hybridization and are controlled by a topological quantity. At the transitions the bilayer dispersion flattens, exhibiting low-loss tunable polariton canalization and diffractionless propagation with a resolution of less than λ0/40, where λ0 is the free-space wavelength. Our findings extend twistronics10 and moiré physics to nanophotonics and polaritonics, with potential applications in nanoimaging, nanoscale light propagation, energy transfer and quantum physics.

8.
Proc Natl Acad Sci U S A ; 120(27): e2305755120, 2023 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-37364103

RESUMO

Thermal chirality, generically referring to the handedness of heat flux, provides a significant possibility for modern heat control. It may be realized with the thermal Hall effect yet at the high cost of strong magnetic fields and extremely low temperatures. Here, we reveal magnet-free and room-temperature Hall-like heat transfer in an active thermal lattice composed of a stationary solid matrix and rotating solid particles. Rotation breaks the Onsager reciprocity relation and generates giant thermal chirality about two orders of magnitude larger than ever reported at the optimal rotation velocity. We further achieve anisotropic thermal chirality by breaking the rotation invariance of the active lattice, bringing effective thermal conductivity to a region unreachable by the thermal Hall effect. These results could enlighten topological and non-Hermitian heat transfer and efficient heat utilization in ways distinct from phonons.

9.
Proc Natl Acad Sci U S A ; 119(15): e2110018119, 2022 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-35377805

RESUMO

SignificanceThermal diffusion is dissipative and strongly related to non-Hermitian physics. At the same time, non-Hermitian Weyl systems have spurred tremendous interest across photonics and acoustics. This correlation has been long ignored and hence shed little light upon the question of whether the Weyl exceptional ring (WER) in thermal diffusion could exist. Intuitively, thermal diffusion provides no real parameter dimensions, thus prohibiting a topological nature and WER. This work breaks this perception by imitating synthetic dimensions via two spatiotemporal advection pairs. The WER is achieved in thermal diffusive systems. Both surface-like and bulk states are demonstrated by coupling two WERs with opposite topological charges. These findings extend topological notions to diffusions and motivate investigation of non-Hermitian diffusive and dissipative control.

10.
Proc Natl Acad Sci U S A ; 119(44): e2209721119, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36279457

RESUMO

The imaginary Poynting momentum (IPM) of light has been captivated as an unusual origin of optical forces. However, the IPM force is predicted only for dipolar magnetoelectric particles that are hardly used in optical manipulation experiments. Here, we report a whole family of high-order IPM forces for not only magnetoelectric but also generic Mie particles, assisted with their excited higher multipoles within. Such optomechanical manifestations derive from a nonlocal contribution of the IPM to the optical force, which can be remarkable even when the incident IPM is small. We observe the high-order optomechanics in a structured light beam, which, despite carrying no angular momentum, is able to set normal microparticles into continuous rotation. Our results provide unambiguous evidence of the ponderomotive nature of the IPM, expand the classification of optical forces, and open new possibilities for levitated optomechanics and micromanipulations.

11.
Proc Natl Acad Sci U S A ; 119(27): e2115939119, 2022 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-35763578

RESUMO

Positive magnetoresistance (PMR) and negative magnetoresistance (NMR) describe two opposite responses of resistance induced by a magnetic field. Materials with giant PMR are usually distinct from those with giant NMR due to different physical natures. Here, we report the unusual photomagnetoresistance in the van der Waals heterojunctions of WSe2/quasi-two-dimensional electron gas, showing the coexistence of giant PMR and giant NMR. The PMR and NMR reach 1,007.5% at -9 T and -93.5% at 2.2 T in a single device, respectively. The magnetoresistance spans over two orders of magnitude on inversion of field direction, implying a giant unidirectional magnetoresistance (UMR). By adjusting the thickness of the WSe2 layer, we achieve the maxima of PMR and NMR, which are 4,900,000% and -99.8%, respectively. The unique magnetooptical transport shows the unity of giant UMR, PMR, and NMR, referred to as giant bipolar unidirectional photomagnetoresistance. These features originate from strong out-of-plane spin splitting, magnetic field-enhanced recombination of photocarriers, and the Zeeman effect through our experimental and theoretical investigations. This work offers directions for high-performance light-tunable spintronic devices.NMR).

12.
Proc Natl Acad Sci U S A ; 119(43): e2209218119, 2022 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-36252031

RESUMO

Optical sensors, with great potential to convert invisible bioanalytical response into readable information, have been envisioned as a powerful platform for biological analysis and early diagnosis of diseases. However, the current extraction of sensing data is basically processed via a series of complicated and time-consuming calibrations between samples and reference, which inevitably introduce extra measurement errors and potentially annihilate small intrinsic responses. Here, we have proposed and experimentally demonstrated a calibration-free sensor for achieving high-precision biosensing detection, based on an optically controlled terahertz (THz) ultrafast metasurface. Photoexcitation of the silicon bridge enables the resonant frequency shifting from 1.385 to 0.825 THz and reaches the maximal phase variation up to 50° at 1.11 THz. The typical environmental measurement errors are completely eliminated in theory by normalizing the Fourier-transformed transmission spectra between ultrashort time delays of 37 ps, resulting in an extremely robust sensing device for monitoring the cancerous process of gastric cells. We believe that our calibration-free sensors with high precision and robust advantages can extend their implementation to study ultrafast biological dynamics and may inspire considerable innovations in the field of medical devices with nondestructive detection.


Assuntos
Neoplasias Gástricas , Humanos , Silício , Neoplasias Gástricas/diagnóstico
13.
Nat Mater ; 22(10): 1196-1202, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37592027

RESUMO

The study of magneto-optical absorption has stimulated diverse energy-technology-related explorations, showing potential in breaking the current theoretical efficiency limits of energy devices compared with reciprocal counterparts. However, experimentally realizing strong infrared non-reciprocal absorption remains an open challenge, and existing proposals of non-reciprocal absorbers are restricted to a narrow working waveband. Here we observe highly asymmetric absorption spectra over a broad mid-infrared band (nearly 10 µm) using doped InAs multilayers with gradient epsilon-near-zero frequencies. We reveal that the magnetized epsilon-near-zero behaviours and material loss play important roles in achieving strongly non-reciprocal absorption under a moderate external magnetic field using a thin epsilon-near-zero film (<λ/40, λ is the wavelength). Our approach enables flexible control over the working frequencies and non-reciprocal bandwidths by designing magnetized InAs films with different doping concentrations. The proposed principles can also be generalized to other III-V semiconductors, magnetized metals, topological Weyl semimetals, magnetized zero-index metamaterials and metasurfaces.

14.
Nat Mater ; 22(9): 1065-1070, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37081172

RESUMO

Circularly polarized light sources with free-space directional emission play a key role in chiroptics1, spintronics2, valleytronics3 and asymmetric photocatalysis4. However, conventional approaches fail to simultaneously realize pure circular polarization, high directionality and large emission angles in a compact emitter. Metal-halide perovskite semiconductors are promising light emitters5-8, but the absence of an intrinsic spin-locking mechanism results in poor emission chirality. Further, device integration has undermined the efficiency and directionality of perovskite chiral emitters. Here we realize compact spin-valley-locked perovskite emitting metasurfaces where spin-dependent geometric phases are imparted into bound states in the continuum via Brillouin zone folding, and thus, photons with different spins are selectively addressed to opposite valleys. Employing this approach, chiral purity of 0.91 and emission angle of 41.0° are simultaneously achieved, with a beam divergence angle of 1.6°. With this approach, we envisage the realization of chiral light-emitting diodes, as well as the on-chip generation of entangled photon pairs.

15.
Plant Physiol ; 193(1): 389-409, 2023 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-37300541

RESUMO

Drought stress poses a serious threat to crop production worldwide. Genes encoding homocysteine methyltransferase (HMT) have been identified in some plant species in response to abiotic stress, but its molecular mechanism in plant drought tolerance remains unclear. Here, transcriptional profiling, evolutionary bioinformatics, and population genetics were conducted to obtain insight into the involvement of HvHMT2 from Tibetan wild barley (Hordeum vulgare ssp. agriocrithon) in drought tolerance. We then performed genetic transformation coupled with physio-biochemical dissection and comparative multiomics approaches to determine the function of this protein and the underlying mechanism of HvHMT2-mediated drought tolerance. HvHMT2 expression was strongly induced by drought stress in tolerant genotypes in a natural Tibetan wild barley population and contributed to drought tolerance through S-adenosylmethionine (SAM) metabolism. Overexpression of HvHMT2 promoted HMT synthesis and efficiency of the SAM cycle, leading to enhanced drought tolerance in barley through increased endogenous spermine and less oxidative damage and growth inhibition, thus improving water status and final yield. Disruption of HvHMT2 expression led to hypersensitivity under drought treatment. Application of exogenous spermine reduced accumulation of reactive oxygen species (ROS), which was increased by exogenous mitoguazone (inhibitor of spermine biosynthesis), consistent with the association of HvHMT2-mediated spermine metabolism and ROS scavenging in drought adaptation. Our findings reveal the positive role and key molecular mechanism of HvHMT2 in drought tolerance in plants, providing a valuable gene not only for breeding drought-tolerant barley cultivars but also for facilitating breeding schemes in other crops in a changing global climate.


Assuntos
Resistência à Seca , Hordeum , Hordeum/genética , Homocisteína S-Metiltransferase , Espécies Reativas de Oxigênio , Espermina , Melhoramento Vegetal , Secas , Estresse Fisiológico/genética
16.
Chem Rev ; 122(19): 15204-15355, 2022 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-35749269

RESUMO

The outstanding chemical and physical properties of 2D materials, together with their atomically thin nature, make them ideal candidates for metaphotonic device integration and construction, which requires deep subwavelength light-matter interaction to achieve optical functionalities beyond conventional optical phenomena observed in naturally available materials. In addition to their intrinsic properties, the possibility to further manipulate the properties of 2D materials via chemical or physical engineering dramatically enhances their capability, evoking new science on light-matter interaction, leading to leaped performance of existing functional devices and giving birth to new metaphotonic devices that were unattainable previously. Comprehensive understanding of the intrinsic properties of 2D materials, approaches and capabilities for chemical and physical engineering methods, the resulting property modifications and novel functionalities, and applications of metaphotonic devices are provided in this review. Through reviewing the detailed progress in each aspect and the state-of-the-art achievement, insightful analyses of the outstanding challenges and future directions are elucidated in this cross-disciplinary comprehensive review with the aim to provide an overall development picture in the field of 2D material metaphotonics and promote rapid progress in this fast emerging and prosperous field.


Assuntos
Óptica e Fotônica , Humanos
17.
Chem Rev ; 122(19): 15450-15500, 2022 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-35894820

RESUMO

Phase transitions can occur in certain materials such as transition metal oxides (TMOs) and chalcogenides when there is a change in external conditions such as temperature and pressure. Along with phase transitions in these phase change materials (PCMs) come dramatic contrasts in various physical properties, which can be engineered to manipulate electrons, photons, polaritons, and phonons at the nanoscale, offering new opportunities for reconfigurable, active nanodevices. In this review, we particularly discuss phase-transition-enabled active nanotechnologies in nonvolatile electrical memory, tunable metamaterials, and metasurfaces for manipulation of both free-space photons and in-plane polaritons, and multifunctional emissivity control in the infrared (IR) spectrum. The fundamentals of PCMs are first introduced to explain the origins and principles of phase transitions. Thereafter, we discuss multiphysical nanodevices for electronic, photonic, and thermal management, attesting to the broad applications and exciting promises of PCMs. Emerging trends and valuable applications in all-optical neuromorphic devices, thermal data storage, and encryption are outlined in the end.

19.
Proc Natl Acad Sci U S A ; 118(2)2021 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-33372145

RESUMO

Spin angular momentum of light is vital to investigate enantiomers characterized by circular dichroism (CD), widely adopted in biology, chemistry, and material science. However, to discriminate chiral materials with multiscale features, CD spectroscopy normally requires wavelength-swept laser sources as well as wavelength-specific optical accessories. Here, we experimentally demonstrate an orbital-angular-momentum-assisted approach to yield chiroptical signals with monochromatic light. The gigantic vortical differential scattering (VDS) of ∼120% is achieved on intrinsically chiral microstructures fabricated by femtosecond laser. The VDS measurements can robustly generate chiroptical properties on microstructures with varying geometric features (e.g., diameters and helical pitches) and detect chiral molecules with high sensitivity. This VDS scheme lays a paradigm-shift pavement toward efficiently chiroptical discrimination of multiscale chiral structures with photonic orbital angular momentum. It simplifies and complements the conventional CD spectroscopy, opening possibilities for measuring weak optical chirality, especially on mesoscale chiral architectures and macromolecules.

20.
Nano Lett ; 23(15): 6907-6913, 2023 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-37494570

RESUMO

Stacking bilayer structures is an efficient way to tune the topology of polaritons in in-plane anisotropic films, e.g., by leveraging the twist angle (TA). However, the effect of another geometric parameter, the film thickness ratio (TR), on manipulating the plasmon topology in bilayers is elusive. Here, we fabricate bilayer structures of WTe2 films, which naturally host in-plane hyperbolic plasmons in the terahertz range. Plasmon topology is successfully modified by changing the TR and TA synergistically, manifested by the extinction spectra of unpatterned films and the polarization dependence of the plasmon intensity measured in skew ribbon arrays. Such TR- and TA-tunable topological transitions can be well explained based on the effective sheet optical conductivity by adding up those of the two films. Our study demonstrates TR as another degree of freedom for the manipulation of plasmonic topology in nanophotonics, exhibiting promising applications in biosensing, heat transfer, and the enhancement of spontaneous emission.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA