Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Biochem Mol Toxicol ; 35(11): e22904, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34477272

RESUMO

Gestational diabetes mellitus (GDM) is a special kind of diabetes that arises only during pregnancy. A woman with GDM has a higher risk of developing type-2 diabetes and other metabolic diseases. In this exploration, we intended to scrutinize the therapeutic actions of Myrtenol against the streptozotocin (STZ)-provoked GDM in rats. GDM was provoked in the pregnant rats via injecting the 1% of STZ (25 mg/kg) and then treated with the 50 mg/kg of myrtenol. The glucose level and bodyweight of animals were noted. The lipid profile, that is, total cholesterol, triglycerides, low-density lipoprotein, and high-density lipoprotein (HDL) was determined by respective kits. The lipid peroxidation and antioxidants status were examined using assay kits. The status of proinflammatory markers was investigated by assay kits. The messenger RNA (mRNA) expressions of TLR4/MyD88/NF-κB signaling proteins were studied by reverse transcription polymerase chain reaction analysis. The hepatic and pancreatic tissues were examined microscopically. Myrtenol treatment notably decreased the status of blood glucose and lipid profile and improved the HDL in the GDM rats. The status of lipid peroxidation and inflammatory markers were substantially reduced by the myrtenol and it enhanced the antioxidants status of GDM animals. Myrtenol treatment remarkably downregulated the mRNA expressions of TLR4/MyD88/NF-κB signaling proteins. The histological findings also proved the therapeutic actions of myrtenol. Altogether, the findings of this investigation unveiled the therapeutic actions of the myrtenol against the STZ-provoked GDM in rats. Myrtenol could be a promising therapeutic agent to treat GDM in the future.


Assuntos
Monoterpenos Bicíclicos/farmacologia , Diabetes Mellitus Experimental/metabolismo , Inflamação/prevenção & controle , Estresse Oxidativo/efeitos dos fármacos , Animais , Feminino , Gravidez , Ratos
2.
J Food Biochem ; 46(12): e14462, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36351033

RESUMO

Polycystic ovary syndrome (PCOS) is one of the most common causes of infertility in women, which is associated with metabolic, hereditary and hormonal disorders. The aim of this study was to evaluate the therapeutic effects of Nasturtium officinale L. (N. officinale) on biochemical and molecular parameters in estradiol-induced PCOS in rats. Seventy Wistar rats in 7 groups (n = 10) were randomly assigned to normal (NC), PCOS, metformin (MET - 300 mg/kg), N. officinale (50 and 100 mg/kg) and co-treatment with MET and N. officinale groups. After 21 days of treatment, biochemical parameters levels of estrogen, LH and FSH along with serum levels of (IL-6 and IL-1ß cytokines) and serum antioxidant parameters (enzymatic activity of catalase and superoxide dismutase) were measured. Finally, by measuring the expression of apoptosis related genes (Bax/Bcl-2/p53/caspase-3) with the help of real-time PCR and the expression of p53 with the help of immunohistochemistry in ovarian cells. N. officinale modulates hormones through its hypothalamic-pituitary-gonadal pathway with its synergistic effects along with MET. Also, in co-treatment groups (MET and N. officinale), the activity of serum antioxidant enzymes increased and also the serum level of inflammatory cytokines decreased. N. officinale, along with MET, amplified the Bax/Bcl2/p53/caspase-3 pathways, which eventually increased the number of p53 positive cells. These findings indicate that N. officinale extract along with MET can improve the physiological function of the ovaries in PCOS-induced disorders. PRACTICAL APPLICATIONS: Polycystic ovary syndrome (PCOS) is one of the most common causes of infertility in women, which is associated with metabolic, hereditary and hormonal disorders. The extract of Nasturtium officinale L. was able to intensify mitochondrial apoptotic pathway in cystic follicles and prevent their formation. It seems that pro-drugs containing N. officinale along with effective commercial drugs in PCOS can help ovulation and fertility in woman with this disease.


Assuntos
Infertilidade , Metformina , Nasturtium , Síndrome do Ovário Policístico , Ratos , Feminino , Humanos , Animais , Síndrome do Ovário Policístico/induzido quimicamente , Síndrome do Ovário Policístico/tratamento farmacológico , Síndrome do Ovário Policístico/metabolismo , Estradiol/efeitos adversos , Metformina/farmacologia , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Proteína X Associada a bcl-2/genética , Proteína X Associada a bcl-2/metabolismo , Antioxidantes/uso terapêutico , Caspase 3/genética , Caspase 3/metabolismo , Ratos Wistar , Anti-Inflamatórios , Transdução de Sinais , Citocinas/metabolismo , Infertilidade/tratamento farmacológico
3.
Bioresour Technol ; 345: 126517, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34920083

RESUMO

The pH control to promote short-chain fatty acids (SCFAs) production during anaerobic alkaline fermentation basically focused on constant pH control. In this study, a simple and consumption-reducing intermittent pH control strategy at moderate temperature (23 ± 2 °C) was investigated with adjusting pH to 10 when naturally reduced to 8. The intermittent pH control strategy could alleviate the inhibition of acid-producing bacteria by strong alkaline and high FA concentration. Meanwhile, microbial diversity promoted by 6% and 69% while the relative abundance of acid-producing bacteria increased by 36% and 61% compared to blank and constant pH fermenters. The relative genes abundance related to amino acid metabolism and fatty acid production were mostly promoted and led to enhanced SCFAs production. In the long-term fermenter, the intermittent pH control strategy could result in a 68% reduction in alkali consumption and a 37% increase in SCFAs production compared to that of the constant pH at 10.


Assuntos
Álcalis , Esgotos , Anaerobiose , Ácidos Graxos Voláteis , Fermentação , Concentração de Íons de Hidrogênio
4.
Sci Total Environ ; 793: 148669, 2021 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-34328973

RESUMO

Mainstream partial anammox provides a cost- and energy-efficient alternative for wastewater treatment. This study provided a new strategy to achieve mainstream partial anammox in a single-stage suspended sludge system. The novel method coupling external excess sludge fermentation with simultaneous partial nitritation-anammox-denitrification process (SF-SPNAD) was established for 202 days in an anaerobic-aerobic-anoxic sequencing batch reactor (AOA-SBR) with real sewage and actual sludge fermentation products. Under the condition of low DO (0.6 ± 0.2 mg/L), short oxic and long anoxic hydraulic retention time (HRToxic = 6.5 h, HRTanoxic = 8 h), the average total inorganic nitrogen (TIN) concentration in the influent and effluent during 110-day operation were 61.0 and 3.4 mg/L, respectively, and the TIN removal efficiency was 94.56%. Under the inhibitory effect of continuous sludge fermentation products addition, nitrite accumulation ratio reached 99.1% and the external sludge reduction ratio reached 38.75%. 15N-stable isotope tracing tests showed the great potential of nitrogen removal by anammox pathway in the system. High-throughput sequencing confirmed that CandidatusBrocadia (not detected to 0.50%) and CandidatusKuenenia (not detected to 0.06%) were successfully in-situ enriched. Nitrogen conversion pathways based on stoichiometry and cycle tests show that 34.69% of the TIN removal was obtained by simultaneous nitritation denitrification and anammox under oxic stage and 35.21% of the TIN removal was carried out by anammox under anoxic stage. Overall, the SF-SPNAD process provides a new possibility for coupling autotrophic and heterotrophic nitrogen removal with excess sludge utilization.


Assuntos
Nitrogênio , Esgotos , Bactérias , Reatores Biológicos , Desnitrificação , Oxirredução , Águas Residuárias
5.
Bioresour Technol ; 341: 125763, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34411940

RESUMO

In this study, a novel strategy for nitritation establishment through external fermented sludge addition is proposed. The nitrifying activities under various fermentation times were assessed; batch tests results revealed that the decay rate of nitrite oxidizing bacteria (0.53 ± 0.08 d-1) was much higher than that of ammonia oxidizing bacteria (0.15 ± 0.04 d-1), during alkaline fermentation with high endogenous free ammonia concentrations (0.57-138.79 mg·L-1). The long-term effects of fermented sludge addition were constantly monitored in an anaerobic/oxic/anoxic sequencing batch reactor. During 60 days of operation, the nitrite accumulation rate reached above 90% and could be maintained stably. Total inorganic nitrogen removal achieved 94.7%, with an average external sludge reduction rate of 61.3%, after incorporation of the sludge addition. Illumina MiSeq sequencing demonstrated that nitrite oxidizing bacteria were successfully eliminated and the relative abundance of ammonia oxidizing bacteria remained at 0.39%, resulting in nitrite accumulation.


Assuntos
Reatores Biológicos , Esgotos , Amônia , Nitritos , Nitrogênio
6.
Huan Jing Ke Xue ; 41(3): 1418-1424, 2020 Mar 08.
Artigo em Zh | MEDLINE | ID: mdl-32608644

RESUMO

The aim of the present study was to investigate the effect of alkaline sludge fermentation products as a carbon source on the nitrification process and performance. During the operation of a biological nitrogen removal (BNR) system with sludge fermentation mixture as the carbon source, the activities of ammonia-oxidizing bacteria (AOB) and nitrite-oxidizing bacteria (NOB) were inhibited at the beginning. After 16 days, the activity of AOB began to recover rapidly, but the activity of NOB was still inhibited. The specific nitrate production rate (SNaPR, N/VSS) decreased from 0.1791 g·(g·d)-1 to 0.0078 g·(g·d)-1. At the same time, the nitrite accumulation rate increased from 8.12% to 91.42% and remained stable. The sludge fermentation mixture was separated into sludge fermentation liquid and sludge fermentation sediment. The changes in nitrification activity by adding different types of fermentation products were investigated. The results showed that the activity of NOB decreased in the experimental group fed with the sludge fermentation mixture and the fermentation liquid. The SNaPR decreased from an initial 0.1793 g·(g·d)-1 to 0.1510 g·(g·d)-1 and 0.1617 g·(g·d)-1, respectively. In the experimental group fed with fermentation sediment, the activity of NOB increased. SNaPR rose from 0.1793 g·(g·d)-1 to 0.1864 g·(g·d)-1. Therefore, the activity of the NOB can be inhibited when the sludge fermentation mixture and the fermentation liquid are used as a carbon source in the nitrification process. In addition, the short-range nitrification process can be realized, which is beneficial to accelerating the reaction speed and saving investment in this type of carbon source.

7.
Nanoscale ; 7(44): 18603-11, 2015 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-26490363

RESUMO

The rational design of nanoheterostructured materials has attracted much attention because of its importance for developing highly efficient LIBs. Herein, we have demonstrated that internal Mo(6+) doped TiO2 nanocrystals in situ decorated with highly dispersed MoO3 clusters have been realized by a facile and rapid flame spray pyrolysis route for electrochemical energy storage. In such intriguing nanostructures, internal Mo(6+) doping can improve the conductivity of electrode materials and facilitate rapid Li(+) intercalation and ion transport and the heteroassembly of highly dispersed ultrafine MoO3 clusters with excellent electrochemical activity endows the TiO2 with extra Li(+) ion storage ability as well as incorporates Mo(6+). Thus, the as-prepared nanohybrid electrodes exhibit a high specific capacity and superior rate capability due to the maximum synergetic effect of TiO2, Mo(6+) and ultrafine MoO3 clusters. Moreover, the aerosol flame process with a unique temperature gradient opens a new strategy to design novel hybrid materials by the simultaneous doping and heteroassembly engineering for next-generation LIBs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA