Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 604(7905): 337-342, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35355021

RESUMO

Decades of work have elucidated cytokine signalling and transcriptional pathways that control T cell differentiation and have led the way to targeted biologic therapies that are effective in a range of autoimmune, allergic and inflammatory diseases. Recent evidence indicates that obesity and metabolic disease can also influence the immune system1-7, although the mechanisms and effects on immunotherapy outcomes remain largely unknown. Here, using two models of atopic dermatitis, we show that lean and obese mice mount markedly different immune responses. Obesity converted the classical type 2 T helper (TH2)-predominant disease associated with atopic dermatitis to a more severe disease with prominent TH17 inflammation. We also observed divergent responses to biologic therapies targeting TH2 cytokines, which robustly protected lean mice but exacerbated disease in obese mice. Single-cell RNA sequencing coupled with genome-wide binding analyses revealed decreased activity of nuclear receptor peroxisome proliferator-activated receptor-γ (PPARγ) in TH2 cells from obese mice relative to lean mice. Conditional ablation of PPARγ in T cells revealed that PPARγ is required to focus the in vivo TH response towards a TH2-predominant state and prevent aberrant non-TH2 inflammation. Treatment of obese mice with a small-molecule PPARγ agonist limited development of TH17 pathology and unlocked therapeutic responsiveness to targeted anti-TH2 biologic therapies. These studies reveal the effects of obesity on immunological disease and suggest a precision medicine approach to target the immune dysregulation caused by obesity.


Assuntos
Dermatite Atópica , PPAR gama , Animais , Citocinas/metabolismo , Modelos Animais de Doenças , Inflamação/metabolismo , Camundongos , Obesidade/metabolismo , PPAR gama/agonistas , PPAR gama/metabolismo , Medicina de Precisão , Análise de Sequência de RNA , Células Th2/metabolismo
2.
Proc Natl Acad Sci U S A ; 116(14): 6932-6937, 2019 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-30894497

RESUMO

Clinical application of inhaled glucocorticoids (GCs) has been hampered in the case of steroid-resistant severe asthma. To overcome this limitation, we have developed a series of highly potent GCs, including VSGC12, VSG158, and VSG159 based on the structural insight into the glucocorticoid receptor (GR). Particularly, VSG158 exhibits a maximal repression of lung inflammation and is 10 times more potent than the currently most potent clinical GC, Fluticasone Furoate (FF), in a murine model of asthma. More importantly, VSG158 displays a unique property to reduce neutrophilic inflammation in a steroid-resistant airway inflammation model, which is refractory to clinically available GCs, including dexamethasone and FF. VSG158 and VSG159 are able to deliver effective treatments with reduced off-target and side effects. In addition, these GCs also display pharmacokinetic properties that are suitable for the inhalation delivery method for asthma treatment. Taken together, the excellent therapeutic and side-effect profile of these highly potent GCs holds promise for treating steroid-resistant severe asthma.


Assuntos
Antiasmáticos , Asma/tratamento farmacológico , Desenvolvimento de Medicamentos , Glucocorticoides , Animais , Antiasmáticos/química , Antiasmáticos/farmacologia , Asma/patologia , Modelos Animais de Doenças , Feminino , Glucocorticoides/química , Glucocorticoides/farmacologia , Masculino , Camundongos , Receptores de Glucocorticoides/agonistas , Índice de Gravidade de Doença
3.
Plant Physiol ; 178(2): 907-922, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30158117

RESUMO

MAPK signaling pathways play critical roles in plant immunity. Here, we silenced multiple genes encoding MAPKs using virus-induced gene silencing mediated by Bean pod mottle virus to identify MAPK genes involved in soybean (Glycine max) immunity. Surprisingly, a strong hypersensitive response (HR) cell death was observed when soybean MAPK KINASE KINASE1 (GmMEKK1), a homolog of Arabidopsis (Arabidopsis thaliana) MEKK1, was silenced. The HR was accompanied by the overaccumulation of defense signaling molecules, salicylic acid (SA) and hydrogen peroxide. Genes involved in primary metabolism, translation/transcription, photosynthesis, and growth/development were down-regulated in GmMEKK1-silenced plants, while the expression of defense-related genes was activated. Accordingly, GmMEKK1-silenced plants were more resistant to downy mildew (Peronospora manshurica) and Soybean mosaic virus compared with control plants. Silencing GmMEKK1 reduced the activation of GmMPK6 but enhanced the activation of GmMPK3 in response to flg22 peptide. Unlike Arabidopsis MPK4, GmMPK4 was not activated by either flg22 or SA. Interestingly, transient overexpression of GmMEKK1 in Nicotiana benthamiana also induced HR. Our results indicate that GmMEKK1 plays both positive and negative roles in immunity and appears to differentially activate downstream MPKs by promoting GmMPK6 activation but suppressing GmMPK3 activation in response to flg22. The involvement of GmMPK4 kinase activity in cell death and in flg22- or SA-triggered defense responses in soybean requires further investigation.


Assuntos
Arabidopsis/enzimologia , Glycine max/enzimologia , MAP Quinase Quinase Quinase 1/metabolismo , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Nicotiana/enzimologia , Doenças das Plantas/imunologia , Arabidopsis/genética , Arabidopsis/imunologia , Arabidopsis/fisiologia , Morte Celular , Resistência à Doença , MAP Quinase Quinase Quinase 1/genética , Quinases de Proteína Quinase Ativadas por Mitógeno/genética , Peronospora/fisiologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Glycine max/genética , Glycine max/imunologia , Glycine max/fisiologia , Nicotiana/genética , Nicotiana/imunologia
4.
J Biol Chem ; 292(48): 19743-19751, 2017 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-28972151

RESUMO

It is well known that the reactive oxygen species NO can trigger cell death in plants and other organisms, but the underlying molecular mechanisms are not well understood. Here we provide evidence that NO may trigger cell death in tomato (Solanum lycopersicum) by inhibiting the activity of phosphoinositide-dependent kinase 1 (SlPDK1), a conserved negative regulator of cell death in yeasts, mammals, and plants, via S-nitrosylation. Biotin-switch assays indicated that SlPDK1 is a target of S-nitrosylation. Moreover, the kinase activity of SlPDK1 was inhibited by S-nitrosoglutathione in a concentration-dependent manner, indicating that SlPDK1 activity is abrogated by S-nitrosylation. The S-nitrosoglutathione-induced inhibition was reversible in the presence of a reducing agent but additively enhanced by hydrogen peroxide (H2O2). Our LC-MS/MS analyses further indicated that SlPDK1 is primarily S-nitrosylated on a cysteine residue at position 128 (Cys128), and substitution of Cys128 with serine completely abolished SlPDK1 kinase activity, suggesting that S-nitrosylation of Cys128 is responsible for SlPDK1 inhibition. In summary, our results establish a potential link between NO-triggered cell death and inhibition of the kinase activity of tomato PDK1.


Assuntos
1-Fosfatidilinositol 4-Quinase/antagonistas & inibidores , Peróxido de Hidrogênio/farmacologia , Inibidores de Proteínas Quinases/farmacologia , S-Nitrosoglutationa/farmacologia , Solanum lycopersicum/enzimologia , Aldeído Oxirredutases/genética , Morte Celular , Cromatografia Líquida , Cisteína/metabolismo , Inativação Gênica , Solanum lycopersicum/citologia , Solanum lycopersicum/genética , Espectrometria de Massas em Tandem
5.
Mol Plant Microbe Interact ; 27(8): 824-34, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24762222

RESUMO

It has been well established that MPK6 is a positive regulator of defense responses in model plants such as Arabidopsis and tobacco. However, the functional importance of soybean MPK6 in disease resistance has not been investigated. Here, we showed that silencing of GmMPK6 in soybean using virus-induced gene silencing mediated by Bean pod mottle virus (BPMV) caused stunted growth and spontaneous cell death on the leaves, a typical phenotype of activated defense responses. Consistent with this phenotype, expression of pathogenesis-related (PR) genes and the conjugated form of salicylic acid were significantly increased in GmMPK6-silenced plants. As expected, GmMPK6-silenced plants were more resistant to downy mildew and Soybean mosaic virus compared with vector control plants, indicating a negative role of GmMPK6 in disease resistance. Interestingly, overexpression of GmMPK6, either transiently in Nicotiana benthamiana or stably in Arabidopsis, resulted in hypersensitive response (HR)-like cell death. The HR-like cell death was accompanied by increased PR gene expression, suggesting that GmMPK6, like its counterpart in other plant species, also plays a positive role in cell death induction and defense response. Using bimolecular fluorescence complementation analysis, we determined that GmMKK4 might function upstream of GmMPK6 and GmMKK4 could interact with GmMPK6 independent of its phosphorylation status. Taken together, our results indicate that GmMPK6 functions as both repressor and activator in defense responses of soybean.


Assuntos
Resistência à Doença , Regulação da Expressão Gênica de Plantas , Glycine max/enzimologia , Doenças das Plantas/imunologia , Proteínas de Plantas/metabolismo , Arabidopsis/enzimologia , Arabidopsis/genética , Arabidopsis/imunologia , Arabidopsis/fisiologia , Morte Celular , Expressão Gênica , Inativação Gênica , Genes Reporter , Quinases de Proteína Quinase Ativadas por Mitógeno/genética , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Proteínas Quinases Ativadas por Mitógeno/genética , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Peronospora/fisiologia , Fenótipo , Doenças das Plantas/microbiologia , Folhas de Planta/enzimologia , Folhas de Planta/genética , Folhas de Planta/imunologia , Folhas de Planta/fisiologia , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas , Potyvirus/fisiologia , Mapeamento de Interação de Proteínas , Ácido Salicílico/metabolismo , Plântula/enzimologia , Plântula/genética , Plântula/imunologia , Plântula/fisiologia , Glycine max/genética , Glycine max/imunologia , Glycine max/fisiologia , Nicotiana/enzimologia , Nicotiana/genética , Nicotiana/imunologia , Nicotiana/fisiologia
6.
Oncol Lett ; 27(1): 32, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38108071

RESUMO

Lung cancer is the most common type of cancer worldwide. Lung adenocarcinoma, a type of non-small cell lung cancer (NSCLC), is a common type of lung cancer. In recent years, immunotherapy has become the primary method of treatment for several solid cancers, including NSCLC. In the present study, the case of a patient with NSCLC following left superior lobectomy is reported. Different systemic therapies failed, such as a pemetrexed + carboplatin regimen, paclitaxel liposome + cisplatin and pembrolizumab, and albumin-bound paclitaxel + toripalimab, but long-term survival was achieved following targeted therapy and anti-programmed cell death protein-1 (PD-1) immunotherapy. The patient survived for >4 years following lung cancer progression, which is notably longer than expected for patients with advanced lung cancer. In conclusion, the present case demonstrated the efficacy of targeted therapy and anti-PD-1 immunotherapy for the treatment of advanced lung cancer following the occurrence of drug resistance and progressive disease.

7.
Adv Healthc Mater ; 13(2): e2302195, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37792547

RESUMO

Immune checkpoint blockade (ICB) treatments have contributed to substantial clinical progress. However, challenges persist, including inefficient drug delivery and penetration into deep tumor areas, inadequate response to ICB treatments, and potential risk of inflammation due to over-activation of immune cells and uncontrolled release of cytokines following immunotherapy. In response, this study, for the first time, presents a multimodal imaging-guided organosilica nanomedicine (DCCGP) for photoimmunotherapy of pancreatic cancer. The novel DCCGP nanoplatform integrates fluorescence, magnetic resonance, and real-time infrared photothermal imaging, thereby enhancing diagnostic precision and treatment efficacy for pancreatic cancer. In addition, the incorporated copper sulfide nanoparticles (CuS NPs) lead to improved tumor penetration and provide external regulation of immunotherapy via photothermal stimulation. The synergistic immunotherapy effect is realized through the photothermal behavior of CuS NPs, inducing immunogenic cell death and relieving the immunosuppressive tumor microenvironment. Coupling photothermal stimulation with αPD-L1-induced ICB, the platform amplifies the clearance efficiency of tumor cells, achieving an optimized synergistic photoimmunotherapy effect. This study offers a promising strategy for the clinical application of ICB-based combined immunotherapy and presents valuable insights for applications of organosilica in precise tumor immunotherapy and theranostics.


Assuntos
Nanopartículas , Neoplasias Pancreáticas , Humanos , Nanomedicina/métodos , Linhagem Celular Tumoral , Fototerapia , Nanopartículas/uso terapêutico , Neoplasias Pancreáticas/diagnóstico por imagem , Neoplasias Pancreáticas/terapia , Imunoterapia , Imagem Multimodal , Nanomedicina Teranóstica/métodos , Microambiente Tumoral
8.
Front Oncol ; 13: 1184786, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37427121

RESUMO

Introduction: Xiaoai Jiedu recipe (XJR), a classical prescription of traditional Chinese medicine (TCM), has been clinically proven to be effective in ameliorating colorectal cancer (CRC). However, its exact mechanism of action is still elusive, limiting its clinical application and promotion to a certain extent. This study aims to evaluate the effect of XJR on CRC and further illustrate mechanism underlying its action. Methods: We investigated the anti-tumor efficacy of XJR in vitro and vivo experiments. An integrated 16S rRNA gene sequencing and UPLC-MS based metabolomics approach were performed to explore possible mechanism of XJR anti-CRC on the gut microbiota and serum metabolic profiles. The correlation between altered gut microbiota and disturbed serum metabolites was investigated using Pearson's correlation analysis. Results: XJR effectively displayed anti-CRC effect both in vitro and in vivo. The abundance of aggressive bacteria such as Bacteroidetes, Bacteroides, and Prevotellaceae decreased, while the levels of beneficial bacteria increased (Firmicutes, Roseburia, and Actinobacteria). Metabolomics analysis identified 12 potential metabolic pathways and 50 serum metabolites with different abundances possibly affected by XJR. Correlation analysis showed that the relative abundance of aggressive bacteria was positively correlated with the levels of Arachidonic acid, Adrenic acid, 15(S)-HpETE, DL-Arginine, and Lysopc 18:2, which was different from the beneficial bacteria. Discussion: The regulation of gut microbiota and related metabolites may be potential breakthrough point to elucidate the mechanism of XJR in the treatment of the CRC. The strategy employed would provide theoretical basis for clinical application of TCM.

9.
Front Oncol ; 13: 1234291, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37727207

RESUMO

Purpose: In clinical practice, the consolidation pattern of pulmonary mucosa-associated lymphoid tissue (C-MALT) was often misdiagnosed as pneumonic-type lung adenocarcinoma (P-LADC). However, the mainstay of treatment and prognosis of these two diseases are different. The purpose of this study was to distinguish C-MALT from P-LADC by pre-treatment chest computed tomography (CT) features. Patients and methods: A total of 31 patients with C-MALT (15 men and 16 women; mean age, 61.1 ± 11.2 years) and 58 patients with P-LADC (34 men and 24 women; mean age, 68.6 ± 7.4 years) confirmed by pathology who underwent contrast-enhanced chest CT were retrospectively enrolled from September 2014 to February 2023. Detailed clinical and CT characteristics of the two groups were evaluated. Logistic regression analysis was used to assess the effectiveness of statistically significant variables in distinguishing C-MALT from P-LADC. Results: The average age of C-MALT was younger than P-LADC patients (p<0.001). With regard to CT features, bronchiectasis within the consolidation was more common in the C-MALT group than the P-LADC group [83.87% (26 of 31) vs 20.69% (12 of 58), p<0.001]; whereas lymph nodes enlargement [75.86% (44 of 58) vs 9.68% (3 of 31), p<0.001] and pleural effusion [43.10% (25of 58) vs 19.35% (6 of 31), p=0.025] were more frequently observed in the P-LADC group than C-MALT group. The predictors with p<0.05 (age, bronchiectasis, lymph node enlargement, and pleural effusion) were used to construct a logistic regression model in discriminating C-MALT from P-LADC, the area under curve (AUC), positive predictive value (PPV), negative predictive value (NPV), specificity, sensitivity, and accuracy were 0.9555, 86.67%, 91.53%, 83.87%, 93.10%, and 89.89%, respectively. Conclusion: C-MALT and P-LADC have differential clinical and CT features. An adequate understanding of these different characteristics can contribute to the early accurate diagnosis of C-MALT and provide an appropriate therapeutic strategy.

10.
BMC Med Genomics ; 16(1): 218, 2023 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-37710236

RESUMO

OBJECTIVE: This study aimed to uncover abnormally expressed genes regulated by competitive endogenous RNA (ceRNA) and DNA methylation nasopharyngeal carcinoma and to validate the role of lncRNAs in the ceRNA network on nasopharyngeal carcinoma progression. METHODS: Based on the GSE64634 (mRNA), GSE32960 (miRNA), GSE95166 (lncRNA), and GSE126683 (lncRNA) datasets, we screened differentially expressed mRNAs, miRNAs and lncRNAs in nasopharyngeal carcinoma. A ceRNA network was subsequently constructed. Differentially methylated genes were screened using the GSE62336 dataset. The abnormally expressed genes regulated by both the ceRNA network and DNA methylation were identified. In the ceRNA network, the expression of RP11-545G3.1 lncRNA was validated in nasopharyngeal carcinoma tissues and cells by RT-qPCR. After a knockdown of RP11-545G3.1, the viability, migration, and invasion of CNE-2 and NP69 cells was assessed by CCK-8, wound healing and Transwell assays. RESULTS: This study identified abnormally expressed mRNAs, miRNAs and lncRNAs in nasopharyngeal carcinoma tissues. A ceRNA network was constructed, which contained three lncRNAs, 15 miRNAs and 129 mRNAs. Among the nodes in the PPI network based on the mRNAs in the ceRNA network, HMGA1 was assessed in relation to the overall and disease-free survival of nasopharyngeal carcinoma. We screened two up-regulated genes regulated by the ceRNA network and hypomethylation and 26 down-regulated genes regulated by the ceRNA network and hypermethylation. RP11-545G3.1 was highly expressed in the nasopharyngeal carcinoma tissues and cells. Moreover, the knockdown of RP11-545G3.1 reduced the viability, migration, and invasion of CNE-2 and NP69 cells. CONCLUSION: Our findings uncovered the epigenetic regulation in nasopharyngeal carcinoma and identified the implications of RP11-545G3.1 on the progression of nasopharyngeal carcinoma.


Assuntos
MicroRNAs , Neoplasias Nasofaríngeas , RNA Longo não Codificante , Humanos , RNA Longo não Codificante/genética , Metilação de DNA , Epigênese Genética , Carcinoma Nasofaríngeo/genética , RNA Mensageiro/genética , MicroRNAs/genética , Neoplasias Nasofaríngeas/genética , Expressão Gênica
11.
ACS Appl Mater Interfaces ; 15(21): 25285-25299, 2023 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-37207282

RESUMO

Pancreatic cancer (PC) is one of the most malignant cancers that develops rapidly and carries a poor prognosis. Synergistic cancer therapy strategy could enhance the clinical efficacy compared to either treatment alone. In this study, gold nanorods (AuNRs) were used as siRNA delivery vehicles to interfere with the oncogenes of KRAS. In addition, AuNRs were one of anisotropic nanomaterials that can absorb near-infrared (NIR) laser and achieve rapid photothermal therapy for malignant cancer cells. Modification of the erythrocyte membrane and antibody Plectin-1 occurred on the surface of the AuNRs, making them a promising target nanocarrier for enhancing antitumor effects. As a result, biomimetic nanoprobes presented advantages in biocompatibility, targeting capability, and drug-loading efficiency. Moreover, excellent antitumor effects have been achieved by synergistic photothermal/gene treatment. Therefore, our study would provide a general strategy to construct a multifunctional biomimetic theranostic multifunctional nanoplatform for preclinical studies of PC.


Assuntos
Hipertermia Induzida , Nanotubos , Neoplasias , Humanos , Fototerapia , Terapia Fototérmica , Ouro , Biomimética , Membrana Eritrocítica , Neoplasias/patologia , Linhagem Celular Tumoral
12.
Biomed Pharmacother ; 165: 115040, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37364479

RESUMO

Colorectal cancer (CRC) is one of highly prevalent cancer. Immunotherapy with immune checkpoint inhibitors (ICIs) has dramatically changed the landscape of treatment for many advanced cancers, but CRC still exhibits suboptimal response to immunotherapy. The gut microbiota can affect both anti-tumor and pro-tumor immune responses, and further modulate the efficacy of cancer immunotherapy, particularly in the context of therapy with ICIs. Therefore, a deeper understanding of how the gut microbiota modulates immune responses is crucial to improve the outcomes of CRC patients receiving immunotherapy and to overcome resistance in nonresponders. The present review aims to describe the relationship between the gut microbiota, CRC, and antitumor immune responses, with a particular focus on key studies and recent findings on the effect of the gut microbiota on the antitumor immune activity. We also discuss the potential mechanisms by which the gut microbiota influences host antitumor immune responses as well as the prospective role of intestinal flora in CRC treatment. Furthermore, the therapeutic potential and limitations of different modulation strategies for the gut microbiota are also discussed. These insights may facilitate to better comprehend the interplay between the gut microbiota and the antitumor immune responses of CRC patients and provide new research pathways to enhance immunotherapy efficacy and expand the patient population that could be benefited by immunotherapy.


Assuntos
Neoplasias Colorretais , Microbioma Gastrointestinal , Humanos , Imunoterapia , Inibidores de Checkpoint Imunológico , Neoplasias Colorretais/terapia
13.
Front Immunol ; 14: 1323115, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38173726

RESUMO

Background: Cancer-associated fibroblasts (CAFs) represent the predominant stromal component within the tumour microenvironment (TME), exhibiting considerable heterogeneity and plasticity that significantly impact immune response and metabolic reprogramming within the TME, thereby influencing tumour progression. Consequently, investigating CAFs is of utmost importance. The objective of this study is to employ bibliometric analysis in order to evaluate the current state of research on CAFs and predict future areas of research and emerging trends. Methods: Conduct a comprehensive search for scholarly publications within the Web of Science Core Collection database, encompassing the time period from January 1, 2001, to December 31, 2022. Apply VOSviewer, CiteSpace, R software and Microsoft Excel for bibliometric analysis and visualisation. Results: This study involved a comprehensive analysis of 5,925 publications authored by 33,628 individuals affiliated with 4,978 institutions across 79 countries/regions. These publications were published in 908 journals, covering 14,495 keywords and 203,947 references. Notably, there was a significant increase in articles published between 2019 and 2022. China had the highest count of articles, while the United States emerged as the most frequently cited country. The primary research institutions in this field were Shanghai Jiao Tong University, Harvard University, and the University of Texas MD Anderson Cancer Center. Sotgia, Federica and Lisanti, Michael P from the University of Manchester, and Martinet, Wim from the University of Antwerp were the most prolific and highly cited authors. The journal Cancers had the highest number of publications, while Cancer Research was the most frequently cited journal. Molecular, biology, immunology, medicine and genetics were the main research disciplines in the field of CAFs. Key directions in CAFs research encompassed the study of transforming growth factor-ß, Fibroblast Activation Protein, breast cancer, as well as growth and metastasis. The findings from the analysis of keyword co-occurrence and literature co-citation have revealed several emerging hotspots and trends within the field of CAFs. These include STAT3, multidrug resistance, pancreatic ductal adenocarcinoma, pan-cancer analysis, preclinical evaluation, ionizing radiation, and gold nanoparticles. Conclusion: Targeting CAFs is anticipated to be a novel and effective strategy for cancer treatment. This study provides a comprehensive overview of the existing research on CAFs from 2001 to 2022, utilizing bibliometric analysis. The study identified the prominent areas of investigation and anticipated future research directions, with the aim of providing valuable insights and recommendations for future studies in the field of CAFs.


Assuntos
Fibroblastos Associados a Câncer , Nanopartículas Metálicas , Neoplasias Pancreáticas , Humanos , China , Ouro , Bibliometria , Microambiente Tumoral
14.
Plant Physiol ; 157(3): 1363-78, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21878550

RESUMO

Mitogen-activated protein kinase (MAPK) cascades play important roles in disease resistance in model plant species such as Arabidopsis (Arabidopsis thaliana) and tobacco (Nicotiana tabacum). However, the importance of MAPK signaling pathways in the disease resistance of crops is still largely uninvestigated. To better understand the role of MAPK signaling pathways in disease resistance in soybean (Glycine max), 13, nine, and 10 genes encoding distinct MAPKs, MAPKKs, and MAPKKKs, respectively, were silenced using virus-induced gene silencing mediated by Bean pod mottle virus. Among the plants silenced for various MAPKs, MAPKKs, and MAPKKKs, those in which GmMAPK4 homologs (GmMPK4s) were silenced displayed strong phenotypes including stunted stature and spontaneous cell death on the leaves and stems, the characteristic hallmarks of activated defense responses. Microarray analysis showed that genes involved in defense responses, such as those in salicylic acid (SA) signaling pathways, were significantly up-regulated in GmMPK4-silenced plants, whereas genes involved in growth and development, such as those in auxin signaling pathways and in cell cycle and proliferation, were significantly down-regulated. As expected, SA and hydrogen peroxide accumulation was significantly increased in GmMPK4-silenced plants. Accordingly, GmMPK4-silenced plants were more resistant to downy mildew and Soybean mosaic virus compared with vector control plants. Using bimolecular fluorescence complementation analysis and in vitro kinase assays, we determined that GmMKK1 and GmMKK2 might function upstream of GmMPK4. Taken together, our results indicate that GmMPK4s negatively regulate SA accumulation and defense response but positively regulate plant growth and development, and their functions are conserved across plant species.


Assuntos
Proteínas de Arabidopsis/química , Glycine max/crescimento & desenvolvimento , Glycine max/imunologia , Proteínas Quinases Ativadas por Mitógeno/química , Proteínas de Plantas/metabolismo , Homologia de Sequência de Aminoácidos , Núcleo Celular/enzimologia , Resistência à Doença/genética , Regulação para Baixo/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Inativação Gênica , Peróxido de Hidrogênio/metabolismo , Medições Luminescentes , Análise de Sequência com Séries de Oligonucleotídeos , Peronospora/fisiologia , Fosforilação , Doenças das Plantas/genética , Doenças das Plantas/imunologia , Doenças das Plantas/microbiologia , Doenças das Plantas/virologia , Vírus de Plantas/fisiologia , Ligação Proteica , Transporte Proteico , Ácido Salicílico/metabolismo , Glycine max/enzimologia , Glycine max/genética , Frações Subcelulares/enzimologia , Regulação para Cima/genética
15.
Front Oncol ; 12: 915498, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36212428

RESUMO

Introduction: Wenzi Jiedu Recipe (WJR), traditional Chinese medicine (TCM) formula, has been proven to be clinically useful in the treatment of colorectal cancer (CRC). However, its underlying mechanisms are still elusive, which limits its wider application. Thus, we aimed to evaluate the effect of WJR on CRC and elucidate mechanisms underlying its action. Methods: Network pharmacology was employed to clarify the "herb-active ingredient-target" network of WJR. The 16S rDNA sequencing method was used to analyze the changes of gut microbes mediated by WJR in tumor-bearing mice with CRC. The proportions of CD4+ T cell and CD8+ T cell were measured by flow cytometry. Levels of the cytokines interleukin (IL)-10, interferon (IFN)-γ, and tumor necrosis factor (TNF)-α were assessed by immunohistochemistry and enzyme-linked immunosorbent assay (ELISA). Results: WJR showed significant anti-CRC effects both in vitro and in vivo. Network pharmacology revealed that WJR exerts anti-CRC therapeutic effect on multiple targets and signaling pathways. Gut microbiota analysis revealed that WJR therapy significantly enriched for Oscillibacter and Bacteroides_acidifacien. In particular, we found that WJR significantly increased the proportion of CD8+ T cells and the expression of immune-associated cytokines IL-10, IFN-γ, and TNF-α. Conclusion: The regulation of gut microbiota by WJR may be the breakthrough point to clarify its mechanism of action in the treatment of CRC, and it has a good prospect of clinical application.

16.
Biomed Res Int ; 2021: 9485273, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34859104

RESUMO

BACKGROUND: MutS homolog 2 (MSH2), with the function of identifying mismatches and participating in DNA repair, is the "housekeeping gene" in the mismatch repair (MMR) system. MSH2 deficiency has been reported to enhance cancer susceptibility for the association of hereditary nonpolyposis colorectal cancer. However, the expression and prognostic significance of MSH2 have not been studied from the perspective of pan-cancer. METHODS: The GTEx database was used to analyze the expression of MSH2 in normal tissues. The TCGA database was used to analyze the differential expression of MSH2 in pan-cancers. The prognostic value of MSH2 in pan-cancer was assessed using Cox regression and Kaplan-Meier analysis. Spearman correlations were used to measure the relationship between the expression level of MSH2 in pan-cancer and the level of immune infiltration, tumor mutational burden (TMB), and microsatellite instability (MSI). RESULTS: MSH2 is highly expressed in most type of cancers and significantly correlated with prognosis. In COAD, KIRC, LIHC, and SKCM, the expression of MSH2 was significantly positively correlated with the abundance of B cells, CD4+ T cells, CD8+ T cells, dendritic cells, macrophages, and neutrophils. In THCA, MSH2 expression correlated with CD8+T Cell showed a significant negative correlation. MSH2 had significantly negative correlations with stromal score and immune score in a variety of cancers and significantly correlated with TMB and MSI of a variety of tumors. CONCLUSIONS: MSH2 may play an important role in the occurrence, development, and immune infiltration of cancer. MSH2 can emerge as a potential biomarker for cancer diagnosis and prognosis.


Assuntos
Biomarcadores Tumorais/genética , Proteína 2 Homóloga a MutS/genética , Neoplasias/genética , Biologia Computacional , Bases de Dados Genéticas/estatística & dados numéricos , Feminino , Regulação Neoplásica da Expressão Gênica , Estudos de Associação Genética , Humanos , Linfócitos do Interstício Tumoral/imunologia , Masculino , Instabilidade de Microssatélites , Mutação , Neoplasias/imunologia , Prognóstico , Microambiente Tumoral/genética
17.
Nat Aging ; 1(10): 889-903, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-37118327

RESUMO

Stem cell (SC) exhaustion is a hallmark of aging. However, the process of SC depletion during aging has not been observed in live animals, and the underlying mechanism contributing to tissue deterioration remains obscure. We find that, in aged mice, epithelial cells escape from the hair follicle (HF) SC compartment to the dermis, contributing to HF miniaturization. Single-cell RNA-seq and assay for transposase-accessible chromatin using sequencing (ATAC-seq) reveal reduced expression of cell adhesion and extracellular matrix genes in aged HF-SCs, many of which are regulated by Foxc1 and Nfatc1. Deletion of Foxc1 and Nfatc1 recapitulates HF miniaturization and causes hair loss. Live imaging captures individual epithelial cells migrating away from the SC compartment and HF disintegration. This study illuminates a hitherto unknown activity of epithelial cells escaping from their niche as a mechanism underlying SC reduction and tissue degeneration. Identification of homeless epithelial cells in aged tissues provides a new perspective for understanding aging-associated diseases.


Assuntos
Folículo Piloso , Células-Tronco , Camundongos , Animais , Fatores de Transcrição/genética , Envelhecimento , Alopecia/metabolismo
18.
Front Cell Dev Biol ; 9: 661792, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33842487

RESUMO

BACKGROUND: There have been limited treatment therapies for lung squamous cell carcinoma (LUSC). M6A-related genes may be the next therapeutic targets for LUSC. In this study, we explored the prognostic role and mutational characteristics of m6A-related genes in LUSC. METHODS: LUSC gene expression data, mutational data, and corresponding clinical information were extracted from The Cancer Genome Atlas database. Differentially expressed genes (DEGs) were identified, and the mutation characteristics of LUSC patients were explored. Then, m6A-related genes were extracted and the correlations among the genes were detected. Finally, the prognostic roles of the genes were investigated and the nomogram model was developed. Besides, the protein-protein interaction (PPI) network was used to explore the potential interactions among the genes. RESULTS: In total, there are 551 LUSC samples enrolled in our study, containing 502 LUSC tumor samples and 49 adjacent normal LUSC samples, respectively. There were 2970 upregulated DEGs and 1806 downregulated DEGs were further explored. IGF2BP1 and RBM15 had significant co-occurrence frequency (p < 0.05). Besides, METTL14 and ZC3H13 or YTHDF3 also had significant co-occurrence frequency (p < 0.05). All the m6A-related genes represent the positive correlation. WTAP was identified as a prognostic gene in the TCGA database while YTHDC1 and YTHDF1 were identified as prognostic genes. In multivariate Cox analysis, YTHDF1, age, pN stage, pTNM stage, and smoking were all identified as significant prognostic factors for OS. CONCLUSION: We investigated the expression patterns and mutational characteristics of LUSC patients and identified three potential independent prognostic m6A-related genes (WTAP, YTHDC1, and YTHDF1) for OS in LUSC patients.

19.
Biomed Res Int ; 2021: 1989917, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34660783

RESUMO

OBJECTIVE: The purpose of this study is to identify novel biomarkers for the prognosis of Ewing's sarcoma based on bioinformatics analysis. METHODS: The GSE63157 and GSE17679 datasets contain patient and healthy control microarray data that were downloaded from the Gene Expression Omnibus (GEO) database and analyzed through R language software to obtain differentially expressed genes (DEGs). Firstly, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) functional enrichment, protein-protein interaction (PPI) networks, and Cytoscape Molecular Complex Detection (MCODE) plug-in were then used to compute the highest scores of the module. After survival analysis, the hub genes were lastly obtained from the two module genes. RESULTS: A total of 1181 DEGs were identified from the two GSEs. Through MCODE and survival analysis, we obtain 53 DEGs from the module and 29 overall survival- (OS-) related genes. ZBTB16 was the only downregulated gene after Venn diagrams. Survival analysis indicates that there was a significant correlation between the high expression of ZBTB16 and the OS of Ewing's sarcoma (ES), and the low expression group had an unfavorable OS when compared to the high expression group. CONCLUSIONS: High expression of ZBTB16 may serve as a predictor biomarker of poor prognosis in ES patients.


Assuntos
Biomarcadores Tumorais/metabolismo , Biologia Computacional , Proteína com Dedos de Zinco da Leucemia Promielocítica/metabolismo , Sarcoma de Ewing/metabolismo , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Ontologia Genética , Redes Reguladoras de Genes/efeitos dos fármacos , Humanos , Estimativa de Kaplan-Meier , Prognóstico , Mapas de Interação de Proteínas/genética , Sarcoma de Ewing/genética , Sarcoma de Ewing/patologia
20.
Front Med (Lausanne) ; 8: 756988, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34805222

RESUMO

Background: Exogenous HMGB1 plays a vital role in tumor recurrence, and HMGB1 is ubiquitous in the tumor microenvironment. However, the mechanism of action is still unclear. We investigated the role of exogenous HMGB1 in tumor proliferation and metastasis using human SW1990 and PANC-1 cells after radiotherapy and explored the possible molecular mechanism. Materials and Methods: Residual PANC-1 cells and SW1990 cells were isolated after radiotherapy. The supernatant after radiotherapy was collected. The relative expression of HMGB1 was evaluated by Enzyme Linked Immunosorbent Assay (ELISA). Electron microscope (EMS) was used to collect the images of pancreatic cancer cells pre and post radiotherapy treatment. The proliferation of pancreatic cancer cells which were treated with different radiation doses was measured by Carboxy Fluorescein Succinimidyl Ester (CFSE). The migration rates of pancreatic cancer cells were measured by wound healing assays. Subsequently, the expression of related proteins was detected by Western Blot. In vivo, the subcutaneous pancreatic tumor models of nude mice were established, and therapeutic capabilities were tested. Results: HMGB1 was detected in the supernatant of pancreatic cancer cells after radiotherapy. The results of CFSE showed that exogenous HMGB1 promotes the proliferation and metastasis of pancreatic cancer cells. The western blot results showed activation of p-GSK 3ß and up-regulation of N-CA, Bcl-2, and Ki67 in response to HMGB1 stimulation, while E-CA expression was down-regulated in pancreatic cancer cells in response to HMGB1 stimulation. In vivo, ethyl pyruvate (EP, HMGB1 inhibitor) inhibits the growth of tumors and HMGB1 promotes the proliferation of tumors after radiation. Conclusion: Radiotherapy induces HMGB1 release into the extracellular space. Exogenous HMGB1 promotes the proliferation and metastasis of PANC-1 cells and SW1990 cells by activation of p-GSK 3ß which is mediated by Wnt pathway.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA