Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nature ; 580(7803): 386-390, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32296174

RESUMO

The aetiology of inflammatory bowel disease (IBD) is a multifactorial interplay between heredity and environment1,2. Here we report that deficiency in SETDB1, a histone methyltransferase that mediates the trimethylation of histone H3 at lysine 9, participates in the pathogenesis of IBD. We found that levels of SETDB1 are decreased in patients with IBD, and that mice with reduced SETDB1 in intestinal stem cells developed spontaneous terminal ileitis and colitis. SETDB1 safeguards genome stability3, and the loss of SETDB1 in intestinal stem cells released repression of endogenous retroviruses (retrovirus-like elements with long repeats that, in humans, comprise approximately 8% of the genome). Excessive viral mimicry generated by motivated endogenous retroviruses triggered Z-DNA-binding protein 1 (ZBP1)-dependent necroptosis, which irreversibly disrupted homeostasis of the epithelial barrier and promoted bowel inflammation. Genome instability, reactive endogenous retroviruses, upregulation of ZBP1 and necroptosis were all seen in patients with IBD. Pharmaceutical inhibition of RIP3 showed a curative effect in SETDB1-deficient mice, which suggests that targeting necroptosis of intestinal stem cells may represent an approach for the treatment of severe IBD.


Assuntos
Instabilidade Genômica , Histona-Lisina N-Metiltransferase/metabolismo , Doenças Inflamatórias Intestinais/metabolismo , Necroptose , Células-Tronco/metabolismo , Animais , Histona-Lisina N-Metiltransferase/genética , Humanos , Doenças Inflamatórias Intestinais/genética , Doenças Inflamatórias Intestinais/patologia , Camundongos , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Células-Tronco/citologia
2.
EMBO J ; 39(5): e102541, 2020 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-31975428

RESUMO

UHMK1 is a nuclear serine/threonine kinase recently implicated in carcinogenesis. However, the functions and action mechanisms of UHMK1 in the pathogenesis of human gastric cancer (GC) are unclear. Here, we observed that UHMK1 was markedly upregulated in GC. UHMK1 silencing strongly inhibited GC aggressiveness. Interestingly, UHMK1-induced GC progression was mediated primarily via enhancing de novo purine synthesis because inhibiting purine synthesis reversed the effects of UHMK1 overexpression. Mechanistically, UHMK1 activated ATF4, an important transcription factor in nucleotide synthesis, by phosphorylating NCOA3 at Ser (S) 1062 and Thr (T) 1067. This event significantly enhanced the binding of NCOA3 to ATF4 and the expression of purine metabolism-associated target genes. Conversely, deficient phosphorylation of NCOA3 at S1062/T1067 significantly abrogated the function of UHMK1 in GC development. Clinically, Helicobacter pylori and GC-associated UHMK1 mutation induced NCOA3-S1062/T1067 phosphorylation and enhanced the activity of ATF4 and UHMK1. Importantly, the level of UHMK1 was significantly correlated with the level of phospho-NCOA3 (S1062/T1067) in human GC specimens. Collectively, these results show that the UHMK1-activated de novo purine synthesis pathway significantly promotes GC development.


Assuntos
Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Coativador 3 de Receptor Nuclear/metabolismo , Nucleotídeos/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Neoplasias Gástricas/genética , Animais , Linhagem Celular Tumoral , Progressão da Doença , Regulação Neoplásica da Expressão Gênica , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Coativador 3 de Receptor Nuclear/genética , Fosforilação , Proteínas Serina-Treonina Quinases/genética , Estômago/patologia , Neoplasias Gástricas/patologia , Regulação para Cima
3.
Hepatology ; 70(5): 1785-1803, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31066068

RESUMO

Cancer cells metabolize different energy sources to generate biomass rapidly. The purine biosynthetic pathway was recently identified as an important source of metabolic intermediates for these processes. However, very little was known about the regulatory mechanisms of purine metabolism in hepatocellular carcinoma (HCC). We explored the role of dual-specificity tyrosine (Y) phosphorylation-regulated kinase 3 (Dyrk3) in HCC metabolism. Dyrk3 was significantly down-regulated in HCC compared with normal controls. Its introduction in HCC cells markedly suppressed tumor growth and metastasis in xenograft tumor models. Mass spectrometric analysis of metabolites suggests that the effect of Dyrk3 on HCC occurred at least partially through down-regulating purine metabolism, as evidenced by the fact that inhibiting purine synthesis reverted the HCC progression mediated by the loss of Dyrk3. We further provide evidence that this action of Dyrk3 knockdown requires nuclear receptor coactivator 3 (NCOA3), which has been shown to be a coactivator of activating transcription factor 4 (ATF4) to target purine pathway genes for transcriptional activation. Mechanistically, Dyrk3 directly phosphorylated NCOA3 at Ser-1330, disrupting its binding to ATF4 and thereby causing the inhibition of ATF4 transcriptional activity. However, the phosphorylation-resistant NCOA3-S1330A mutant has the opposite effect. Interestingly, the promoter activity of Dyrk3 was negatively regulated by ATF4, indicating a double-negative feedback loop. Importantly, levels of Dyrk3 and phospho-NCOA3-S1330 inversely correlate with the expression of ATF4 in human HCC specimens. Conclusion: Our findings not only illustrate a function of Dyrk3 in reprograming HCC metabolism by negatively regulating NCOA3/ATF4 transcription factor complex but also identify NCOA3 as a phosphorylation substrate of Dyrk3, suggesting the Dyrk3/NCOA3/ATF4 axis as a potential candidate for HCC therapy.


Assuntos
Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Proteínas Serina-Treonina Quinases/fisiologia , Proteínas Tirosina Quinases/fisiologia , Purinas/metabolismo , Fator 4 Ativador da Transcrição/metabolismo , Progressão da Doença , Humanos , Coativador 3 de Receptor Nuclear/metabolismo , Fosforilação , Células Tumorais Cultivadas
4.
Chin J Cancer Res ; 30(5): 500-507, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30510361

RESUMO

OBJECTIVE: Infra-pyloric artery (IPA) is an important anatomical landmark in treatment of gastric cancer and is the key vessel for pylorus-preserving gastrectomy and subgroup of infra-pyloric lymph nodes. However, its anatomical variation is not thoroughly understood. Our study aimed to clarify the origination of the IPA. METHODS: We did this prospective, multicenter, open-label, observational study at gastric surgery departments of 34 hospitals in China. Gastric cancer patients aged 18 years or older and scheduled to undergo elective total or distal gastrectomy were assigned. During the surgery, IPA dissecting and exposing the origination point with photographs or video clips were required. The primary outcome was the origination of the IPA. Analysis of variance, χ2 tests and Fisher's tests were used to analyze the differences between groups. The study is registered at Clinicaltrials.gov (No. NCT03071237). RESULTS: Between May 8 and July 31, 2017, 429 patients were assigned for the study, and 419 (97.7%) patients had the IPA dissected and recorded through photograph or video and were included in the primary outcome analysis. The median age was 62 years old, and 73.7% were male. Among the patients, 78.5% received laparoscopic surgery. Single IPA origination was identified in 398 (95.0%) patients, including gastroduodenal artery (GDA) in 154 (36.8%) patients, anterior superior pancreaticoduodenal artery (ASPDA) in 130 (31.0%) patients, and right gastroepiploic artery (RGEA) in 114 (27.2%) patients. Fifteen (3.6%) patients were identified with multiple IPA and 6 (1.4%) patients were identified as IPA absence. The differences in the distribution of surgical approach (P=0.003) and geographic area (P=0.030) were statistically significant. No difference was shown in sex, age, gastrectomy type, tumor location, and clinical T, N and M stage. CONCLUSIONS: Our study found that the IPA originates from GDA, ASPDA and RGEA in similar proportions. Laparoscopic surgery may be more helpful in dissection of the IPA than open surgery.

5.
World J Gastrointest Surg ; 15(5): 859-870, 2023 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-37342845

RESUMO

BACKGROUND: Previously, some studies have proposed that total laparoscopic gastrectomy (TLG) is superior to laparoscopic-assisted gastrectomy (LAG) in terms of safety and feasibility based on the related intraoperative operative parameters and incidence of postoperative complications. However, there are still few studies on the changes in postoperative liver function in patients undergoing LG. The present study compared the postoperative liver function of patients with TLG and LAG, aiming to explore whether there is a difference in the influence of TLG and LAG on the liver function of patients. AIM: To investigate whether there is a difference in the influence of TLG and LAG on the liver function of patients. METHODS: The present study collected 80 patients who underwent LG from 2020 to 2021 at the Digestive Center (including the Department of Gastrointestinal Surgery and the Department of General Surgery) of Zhongshan Hospital affiliated with Xiamen University, including 40 patients who underwent TLG and 40 patients who underwent LAG. Alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (ALP), γ-glutamyltransferase (GGLT), total bilirubin (TBIL), direct bilirubin (DBIL) and indirect bilirubin (IBIL), and other liver function-related test indices were compared between the 2 groups before surgery and on the 1st, 3rd, and 5th d after surgery. RESULTS: The levels of ALT and AST in the 2 groups were significantly increased on the 1st to 2nd postoperative days compared with those before the operation. The levels of ALT and AST in the TLG group were within the normal range, while the levels of ALT and AST in the LAG group were twice as high as those in the TLG group (P < 0.05). The levels of ALT and AST in the 2 groups showed a downward trend at 3-4 d and 5-7 d after the operation and gradually decreased to the normal range (P < 0.05). The GGLT level in the LAG group was higher than that in the TLG group on postoperative days 1-2, the ALP level in the TLG group was higher than that in the LAG group on postoperative days 3-4, and the TBIL, DBIL and IBIL levels in the TLG group were higher than those in the LAG group on postoperative days 5-7 (P < 0.05). No significant difference was observed at other time points (P > 0.05). CONCLUSION: Both TLG and LAG can affect liver function, but the effect of LAG is more serious. The influence of both surgical approaches on liver function is transient and reversible. Although TLG is more difficult to perform, it may be a better choice for patients with gastric cancer combined with liver insufficiency.

6.
Sci Data ; 7(1): 104, 2020 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-32218446

RESUMO

Targeted SWATH-MS data analysis is critically dependent on the spectral library. Comprehensive spectral libraries of human or several other organisms have been published, but the extensive spectral library for mouse, a widely used model organism is not available. Here, we present a large murine spectral library covering more than 11,000 proteins and 240,000 proteotypic peptides, which included proteins derived from 9 murine tissue samples and one murine L929 cell line. This resource supports the quantification of 67% of all murine proteins annotated by UniProtKB/Swiss-Prot. Furthermore, we applied the spectral library to SWATH-MS data from murine tissue samples. Data are available via SWATHAtlas (PASS01441).


Assuntos
Biblioteca de Peptídeos , Proteoma/análise , Animais , Bases de Dados de Proteínas , Camundongos , Proteômica
7.
Theranostics ; 10(3): 1046-1059, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31938050

RESUMO

Resistance to the chemotherapeutic drug 5'-azacytidine (5'-AZA) is a major obstacle in the treatment of patients with acute myeloid leukemia (AML). The uridine-cytidine kinase 1 (UCK1) has an established role in activating 5'-AZA and its protein level is significantly downregulated in patients resistant to the drug. However, the underlying molecular mechanism for the reduced UCK1 expression remains to be elucidated. Methods: Using mass spectrometry and molecular biochemistry analyses, we identified specific enzymes mediating UCK1 degradation. Human AML cell lines and murine AML model were used to characterize the effects of these enzymes on 5'-AZA resistance. Results: We demonstrated that the ubiquitin E3 ligase KLHL2 interacted with UCK1 and mediated its polyubiquitination at the K81 residue and degradation. We showed that deubiquitinase USP28 antagonized KLHL2-mediated polyubiquitylation of UCK1. We also provided evidence that ATM-mediated phosphorylation of USP28 resulted in its disassociation from KLHL2 and UCK1 destabilization. Conversely, UCK1 phosphorylation by 5'-AZA-activated ATM enhanced the KLHL2-UCK1 complex formation. Importantly, silencing KLHL2 or USP28 overexpression not only inhibited AML cell proliferation but also sensitized AML cells to 5'-AZA-induced apoptosis in vitro and in vivo. These results were no longer observed in USP28-deficient cells. Conclusions: Our study revealed a novel mechanism by which the KLHL2/USP28/ATM axis mediates resistance of AML cells to 5'-AZA by regulating UCK1 ubiquitination and phosphorylation. These results have direct clinical implications and provide a rationale for the combination drug treatment of AML patients.


Assuntos
Azacitidina , Resistencia a Medicamentos Antineoplásicos , Inibidores Enzimáticos , Leucemia Mieloide Aguda , Proteínas dos Microfilamentos/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Ubiquitina Tiolesterase/metabolismo , Animais , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Azacitidina/uso terapêutico , Inibidores Enzimáticos/uso terapêutico , Células HEK293 , Células HL-60 , Humanos , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Uridina Quinase/metabolismo
8.
Front Cell Infect Microbiol ; 10: 498502, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33324571

RESUMO

The difference between left- and right-sided colon cancer has become the focus of global attention, and researchers have found differences in the morbidity, molecular biological characteristics, and response to targeted drug therapy between left- and right-sided colon cancer. Therefore, the identification of more effective predictive indicators is critical for providing guidance to future clinical work. We collected samples from different colon sites and regions and analyzed the identities and distributions of differentially expressed species in the microbiota in the left and right sides of the colon to better explore the pathogenesis of colon cancer and provided a basis for individualized drug therapy. We collected samples from different regions in the body of 40 patients with colon cancer, including stool and tissues. The Subjects were classified into four groups, and this classification was mainly based on the colon cancer distribution. The microbiota composition of the left-sided and right-sided colon samples was assessed by specifically amplifying the V3-V4 region of the 16S rDNA gene from DNA extracts from the samples. These amplicons were examined by Illumina HiSeq 2500 sequencing. The microbial taxa in the left-sided colon samples are more abundant than those in the right-sided colon samples. The flora in the left-sided colon samples, such as Clostridium perfringens and Fusobacterium nucleatum, might be associated with VEGF expression and are more likely to promote colon cancer. The microbiota distribution in the right-sided colon samples is less invasive and harmful and particularly rich in Bifidobacterium dentium. In addition, Streptococcus, which is the target of EGFR, was found to be expressed in both the left- and right-sided colon samples but was found at a higher level in the left-sided colon samples. Additionally, the differential pathways involved in the left-sided colon samples mainly mediate DNA damage, methylation, and histone modifications, whereas those in the right-sided colon samples are dominated by DNA synthesis. The comparison of only the geographical differences revealed a significant difference in the distribution of the microbial population. The adherent microbiota composition and structural changes between the left- and right-sided colon samples might contribute to the development of colon cancer, lead to different morbidities, and further affect the prognosis of patients and their sensitivity to targeted drugs. Therefore, the identification of the differential flora in the colon could be used as an indicator for predicting the occurrence and development of colon cancer, which is also beneficial for future individualized drug therapy.


Assuntos
Neoplasias do Colo , Microbiota , Bifidobacterium , Colo , Neoplasias do Colo/microbiologia , Feminino , Lateralidade Funcional , Humanos , Masculino
9.
Front Oncol ; 10: 623048, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33718119

RESUMO

Tumor necrosis factor-induced protein-8 (TIPE) is highly expressed in colorectal cancer (CRC). Decoy receptor 3 (DcR3) is a soluble secreted protein that can antagonize Fas ligand (FasL)-induced apoptosis and promote tumorigenesis. It remains unclear whether TIPE can regulate DcR3 expression. In this study, we examined this question by analyzing the relationship between these factors in CRC. Bioinformatics and tissue microarrays were used to determine the expression of TIPE and DcR3 and their correlation in CRC. The expression of TIPE and DcR3 in colon cancer cells was detected. Plasma samples were collected from CRC patients, and DcR3 secretion was measured. Then, dual-luciferase reporter gene analysis was performed to assess the interaction between TIPE and DcR3. We exogenously altered TIPE expression and analyzed its function and influence on DcR3 secretion. Lipopolysaccharide (LPS) was used to stimulate TIPE-overexpressing HCT116 cells, and alterations in signaling pathways were detected. Additionally, inhibitors were used to confirm molecular mechanisms. We found that TIPE and DcR3 were highly expressed in CRC patients and that their expression levels were positively correlated. DcR3 was highly expressed in the plasma of cancer patients. We confirmed that TIPE and DcR3 were highly expressed in HCT116 cells. TIPE overexpression enhanced the transcriptional activity of the DcR3 promoter. TIPE activated the PI3K/AKT signaling pathway to regulate the expression of DcR3, thereby promoting cell proliferation and migration and inhibiting apoptosis. In summary, TIPE and DcR3 are highly expressed in CRC, and both proteins are associated with poor prognosis. TIPE regulates DcR3 expression by activating the PI3K/AKT signaling pathway in CRC, thus promoting cell proliferation and migration and inhibiting apoptosis. These findings may have clinical significance and promise for applications in the treatment or prognostication of CRC.

10.
Int J Biol Sci ; 16(2): 272-283, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31929755

RESUMO

Background: Metastasis is the leading cause of death in colorectal cancer (CRC) patients. It is regulated mainly by tumor cell angiogenesis, and angiogenesis is caused by the binding of vascular endothelial growth factor (VEGF) to vascular endothelial growth factor receptor 2 (VEGFR2). Tumor necrosis factor-α-induced protein 8 (TNFAIP8, hereto after TIPE) plays an important role in tumorigenesis, development, and prognosis. However, the relationship between TIPE and VEGFR2 in CRC angiogenesis and the mechanism of action remain unknown. Method: In this study, we used quantitative real-time PCR, Western blotting and immunohistochemistry to detect TIPE and VEGFR2 expression in 55 specimens from CRC patients. We also used HCT116 CRC cells and human umbilical vein endothelial cells (HUVECs) for in vitro experiments by stably transducing shTIPE and shRNA control lentivirus into HCT116 cells, detecting VEGFR2 expression after TIPE knockdown and repurposing the culture supernatant as conditioned medium to stimulate angiogenesis of HUVECs. In vivo experiments with chicken chorioallantoic membranes (CAMs) and a nude mouse matrix subcutaneous tumor model were performed to validate the effects of TIPE on angiogenesis. Additionally, we analyzed the expression and phosphorylation levels of PDK1 and blocked PDK1 expression using inhibitors to determine whether TIPE-induced changes in VEGFR2-mediated angiogenesis acted via the PI3K-Akt pathway. Results: We found that TIPE and VEGFR2 are highly expressed in CRC and act as oncogenes. TIPE knockdown also downregulated VEGFR2 expression, which resulted in simultaneous inhibition of cell proliferation, cell migration and angiogenesis. Then, in vivo experiments further demonstrated that TIPE promotes angiogenesis in CRC. Finally, we found that TIPE promotes VEGFR2-mediated angiogenesis by upregulating PDK1 expression and phosphorylation and that blocking PDK1 expression can inhibit this process. Conclusion: TIPE promotes angiogenesis in CRC by regulating the expression of VEGFR2, which may be a target for antiangiogenic cancer therapy.


Assuntos
Neoplasias Colorretais/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Movimento Celular/fisiologia , Proliferação de Células/fisiologia , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Neovascularização Patológica/metabolismo , Fosforilação , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/fisiologia
11.
Oncogene ; 39(16): 3336-3353, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32094404

RESUMO

Histone demethylase JMJD2D can promote gene expression by specifically demethylating H3K9me2/3. The role of JMJD2D in colitis and colitis-associated colorectal cancer (CRC) progression remains unclear. Here, we show that colonic JMJD2D is induced by TNFα during dextran sulfate sodium-induced colitis. JMJD2D-deficient mice exhibit more severe colon damage and defective colon regeneration due to impaired Hedgehog signaling activation after colitis. JMJD2D knockdown in CRC cells suppresses Hedgehog signaling, resulting in reduced CRC growth and metastasis. Mechanistically, JMJD2D promotes Hedgehog target gene expression through interacting with Gli2 to reduce H3K9me3 levels at the promoter. Clinically, JMJD2D expression is upregulated and positively correlated with Gli2 expression in human inflammatory bowel disease specimens and CRC specimens. The JMJD2D inhibitor 5-c-8HQ or aspirin synergizes with Hedgehog inhibitor vismodegib to inhibit CRC cell proliferation and tumorigenesis. Collectively, our findings unveil an essential role of JMJD2D in activating the processes of colonic protection, regeneration, and tumorigenesis.


Assuntos
Colite/tratamento farmacológico , Neoplasias Colorretais/tratamento farmacológico , Inflamação/tratamento farmacológico , Histona Desmetilases com o Domínio Jumonji/genética , Anilidas/farmacologia , Animais , Aspirina/farmacologia , Carcinogênese/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Colite/genética , Colite/patologia , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Modelos Animais de Doenças , Sinergismo Farmacológico , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Técnicas de Silenciamento de Genes , Proteínas Hedgehog/antagonistas & inibidores , Proteínas Hedgehog/genética , Humanos , Inflamação/genética , Inflamação/patologia , Histona Desmetilases com o Domínio Jumonji/antagonistas & inibidores , Camundongos , Piridinas/farmacologia , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética
12.
Oncogene ; 39(15): 3145-3162, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32060423

RESUMO

Dysregulation of PARP10 has been implicated in various tumor types and plays a vital role in delaying hepatocellular carcinoma (HCC) progression. However, the mechanisms controlling the expression and activity of PARP10 in HCC remain mostly unknown. The crosstalk between PLK1, PARP10, and NF-κB pathway in HCC was determined by performing different in vitro and in vivo assays, including mass spectrometry, kinase, MARylation, chromatin immunoprecipitation, and luciferase reporter measurements. Functional examination was performed by using small chemical drug, cell culture, and mice HCC models. Correlation between PLK1, NF-κB, and PARP10 expression was determined by analyzing clinical samples of HCC patients with using immunohistochemistry. PLK1, an important regulator for cell mitosis, directly interacts with and phosphorylates PARP10 at T601. PARP10 phosphorylation at T601 significantly decreases its binding to NEMO and disrupts its inhibition to NEMO ubiquitination, thereby enhancing the transcription activity of NF-κB toward multiple target genes and promoting HCC development. In turn, NF-κB transcriptionally inhibits the PARP10 promoter activity and leads to its downregulation in HCC. Interestingly, PLK1 is mono-ADP-ribosylated by PARP10 and the MARylation of PLK1 significantly inhibits its kinase activity and oncogenic function in HCC. Clinically, the expression levels of PLK1 and phosphor-p65 show an inverse correlation with PARP10 expression in human HCC tissues. These findings are the first to uncover a PLK1/PARP10/NF-κB signaling circuit that underlies tumorigenesis and validate PLK1 inhibitors, alone or with NF-κB antagonists, as potential effective therapeutics for PARP10-expressing HCC.


Assuntos
Carcinoma Hepatocelular/patologia , Proteínas de Ciclo Celular/metabolismo , Neoplasias Hepáticas/patologia , Poli(ADP-Ribose) Polimerases/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Fator de Transcrição RelA/metabolismo , Animais , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Carcinogênese/efeitos dos fármacos , Carcinogênese/patologia , Carcinoma Hepatocelular/mortalidade , Carcinoma Hepatocelular/terapia , Proteínas de Ciclo Celular/antagonistas & inibidores , Progressão da Doença , Retroalimentação Fisiológica , Feminino , Células HEK293 , Hepatectomia , Humanos , Estimativa de Kaplan-Meier , Fígado/patologia , Fígado/cirurgia , Neoplasias Hepáticas/mortalidade , Neoplasias Hepáticas/terapia , Masculino , Camundongos , Pessoa de Meia-Idade , Mutagênese Sítio-Dirigida , Estadiamento de Neoplasias , Nitrilas/farmacologia , Nitrilas/uso terapêutico , Fosforilação/efeitos dos fármacos , Poli(ADP-Ribose) Polimerases/genética , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Proto-Oncogênicas/antagonistas & inibidores , Proteínas Proto-Oncogênicas/genética , Pteridinas/farmacologia , Pteridinas/uso terapêutico , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Estaurosporina/farmacologia , Estaurosporina/uso terapêutico , Sulfonas/farmacologia , Sulfonas/uso terapêutico , Fator de Transcrição RelA/antagonistas & inibidores , Ensaios Antitumorais Modelo de Xenoenxerto , Quinase 1 Polo-Like
13.
Autophagy ; 15(7): 1130-1149, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30686098

RESUMO

UVRAG (UV radiation resistance associated) is an important regulator of mammalian macroautophagy/autophagy by interacting with BECN1, PIK3C3, and RUBCN. Phosphorylation of UVRAG by MTORC1 negatively regulates autophagosome maturation under nutrient-enriched conditions. However, how UVRAG ubiquitination is regulated is still unknown. Here we report that UVRAG is ubiquitinated by SMURF1 at lysine residues 517 and 559, which decreases the association of UVRAG with RUBCN and promotes autophagosome maturation. However, the deubiquitinase ZRANB1 specifically cleaves SMURF1-induced K29 and K33-linked polyubiquitin chains from UVRAG, thereby increasing the binding of UVRAG to RUBCN and inhibiting autophagy flux. We also demonstrate that CSNK1A1-mediated UVRAG phosphorylation at Ser522 disrupts the binding of SMURF1 to UVRAG through PPxY motif and blocks UVRAG ubiquitination-mediated autophagosome maturation. Interestingly, ZRANB1 is phosphorylated at Thr35, and Ser209 residues by CSNK1A1, and this phosphorylation activates its deubiquitinating activity. Importantly, we provide in vitro and in vivo evidence that UVRAG ubiquitination at lysine residues 517 and 559 or prevention of Ser522 phosphorylation by D4476, a CSNK1A1 inhibitor, enhances the lysosomal degradation of EGFR, which significantly inhibits hepatocellular carcinoma (HCC) growth. Furthermore, UVRAG S522 phosphorylation levels correlate with ZRANB1 T35/S209 phosphorylation levels and poor prognosis in HCC patients. These findings identify a novel molecular mechanism by which ubiquitination and phosphorylation of UVRAG regulate its function in autophagosome maturation and HCC growth, encouraging further study of their potential therapeutic implications. Abbreviations: ATG: autophagy related; BafA1: bafilomycin A1; BECN1: beclin 1; CHX: cycloheximide; CSNK1A1/CK1α: casein kinase 1 alpha 1; CQ: chloroquine; DUB: deubiquitinase; EBSS: Earle's balanced salt solution; EGF: epidermal growth factor; GFP: green fluorescent protein; GST: glutathione S-transferase; HBSS: Hanks balanced salts solution; HCC: hepatocellular carcinoma; MAP1LC3B/LC3: microtubule associated protein 1 light chain 3 beta; MEFs: mouse embryo fibroblasts; mRFP: monomeric red fluorescent protein; PIK3C3/VPS34: phosphatidylinositol 3-kinase catalytic subunit type 3; PTMs: post-translational modifications; RUBCN: rubicon autophagy regulator; siRNA: small interfering RNA; SMURF1: SMAD specific E3 ubiquitin protein ligase 1; SQSTM1: sequestosome 1; Ub-AMC: ubiquitin-7-amido-4-methylcoumarin: a fluorogenic substrate; UVRAG: UV radiation resistance associated; ZRANB1/TRABID: zinc finger RANBP2-type containing 1.


Assuntos
Autofagossomos/metabolismo , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação , Motivos de Aminoácidos/genética , Animais , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/mortalidade , Caseína Quinase Ialfa/genética , Caseína Quinase Ialfa/metabolismo , Enzimas Desubiquitinantes/metabolismo , Endopeptidases , Receptores ErbB/metabolismo , Células HEK293 , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/mortalidade , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Mutação , Fosforilação , Prognóstico , Processamento de Proteína Pós-Traducional/genética , Transplante Heterólogo , Proteínas Supressoras de Tumor/química , Proteínas Supressoras de Tumor/genética , Ubiquitina/metabolismo , Ubiquitina Tiolesterase/metabolismo , Ubiquitina-Proteína Ligases/antagonistas & inibidores , Ubiquitina-Proteína Ligases/genética , Proteases Específicas de Ubiquitina/metabolismo , Ubiquitinação/genética
14.
Cell Death Differ ; 26(2): 306-320, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-29748601

RESUMO

TRAF-binding domain (Trabid), one of deubiquitination enzymes, was recently reported to activate Wnt/ ß-catenin signaling pathway. However, the role of Trabid in tumors including hepatocellular carcinoma (HCC) and the underlying mechanisms controlling its activity remain poorly understood. Here, we report that Trabid is significantly downregulated in HCC tumor samples and cell lines compared with normal controls and that its expression level is negatively correlated with HCC pathological grading, recurrence, and metastasis. The reintroduction of Trabid expression in tumor cells significantly decreases HCC progression as well as pulmonary metastasis. The effect of Trabid on HCC development occurs at least partially through regulation of Twist1 activity. Mechanistically, Trabid forms a complex with Twist1 and specifically cleaves RNF8-induced K63-linked poly-ubiquitin chains from Twist1, which enhances the association of Twist1 with ß-TrCP1 and allows for subsequent K48-linked ubiquitination of Twist1. Knockdown of Trabid increases K63-linked ubiquitination, but abrogates K48-linked ubiquitination and degradation of Twist1, thus enhancing HCC growth and metastasis. Interestingly, Twist1 negatively regulates the promoter activity of Trabid, indicating that a double-negative feedback loop exists. Our findings also identify an essential role for activation of Trabid by AKT-mediated phosphorylation at Ser78/Thr117 in negatively regulating Twist1 signaling, which further provides insights into the mechanisms by which Trabid regulates Twist1 ubiquitination. Our results reveal that Trabid is a previously unrecognized inhibitor of HCC progression and metastasis, which sheds light on new strategies for HCC treatment.


Assuntos
Carcinoma Hepatocelular/metabolismo , Proliferação de Células/genética , Proteínas de Ligação a DNA/metabolismo , Endopeptidases/metabolismo , Neoplasias Hepáticas/metabolismo , Proteínas Nucleares/metabolismo , Proteína 1 Relacionada a Twist/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação/genética , Animais , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Estudos de Coortes , Endopeptidases/genética , Transição Epitelial-Mesenquimal/genética , Feminino , Técnicas de Silenciamento de Genes , Células HEK293 , Hepatócitos/metabolismo , Xenoenxertos , Humanos , Neoplasias Hepáticas/patologia , Masculino , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Pessoa de Meia-Idade , Invasividade Neoplásica/genética , Metástase Neoplásica/genética , Transfecção , Carga Tumoral/genética
15.
Elife ; 72018 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-29384474

RESUMO

RIOK1 has recently been shown to play important roles in cancers, but its posttranslational regulation is largely unknown. Here we report that RIOK1 is methylated at K411 by SETD7 methyltransferase and that lysine-specific demethylase 1 (LSD1) reverses its methylation. The mutated RIOK1 (K411R) that cannot be methylated exhibits a longer half-life than does the methylated RIOK1. FBXO6 specifically interacts with K411-methylated RIOK1 through its FBA domain to induce RIOK1 ubiquitination. Casein kinase 2 (CK2) phosphorylates RIOK1 at T410, which stabilizes RIOK1 by antagonizing K411 methylation and impeding the recruitment of FBXO6 to RIOK1. Functional experiments demonstrate the RIOK1 methylation reduces the tumor growth and metastasis in mice model. Importantly, the protein levels of CK2 and LSD1 show an inverse correlation with FBXO6 and SETD7 expression in human colorectal cancer tissues. Together, this study highlights the importance of a RIOK1 methylation-phosphorylation switch in determining colorectal and gastric cancer development.


Assuntos
Antígenos de Neoplasias/metabolismo , Neoplasias Colorretais/patologia , Processamento de Proteína Pós-Traducional , Neoplasias Gástricas/patologia , Animais , Caseína Quinase II/metabolismo , Linhagem Celular Tumoral , Modelos Animais de Doenças , Histona Desmetilases/metabolismo , Histona-Lisina N-Metiltransferase/metabolismo , Humanos , Metilação , Camundongos , Fosforilação , Ligação Proteica , Proteínas Serina-Treonina Quinases , Proteínas Ligases SKP Culina F-Box/metabolismo , Ubiquitinação
16.
J Vis Surg ; 3: 28, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29078591

RESUMO

There aren't any standardized ways of controlling operating, although laparoscopic-assisted right-hemi colon cancer complete mesocolic excision (LR-CME), has been widely applied used in China and abroad. Hohenberger gave a new concept that treating complete mesocolic excision (CME) as a colon cancer standard operation for the first time in 2009. And the LR-CME that based on the anatomy of the vascular and level coincide with the concept. One case, male, 69 years old. LR-CME was performed in our department. Following we will introduce correlation experiences and skills of LR-CME. It took about 110 minutes to finish the whole operation with bleeding of about 20 mL. This case recovers well postoperation without any significant complication and discharged from hospital on the 10th day.

17.
Cell Death Dis ; 8(7): e2958, 2017 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-28749470

RESUMO

Colorectal cancer (CRC) is the second major cause of tumor-related deaths. MicroRNAs (miRNAs) have pivotal roles in CRC progression. Here, we describe the effect of miR-181d on CRC cell metabolism and underlying molecular mechanism. Our data firmly demonstrated that knockdown of miR-181d suppressed CRC cell proliferation, migration, and invasion by impairing glycolysis. Mechanistically, miR-181d stabilized c-myc through directly targeting the 3'-UTRs of CRY2 and FBXL3, which subsequently increased the glucose consumption and the lactate production. Inhibition of c-myc via siRNA or small molecular inhibitor abolished the oncogenic effects of miR-181d on the growth and metastasis of CRC cells. Furthermore, c-myc/HDAC3 transcriptional suppressor complex was found to co-localize on the CRY2 and FBXL3 promoters, epigenetically inhibit their transcription, and finally induce their downregulation in CRC cells. In addition, miR-181d expression could be directly induced by an activation of c-myc signaling. Together, our data indicate an oncogenic role of miR-181d in CRC by promoting glycolysis, and miR-181d/CRY2/FBXL3/c-myc feedback loop might be a therapeutic target for patients with CRC.


Assuntos
Neoplasias Colorretais/metabolismo , Criptocromos/metabolismo , Proteínas F-Box/metabolismo , MicroRNAs/metabolismo , Proteínas Proto-Oncogênicas c-myc/metabolismo , Animais , Western Blotting , Células CACO-2 , Linhagem Celular Tumoral , Movimento Celular/genética , Movimento Celular/fisiologia , Proliferação de Células/genética , Proliferação de Células/fisiologia , Imunoprecipitação da Cromatina , Neoplasias Colorretais/genética , Criptocromos/genética , Proteínas F-Box/genética , Feminino , Regulação Neoplásica da Expressão Gênica/genética , Regulação Neoplásica da Expressão Gênica/fisiologia , Células HCT116 , Células HT29 , Humanos , Camundongos , Camundongos Endogâmicos BALB C , MicroRNAs/genética , Proteínas Proto-Oncogênicas c-myc/genética , Estabilidade de RNA/genética , Estabilidade de RNA/fisiologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
18.
Oncol Lett ; 11(3): 1835-1840, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26998086

RESUMO

Tumor necrosis factor (TNF)-α-induced protein 8 (TIPE) is a recently identified protein that is considered to be associated with various malignancies, including esophageal, breast and pancreatic cancer; however, the importance of TIPE in gastric cancer (GC) remains unknown. Decoy receptor 3 (DcR3) is a member of the tumor necrosis factor receptor superfamily that is expressed in digestive system neoplasms. The expression of DcR3 is regulated by the mitogen-activated protein kinase (MAPK)/MAPK kinase/extracellular signal-regulated kinase (ERK) signaling pathway. Reverse transcription-polymerase chain reaction was performed to detect the expression of TIPE, ERK and DcR3 in the pathological and tumor-adjacent normal gastric tissues of 30 patients that demonstrated stage III gastric adenocarcinoma. The expression and distribution of the TIPE protein was examined using immunohistochemistry, and the clinical significance and expression levels of DcR3 and ERK1/2 were evaluated. The expression of TIPE, ERK1/2 and DcR3 in the tumor tissues of GC was significantly increased compared with paracarcinoma tissues (P<0.05). In addition, TIPE expression positively correlated with DcR3 and ERK1 levels (r=0.538 and r=0.462, respectively; P<0.05). There was no statistical difference between tumor tissues from patients with varying age, gender, differentiation or lymph node metastasis (P>0.05). TIPE may be vital in the progression of GC. TIPE may be associated with the expression of DcR3 and ERK1/2, which may be involved in the cell apoptosis of GC. The present study elucidates the potential function of TIPE as a novel marker and therapeutic target for GC.

19.
Oncotarget ; 7(16): 22092-102, 2016 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-26989077

RESUMO

MicroRNAs are critical in various human cancers, including gastric cancer (GC). However, the mechanism underlying the GC development remains elusive. In this study, we demonstrate that miR-448 is increased in GC samples and cell lines. Overexpression of miR-448 facilitated the proliferation of GC cells by stimulating glycolysis. Mechanistically, we identified KDM2B, a reader for methylated CpGs, as the target of miR-448 that represses glycolysis and promotes oxidative phosphorylation. Overexpression of miR-448 reduced both the mRNA and protein levels of KDM2B, whereas KDM2B re-expression abrogated the miR-448-mediated glycolytic activities. Furthermore, we discovered Myc as a key target of KDM2B that controls metabolic switch in GC. Importantly, a cohort of 81 GC tissues revealed that miR-448 level closely associated with a battery of glycolytic genes, in which KDM2B showed the strongest anti-correlation coefficient. In addition, enhanced miR-448 level was significantly associated with poor clinical outcomes of GC patients. Hence, we identified a previously unappreciated mechanism by which miR-448 orchestrate epigenetic, transcriptional and metabolic networks to promote GC progression, suggesting the possibility of therapeutic intervention against cancer metabolic pathways.


Assuntos
Proteínas F-Box/biossíntese , Regulação Neoplásica da Expressão Gênica/genética , Histona Desmetilases com o Domínio Jumonji/biossíntese , MicroRNAs/metabolismo , Neoplasias Gástricas/genética , Neoplasias Gástricas/patologia , Animais , Regulação para Baixo , Glicólise , Xenoenxertos , Humanos , Estimativa de Kaplan-Meier , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Neoplasias Gástricas/metabolismo
20.
Onco Targets Ther ; 9: 4473-81, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27524904

RESUMO

BACKGROUND: TNFAIP8, also known as TIPE, is a suppressor of apoptosis. High expression of both TIPE mRNA and protein has been detected in various cancer cell lines and clinical specimens compared to healthy tissues. Many reports have shown that there is a strong correlation between TIPE overexpression and cancer progression and poor prognosis in human solid cancers. METHODS: To illustrate the functional and clinical significance of TIPE in gastric cancer, we used reverse transcription polymerase chain reaction, quantitative real-time polymerase chain reaction, and immunohistochemistry to measure TIPE expression in clinical gastric specimens. Then, TIPE expression was knocked down by using shRNA and anti-DR5ScFv, to examine different expressions of TIPE in BGC823 cell lines, while cell proliferation and apoptosis were induced. RESULTS: We found that there was a strong correlation between TIPE expression and TNM stage (P=0.044), tumor depth (P=0.016), lymph node metastasis (P=0.026), and distant metastasis (P=0.045). No significant correlation was found between TIPE expression with the patients' age (P=0.062) or sex (P=0.459). Anti-DR5ScFv induced TIPE depletion both in vitro and in vivo and resulted in apoptosis and suppression of proliferation. CONCLUSION: Our results suggested that TIPE expression was associated with gastric cancer progression, and most importantly, suppressing TIPE expression might be an effective therapeutic strategy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA