RESUMO
High cholesterol is a major risk factor for cardiovascular disease1. Currently, no drug lowers cholesterol through directly promoting cholesterol excretion. Human genetic studies have identified that the loss-of-function Asialoglycoprotein receptor 1 (ASGR1) variants associate with low cholesterol and a reduced risk of cardiovascular disease2. ASGR1 is exclusively expressed in liver and mediates internalization and lysosomal degradation of blood asialoglycoproteins3. The mechanism by which ASGR1 affects cholesterol metabolism is unknown. Here, we find that Asgr1 deficiency decreases lipid levels in serum and liver by stabilizing LXRα. LXRα upregulates ABCA1 and ABCG5/G8, which promotes cholesterol transport to high-density lipoprotein and excretion to bile and faeces4, respectively. ASGR1 deficiency blocks endocytosis and lysosomal degradation of glycoproteins, reduces amino-acid levels in lysosomes, and thereby inhibits mTORC1 and activates AMPK. On one hand, AMPK increases LXRα by decreasing its ubiquitin ligases BRCA1/BARD1. On the other hand, AMPK suppresses SREBP1 that controls lipogenesis. Anti-ASGR1 neutralizing antibody lowers lipid levels by increasing cholesterol excretion, and shows synergistic beneficial effects with atorvastatin or ezetimibe, two widely used hypocholesterolaemic drugs. In summary, this study demonstrates that targeting ASGR1 upregulates LXRα, ABCA1 and ABCG5/G8, inhibits SREBP1 and lipogenesis, and therefore promotes cholesterol excretion and decreases lipid levels.
Assuntos
Receptor de Asialoglicoproteína , Colesterol , Metabolismo dos Lipídeos , Proteínas Quinases Ativadas por AMP/metabolismo , Transportador 1 de Cassete de Ligação de ATP , Membro 5 da Subfamília G de Transportadores de Cassetes de Ligação de ATP , Membro 8 da Subfamília G de Transportadores de Cassetes de Ligação de ATP , Receptor de Asialoglicoproteína/antagonistas & inibidores , Receptor de Asialoglicoproteína/deficiência , Receptor de Asialoglicoproteína/genética , Receptor de Asialoglicoproteína/metabolismo , Assialoglicoproteínas/metabolismo , Atorvastatina/farmacologia , Proteína BRCA1 , Doenças Cardiovasculares/genética , Doenças Cardiovasculares/metabolismo , Colesterol/metabolismo , Sinergismo Farmacológico , Endocitose , Ezetimiba/farmacologia , Humanos , Lipídeos/análise , Lipídeos/sangue , Fígado/metabolismo , Receptores X do Fígado/metabolismo , Lisossomos/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/antagonistas & inibidores , Proteína de Ligação a Elemento Regulador de Esterol 1 , Ubiquitina-Proteína Ligases/metabolismoRESUMO
Hedgehog (Hh) signaling pathway plays a pivotal role in embryonic development. Hh binding to Patched1 (PTCH1) derepresses Smoothened (SMO), thereby activating the downstream signal transduction. Covalent SMO modification by cholesterol in its cysteine-rich domain (CRD) is essential for SMO function. SMO cholesterylation is a calcium-accelerated autoprocessing reaction, and STIM1-ORAI1-mediated store-operated calcium entry promotes cholesterylation and activation of endosome-localized SMO. However, it is unknown whether the Hh-PTCH1 interplay regulates the activity of the endoplasmic reticulum (ER)-localized SMO. Here, we found that PTCH1 inhibited the COPII-dependent export of SMO from the ER, whereas Hh promoted this process. The RRxWxR amino acid motif in the cytosolic tail of SMO was essential for COPII recognition, ciliary localization, and signal transduction activity. Hh and PTCH1 regulated cholesterol modification of the ER-localized SMO, and SMO cholesterylation accelerated its exit from ER. The GRAMD1/ASTER sterol transport proteins facilitated cholesterol transfer to ER from PM, resulting in increased SMO cholesterylation and enhanced Hh signaling. Collectively, we reveal a regulatory role of GRAMD-mediated cholesterol transport in ER-resident SMO maturation and Hh signaling.
Assuntos
Cálcio , Proteínas Hedgehog , Transporte Biológico , Cálcio/metabolismo , Colesterol/metabolismo , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Transdução de Sinais/fisiologia , Receptor Smoothened/genética , Receptor Smoothened/metabolismo , Proteínas de Membrana/metabolismoRESUMO
Hedgehog (Hh) has been known as the only cholesterol-modified morphogen playing pivotal roles in development and tumorigenesis. A major unsolved question is how Hh signaling regulates the activity of Smoothened (SMO). Here, we performed an unbiased biochemical screen and identified that SMO was covalently modified by cholesterol on the Asp95 (D95) residue through an ester bond. This modification was inhibited by Patched-1 (Ptch1) but enhanced by Hh. The SMO(D95N) mutation, which could not be cholesterol modified, was refractory to Hh-stimulated ciliary localization and failed to activate downstream signaling. Furthermore, homozygous SmoD99N/D99N (the equivalent residue in mouse) knockin mice were embryonic lethal with severe cardiac defects, phenocopying the Smo-/- mice. Together, the results of our study suggest that Hh signaling transduces to SMO through modulating its cholesterylation and provides a therapeutic opportunity to treat Hh-pathway-related cancers by targeting SMO cholesterylation.
Assuntos
Colesterol/metabolismo , Proteínas Hedgehog/metabolismo , Transdução de Sinais , Receptor Smoothened/metabolismo , Animais , Células CHO , Cílios/metabolismo , Cricetulus , Regulação da Expressão Gênica no Desenvolvimento , Predisposição Genética para Doença , Células HEK293 , Cardiopatias Congênitas/genética , Cardiopatias Congênitas/metabolismo , Proteínas Hedgehog/genética , Humanos , Camundongos , Camundongos Transgênicos , Mutação , Células NIH 3T3 , Receptor Patched-1/genética , Receptor Patched-1/metabolismo , Fenótipo , Processamento de Proteína Pós-Traducional , Interferência de RNA , Receptor Smoothened/genética , TransfecçãoRESUMO
Cardiac myxoma is the most common primary cardiac tumor in adults. The histogenesis and cellular composition of myxoma are still unclear. This study aims to reveal the role of myxoma cell components and their gene expression in tumor development. We obtained single living cells by enzymatic digestion of tissues from 4 cases of surgically resected cardiac myxoma. Of course, there was 1 case of glandular myxoma and 3 cases of nonglandular myxoma. Then, 10× single-cell sequencing was performed. We identified 12 types and 11 types of cell populations in glandular myxoma and nonglandular myxoma, respectively. Heterogeneous epithelial cells are the main components of glandular myxoma. The similarities and differences in T cells in both glandular and nonglandular myxoma were analyzed by KEGG and GO. The most important finding was that there was active communication between T cells and epithelial cells. These results clarify the possible tissue occurrence and heterogeneity of cardiac myxoma and provide a theoretical basis and guidance for clinical diagnosis and treatment.
Assuntos
Neoplasias Cardíacas , Mixoma , Análise de Célula Única , Humanos , Neoplasias Cardíacas/patologia , Neoplasias Cardíacas/genética , Neoplasias Cardíacas/cirurgia , Neoplasias Cardíacas/metabolismo , Mixoma/patologia , Mixoma/genética , Mixoma/cirurgia , Mixoma/metabolismo , Feminino , Masculino , Pessoa de Meia-Idade , Células Epiteliais/patologia , Células Epiteliais/metabolismo , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Linfócitos T/patologia , Linfócitos T/metabolismo , Idoso , Adulto , Comunicação Celular , Regulação Neoplásica da Expressão Gênica , Transcriptoma , FenótipoRESUMO
AIM: Impaired wound healing in patients with diabetes can develop into nonhealing ulcerations. Because bone marrow mesenchymal stem cells (BMSCs) exosomes can promote wound healing, this study aims to investigate the mechanism of BMSCs-isolated exosomal miR-221-3p in angiogenesis and diabetic wound healing. METHODS: To mimic diabetes in vitro, human umbilical vein endothelial cells (HUVECs) were subjected to high glucose (HG). Exosomes were derived from BMSCs and identified by transmission electron microscopy (TEM), western blot analysis and dynamic light scattering (DLS). The ability to differentiate BMSCs was assessed via Oil red O staining, alkaline phosphatase (ALP) staining and alizarin red staining. The ability to internalise PKH26-labelled exosomes was assessed using confocal microscopy. Migration, cell viability and angiogenesis were tested by scratch, MTT and tube formation assays separately. The miRNA and protein levels were analysed by quantitative reverse transcriptase polymerase chain reaction (qRT-PCR) or western blotting. The relationship among miR-221-3p, FOXP1 and SPRY1 was determined using the dual-luciferase reporter, ChIP and RIP assays. RESULTS: Exosomal miR-221-3p was successfully isolated from BMSCs and delivered into HUVECs. HG was found to suppress the angiogenesis, cell viability and migration of HUVECs and exosomal miR-221-3p separated from BMSCs inhibited the above phenomenon. FOXP1 could transcriptionally upregulate SPRY1, and the silencing of FOXP1 reversed the HG-stimulated angiogenesis inhibition, cell viability and migration in HUVECs via the downregulation of SPRY1. Meanwhile, miR-221-3p directly targeted FOXP1 and the overexpression of FOXP1 reversed the positive effect of exosomal miR-221-3p on HUVEC angiogenesis. CONCLUSION: Exosomal miR-221-3p isolated from BMSCs promoted angiogenesis in diabetic wounds through the mediation of the FOXP1/SPRY1 axis. Furthermore, the findings of this study can provide new insights into probing strategies against diabetes.
Assuntos
Angiogênese , Fatores de Transcrição Forkhead , Células-Tronco Mesenquimais , MicroRNAs , Neovascularização Fisiológica , Proteínas Repressoras , Cicatrização , Humanos , Movimento Celular/genética , Regulação para Baixo , Exossomos/metabolismo , Fatores de Transcrição Forkhead/metabolismo , Fatores de Transcrição Forkhead/genética , Células Endoteliais da Veia Umbilical Humana/metabolismo , Células-Tronco Mesenquimais/metabolismo , MicroRNAs/metabolismo , MicroRNAs/genética , Neovascularização Fisiológica/genética , Proteínas Repressoras/metabolismo , Proteínas Repressoras/genética , Cicatrização/genéticaRESUMO
INTRODUCTION: The aim of this study is to develop a model for predicting the risk of prolonged mechanical ventilation (PMV) following surgical repair of acute type A aortic dissection (AAAD). METHODS: We retrospectively collected clinical data from 381 patients with AAAD who underwent emergency surgery. Clinical features variables for predicting postoperative PMV were selected through univariate analysis, least absolute shrinkage and selection operator regression analysis, and multivariate logistic regression analysis. A risk prediction model was established using a nomogram. The model's accuracy and reliability were evaluated using the area under the curve of the receiver operating characteristic curve and the calibration curve. Internal validation of the model was performed using bootstrap resampling. The clinical applicability of the model was assessed using decision curve analysis and clinical impact curve. RESULTS: Among the 381 patients, 199 patients (52.2%) experienced postoperative PMV. The predictive model exhibited good discriminative ability (area under the curve = 0.827, 95% confidence interval: 0.786-0.868, P < 0.05). The calibration curve confirmed that the predicted outcomes of the model closely approximated the ideal curve, indicating agreement between the predicted and actual results (with an average absolute error of 0.01 based on 1000 bootstrap resampling). The decision curve analysis curve demonstrated that the model has significant clinical value. CONCLUSIONS: The nomogram model established in this study can be used to predict the risk of postoperative PMV in patients with AAAD. It serves as a practical tool to assist clinicians in adjusting treatment strategies promptly and implementing targeted therapeutic measures.
Assuntos
Dissecção Aórtica , Respiração Artificial , Humanos , Reprodutibilidade dos Testes , Estudos Retrospectivos , Dissecção Aórtica/cirurgia , Nomogramas , Stents/efeitos adversosRESUMO
Accumulating evidence shows that the abnormal proliferation and migration of vascular smooth muscle cells (VSMCs) can significantly affect the long-term prognosis of coronary artery bypass grafting. This study aimed to explore the factors affecting the proliferation, migration, and phenotypic transformation of VSMCs. First, we stimulated VSMCs with different platelet-derived growth factor-BB (PDGF-BB) concentrations, analyzed the expression of phenotype-associated proteins by Western blotting, and examined cell proliferation by scratch wound healing and the 5-ethynyl-2-deoxyuridine (EdU) assay. VSMC proliferation was induced most by PDGF-BB treatment at 20 ng/mL. miR-200a-3p decreased significantly in A7r5 cells stimulated with PDGF-BB. The overexpression of miR-200a-3p reversed the downregulation of α-SMA (p < 0.001) and the upregulation of vimentin (p < 0.001) caused by PDGF-BB. CCK8 and EdU analyses showed that miR-200a-3p overexpression could inhibit PDGF-BB-induced cell proliferation (p < 0.001). However, flow cytometric analysis showed that it did not significantly increase cell apoptosis. Collectively, the overexpression of miR-200a-3p inhibited the proliferation and migration of VSMCs induced by PDGF-BB, partly by affecting phenotypic transformation-related proteins, providing a new strategy for relieving the restenosis of vein grafts.
Assuntos
MicroRNAs , Músculo Liso Vascular , Becaplermina/farmacologia , Proliferação de Células , Miócitos de Músculo Liso , Fenótipo , MicroRNAs/genética , Movimento Celular , Células CultivadasRESUMO
Aflatoxin B1 (AFB1) is commonly found in feed ingredients and foods all over the world, posing a significant threat to food safety and public health in animals and humans. Lactobacillus salivarius (L. salivarius) was recorded to improve the intestinal health and performance of chickens. However, whether L. salivarius can alleviate AFB1-induced hepatotoxicity in geese was unknown. A total of 300 Lande geese were randomly assigned to five groups: control group, AFB1 low-dose group (L), L. salivarius+AFB1 low-dose group (LL), AFB1 high dosage groups (H), L. salivarius+AFB1 high dosage groups (LH), respectively. The results showed that the concentrations of ALT, AST, and GGT significantly increased after exposure to AFB1. Similarly, severe damage of hepatic morphology was observed including the hepatic structure injury and inflammatory cell infiltration. The oxidative stress was evidenced by the elevated concentrations of MDA, and decreased activities of GSH-Px, GSH and SOD. The observation of immunofluorescence, real-time PCR, and western blotting showed that the expression of PINK1 and the value of LC3II/LC3I were increased, but that of p62 significantly decreased after AFB1 exposure. Moreover, the supplementation of L. salivarius effectively improved the geese performance, ameliorated AFB1-induced oxidative stress, inhibited mitochondrial mitophagy and enhanced the liver restoration to normal level. The present study demonstrated that L. salivarius ameliorated AFB1-induced the hepatotoxicity by decreasing the oxidative stress, and regulating the expression of PINK1/Parkin-mediated mitophagy in the mitochondria of the geese liver. Furthermore, this investigation suggested that L. salivarius might serve as a novel and safe additive for preventing AFB1 contamination in poultry feed.
Assuntos
Aflatoxina B1 , Gansos , Ligilactobacillus salivarius , Fígado , Mitofagia , Proteínas Quinases , Ubiquitina-Proteína Ligases , Animais , Aflatoxina B1/toxicidade , Mitofagia/efeitos dos fármacos , Ubiquitina-Proteína Ligases/metabolismo , Ligilactobacillus salivarius/fisiologia , Fígado/efeitos dos fármacos , Fígado/patologia , Proteínas Quinases/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/prevenção & controle , Doença Hepática Induzida por Substâncias e Drogas/patologia , Estresse Oxidativo/efeitos dos fármacos , Probióticos/farmacologiaRESUMO
AIMS: Experiments confirmed that circular RNAs contributed to the pathogenesis of diabetic foot ulcers (DFUs). CircHIPK3 was upregulated in type 2 diabetes mellitus (T2DM), but its role in DFU remained unknown. Our study aimed to investigate the regulatory functions of exosomal circHIPK3 and its potential mechanisms in DFU. METHODS: Exosomal size and distribution, marker proteins, and circHIPK3 levels were evaluated by transmission electron microscope, ExoView R200, western blot, and qRT-PCR. Flow cytometry, MTT, Wound healing assays, and tube formation assays were used to assess the roles of exosomal circHIPK3 in high glucose (HG)-treated human umbilical vein endothelial cells (HUVECs). The relationships between Nrf2/VEGFA/circHIPK3 and miR-20b-5p, and between Nrf2 and VEGFA were determined by luciferase reporter assay and RNA immunoprecipitation. We used cell and mice models to investigate the mechanisms of exosomal circHIPK3 under diabetic conditions. RESULTS: CircHIPK3 was significantly upregulated in exo-circHIPK3 rather than exo-vector. Exo-circHIPK3 remarkably inhibited cell apoptosis but promoted cell proliferation, migration, and tube formation in HG-treated HUVECs. Luciferase reporter and RIP assays showed that miR-20b-5p targeted and inhibited Nrf2 and VEGFA, and circHIPK3 acted as a ceRNA of miR-20b-5p to inhibit the binding to its downstream genes Nrf2 and VEGFA. Mechanistically, circHIPK3 promoted cell proliferation, migration, and angiogenesis via downregulating miR-20b-5p to upregulate Nrf2 and VEGFA. However, the overexpressed miR-20b-5p could abolish the promoting effects of circHIPK3 overexpression on cell proliferation, migration, and tube formation under HG conditions. CONCLUSION: UCMSCs-derived exosomal circHIPK3 protected HG-treated HUVECs via miR-20b-5p/Nrf2/VEGFA axis. The exosomal circHIPK3 might be a therapeutic candidate to treat DFU.
Assuntos
Diabetes Mellitus Tipo 2 , MicroRNAs , Humanos , Camundongos , Animais , MicroRNAs/genética , MicroRNAs/metabolismo , MicroRNAs/farmacologia , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Fator 2 Relacionado a NF-E2/farmacologia , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Células Endoteliais da Veia Umbilical Humana/metabolismo , Proliferação de Células/genética , Fator A de Crescimento do Endotélio VascularRESUMO
Keloid is a common dermis tumor, occurring repeatedly, affecting the quality of patients' life. Long non-coding RNAs (lncRNAs) have crucial regulatory capacities in skin scarring formation and subsequent scar carcinogenesis. The intention of this study was to investigate the mechanism and function of GNAS antisense-1 (GNAS-AS1) in keloids. Clinical samples were collected to evaluate the expression of GNAS-AS1, RUNX2, and miR-188-5p by qRT-PCR. The proliferation, migration, and invasion of HKF cells were detected by CCK-8, wound healing, and Transwell assays. The expression levels of mRNA and protein were examined through qRT-PCR and Western blot assay. Luciferase reporter assay was used to identify the binding relationship among GNAS-AS1, miR-188-5p, and Runt-related transcription factor 2 (RUNX2). GNAS-AS1 and RUNX2 expressions were remarkably enhanced, and miR-188-5p expression was decreased in keloid clinical tissues and HKF cells. GNAS-AS1 overexpression promoted cells proliferation, migration, and invasion, while GNAS-AS1 knockdown had the opposite trend. Furthermore, overexpression of GNAS-AS1 reversed the inhibitory effect of 5-FU on cell proliferation, migration, and invasion. MiR-188-5p inhibition or RUNX2 overexpression could enhance the proliferation, migration, and invasion of HKF cells. GNAS-AS1 targeted miR-188-5p to regulate RUNX2 expression. In addition, the inhibition effects of GNAS-AS1 knockdown on HKF cells could be reversed by inhibition of miR-188-5p or overexpression of RUNX2, while RUNX2 overexpression eliminated the suppressive efficaciousness of miR-188-5p mimics on HKF cells growth. GNAS-AS1 knockdown could regulate the miR-188-5p/RUNX2 signaling axis to inhibit the growth and migration in keloid cells. It is suggested that GNAS-AS1 may become a new target for the prevention and treatment of keloid.
Assuntos
Queloide , MicroRNAs , RNA Longo não Codificante , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Queloide/genética , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Subunidade alfa 1 de Fator de Ligação ao Core/genética , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/genética , Movimento Celular/genética , Regulação Neoplásica da Expressão Gênica , Cromograninas/genética , Cromograninas/metabolismo , Subunidades alfa Gs de Proteínas de Ligação ao GTP/genética , Subunidades alfa Gs de Proteínas de Ligação ao GTP/metabolismoRESUMO
Epidermal growth factor receptor variant III (EGFRvIII) is a mutant isoform of EGFR with a deletion of exons 2-7 making it insensitive to EGF stimulation and downstream signal constitutive activation. However, the mechanism underlying the stability of EGFRvIII remains unclear. Based on CRISPR-Cas9 library screening, we found that mucin1 (MUC1) is essential for EGFRvIII glioma cell survival and temozolomide (TMZ) resistance. We revealed that MUC1-C was upregulated in EGFRvIII-positive cells, where it enhanced the stability of EGFRvIII. Knockdown of MUC1-C increased the colocalization of EGFRvIII and lysosomes. Upregulation of MUC1 occurred in an NF-κB dependent manner, and inhibition of the NF-κB pathway could interrupt the EGFRvIII-MUC1 feedback loop by inhibiting MUC1-C. In a previous report, we identified AC1Q3QWB (AQB), a small molecule that could inhibit the phosphorylation of NF-κB. By screening the structural analogs of AQB, we obtained EPIC-1027, which could inhibit the NF-κB pathway more effectively. EPIC-1027 disrupted the EGFRvIII-MUC1-C positive feedback loop in vitro and in vivo, inhibited glioma progression, and promoted sensitization to TMZ. In conclusion, we revealed the pivotal role of MUC1-C in stabilizing EGFRvIII in glioblastoma (GBM) and identified a small molecule, EPIC-1027, with great potential in GBM treatment.
Assuntos
Neoplasias Encefálicas , Glioblastoma , Glioma , Humanos , Temozolomida/farmacologia , Glioblastoma/tratamento farmacológico , Glioblastoma/genética , Glioblastoma/metabolismo , NF-kappa B/metabolismo , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Linhagem Celular Tumoral , Mucina-1/genéticaRESUMO
Autosomal dominant polycystic kidney disease (ADPKD) is the most common inherited kidney disease. Cyst development in ADPKD involves abnormal epithelial cell proliferation, which is affected by the primary cilia-mediated signal transduction in the epithelial cells. Thus, primary cilium has been considered as a therapeutic target for ADPKD. Since ADPKD exhibits many pathological features similar to solid tumors, we investigated whether targeting primary cilia using anti-tumor agents could alleviate the development of ADPKD. Twenty-four natural compounds with anti-tumor activity were screened in MDCK cyst model, and 1-Indanone displayed notable inhibition on renal cyst growth without cytotoxicity. This compound also inhibited cyst development in embryonic kidney cyst model. In neonatal kidney-specific Pkd1 knockout mice, 1-Indanone remarkably slowed down kidney enlargement and cyst expansion. Furthermore, we demonstrated that 1-Indanone inhibited the abnormal elongation of cystic epithelial cilia by promoting tubulin polymerization and significantly down-regulating expression of anterograde transport motor protein KIF3A and IFT88. Moreover, we found that 1-Indanone significantly down-regulated ciliary coordinated Wnt/ß-catenin, Hedgehog signaling pathways. These results demonstrate that 1-Indanone inhibits cystic cell proliferation by reducing abnormally prolonged cilia length in cystic epithelial cells, suggesting that 1-Indanone may hold therapeutic potential to retard cyst development in ADPKD.
Assuntos
Cistos , Rim Policístico Autossômico Dominante , Camundongos , Animais , Rim Policístico Autossômico Dominante/tratamento farmacológico , Rim Policístico Autossômico Dominante/metabolismo , Rim Policístico Autossômico Dominante/patologia , Cílios , Tubulina (Proteína)/metabolismo , Proteínas Hedgehog/metabolismo , Rim/patologia , Camundongos Knockout , Cistos/metabolismo , Cistos/patologia , Canais de Cátion TRPP/metabolismo , Células Epiteliais/metabolismoRESUMO
PURPOSE: CPAP is the "gold standard" treatment for obstructive sleep apnea (OSA). Current CPAP models have developed additional functions including automatic CPAP and pressure relief. However, CPAP adherence has not improved over the last three decades. Many patients in low-income countries cannot afford these CPAP devices. A novel simple CPAP device with a fixed pressure without pressure controller was developed. METHODS: Manual CPAP pressure titration was performed in 127 patients with OSA. Six patients with a titration pressure higher than 11 cmH2O and 14 patients who could not tolerate CPAP were excluded, leaving 107 participating in the following 2 studies. In study one, 54 of 107 patients were treated by both conventional fixed CPAP and simple CPAP in random order. In the second study, another 53 patients were treated by both autoCPAP in automatic function and simple CPAP in random order. Simple CPAP was fixed at 10 cmH2O, 8 cmH2O, and 6 cmH2O for patients whose titration pressure was between 9-10, 7-8, and ≤ 6 cmH2O, respectively. Conventional fixed CPAP device was set exactly the same as manual titration pressure. RESULTS: All patients whose manual titration pressure ≤ 10 cmH2O were effectively treated by simple CPAP (AHI 40.7 ± 2.3 events/h before vs 2.5 ± 0.3 events/h after, p < 0.001). Patients expressed similar preferences for simple CPAP, autoCPAP, and conventional fixed CPAP (p > 0.05). CONCLUSIONS: We conclude that a novel simple CPAP is an alternative treatment for most patients with OSA, which may widen access to CPAP therapy in the developing countries because of its low cost.
Assuntos
Apneia Obstrutiva do Sono , Humanos , Polissonografia , Apneia Obstrutiva do Sono/terapia , Pressão Positiva Contínua nas Vias AéreasRESUMO
Alzheimer's Disease is considered as an insidious neurodegenerative progressive disease but its pathogenesis has not been elucidated. Acoritataninowii Rhizoma exhibits anti-dementia effects as a traditional Chinese medicine (TCM), which is linked to its anti- Alzheimer's Disease mechanism. In this study, network pharmacology and molecular docking were used to examine the potential of Acoritataninowii Rhizoma for Alzheimer's Disease. In order to construct PPI networks and drug-component-target-disease networks, disease-related genes and proteins were gathered from the database. Gene ontology (GO), pathway enrichment (KEGG), and molecular docking were used to forecast the potential mechanism of Acoritataninowii Rhizoma on Alzheimer's disease. Therefore, 4 active ingredients and 81 target genes were screened from Acoritataninowii Rhizoma, 6765 specific target genes were screened from Alzheimer's Disease, and 61 drug-disease cross genes were validated. GO analysis showed that Acoritataninowii Rhizoma can regulate processes such as the protein serine/threonine kinase associated with MAPK. KeGG pathway analysis showed that the signaling pathways affected by Acoritataninowii Rhizoma were fluid shear stress and atherosclerosis, AGE-RAGE and other pathways. Molecular docking implied that the pharmacological influences of the bioactive constituents of Acoritataninowii Rhizoma (Cycloaartenol and kaempferol) on Alzheimer's Disease may related to ESR1 and AKT1, respectively. AKT1 and ESR1 may be the core target genes of the treatment for Alzheimer's disease. Kaempferol and Cycloartenol might be core bioactive constituents for treatment.
Assuntos
Doença de Alzheimer , Aterosclerose , Humanos , Doença de Alzheimer/tratamento farmacológico , Simulação de Acoplamento Molecular , Quempferóis/farmacologia , Farmacologia em RedeRESUMO
The purpose of the present study was to determine the role of inositol 1,4,5-trisphosphate receptor 3 (IP3R3) in renal cyst development in autosomal dominant polycystic kidney disease (ADPKD). 2-aminoethoxy-diphenyl borate (2-APB) and shRNA were used to suppress the expression of IP3R3. The effect of IP3R3 on cyst growth was investigated in Madin-Darby canine kidney (MDCK) cyst model, embryonic kidney cyst model and kidney specific Pkd1 knockout (PKD) mouse model. The underlying mechanism of IP3R3 in promoting renal cyst development was investigated by Western blot and immunofluorescence staining. The results showed that the expression level of IP3R3 was significantly increased in the kidneys of PKD mice. Inhibiting IP3R3 by 2-APB or shRNA significantly retarded cyst expansion in MDCK cyst model and embryonic kidney cyst model. Western blot and immunofluorescence staining results showed that hyperactivated cAMP-PKA signaling pathway in the growth process of ADPKD cyst promoted the expression of IP3R3, which was accompanied by a subcellular redistribution process in which IP3R3 was translocated from endoplasmic reticulum to intercellular junction. The abnormal expression and subcellular localization of IP3R3 further promoted cyst epithelial cell proliferation by activating MAPK and mTOR signaling pathways and accelerating cell cycle. These results suggest that the expression and subcellular distribution of IP3R3 are involved in promoting renal cyst development, which implies IP3R3 as a potential therapeutic target of ADPKD.
Assuntos
Cistos , Doenças Renais Policísticas , Rim Policístico Autossômico Dominante , Animais , Cães , Camundongos , Cistos/tratamento farmacológico , Cistos/genética , Receptores de Inositol 1,4,5-Trifosfato/genética , Receptores de Inositol 1,4,5-Trifosfato/farmacologia , Rim/metabolismo , Doenças Renais Policísticas/tratamento farmacológico , Doenças Renais Policísticas/genética , Doenças Renais Policísticas/metabolismo , Rim Policístico Autossômico Dominante/genética , Rim Policístico Autossômico Dominante/tratamento farmacológico , Células Madin Darby de Rim CaninoRESUMO
Hepatocellular carcinoma (HCC) is a cancer with extremely high mortality. Epithelial-mesenchymal transition (EMT) may play an important role in the occurrence, invasion and prognosis of HCC; however, its relationship with immunity in HCC has not yet been studied. Therefore, we investigated the diagnostic and prognostic values of EMT and explored its potential connections with tumorigenic immune infiltrates in HCC. We first proposed a quantitative metric of EMT activity, the EMT score. After applying this metric to 20 datasets from the Integrative Molecular Database of Hepatocellular Carcinoma, the Cancer Genome Atlas, and the Gene Expression Omnibus, we explored the ability of the EMT score to stratify across sample types. We then applied the EMT score for survival analysis and to differentiate patients with/without vascular invasion to test its prognostic value. We also collected and calculated data on the abundance of immune cells and immune cell markers in HCC and investigated their correlations with EMT scores. Finally, we synthesized and analyzed 20 datasets and constructed an EMT-gene-immune linkage network. The results showed higher EMT scores in HCC samples than in cirrhotic and normal livers. The cases with higher EMT scores also showed poorer performance in terms of prognostic factors such as vascular invasion and overall survival time. Our research demonstrated a broad correlation between EMT and the tumor immune microenvironment, and we uncovered multiple potential linkers associated with both EMT and immunity. Studying EMT has clinical relevance and high diagnostic and prognostic value for HCC.
Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Biomarcadores Tumorais/genética , Carcinogênese , Carcinoma Hepatocelular/diagnóstico , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Linhagem Celular Tumoral , Transição Epitelial-Mesenquimal/genética , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Hepáticas/patologia , Prognóstico , Microambiente TumoralRESUMO
Molecular ferroelectrics (MFs) have been proven to demonstrate excellent properties even comparable to those of inorganic counterparts usually with heavy metals. However, the validation of their device applications is still at the infant stage. The polycrystalline feature of conventionally obtained MF films, the patterning challenges for microelectronics and the brittleness of crystalline films significantly hinder their development for organic integrated circuits, as well as emerging flexible electronics. Here, a large-area flexible memory array is demonstrated of oriented molecular ferroelectric single crystals (MFSCs) with nearly saturated polarization. Highly-uniform MFSC arrays are prepared on large-scale substrates including Si wafers and flexible substrates using an asymmetric-wetting and microgroove-assisted coating (AWMAC) strategy. Resultant flexible memory arrays exhibit excellent nonvolatile memory properties with a low-operating voltage of <5 V, i.e., nearly saturated ferroelectric polarization (6.5 µC cm-2 ), and long bending endurance (>103 ) under various bending radii. These results may open an avenue for scalable flexible MF electronics with high performance.
RESUMO
PURPOSE: We evaluated quality of life (QoL) in pregnant women who underwent transthoracic echocardiography-guided percutaneous closure of atrial septal defect (ASD). METHODS: A total of 45 pregnant women underwent transthoracic echocardiography-guided percutaneous closure of ASD. We assessed QoL using the 36-Item Short Form Survey (SF-36) and compared results between pre- and post-procedure patients, as well as between those with ASD and healthy women in their second and third trimesters of pregnancy. RESULTS: All patients showed improved right ventricular function and were classified as Class I, post-procedure. Mean SF-36 scores of the post-procedure group were better on all sub-scales than those of the pre-procedure group (p < 0.05), with the exception of role-emotional and mental health. Mean SF-36 scores for the pre-procedure group were also lower on all sub-scales than those of healthy pregnant controls (p < 0.05), with the exception of role physical, role emotional, and mental health. There was no difference between the post-procedure group and healthy pregnant controls. In a subgroup analysis, scores were better in some dimensions (social functioning and role emotional) for post-procedure patients in the 31-40 years of age group and the group on their second or third pregnancies than those of the 20-30 years of age group and the group on their first pregnancies (p < 0.05). CONCLUSION: After closure of ASD, QoL in pregnant women was improved. In a subgroup analysis, the younger women and those on their first pregnancy performed more poorly in some dimensions (social functioning and role emotional); this suggested that these groups should receive more proactive intervention.
Limited data was available on the general quality of life (QoL) in pregnant women with atrial septal defect (ASD), even though the condition could produce anxiety over health of the pregnancy and fetus. The percutaneous closure procedure was available for ASD during pregnancy; however, pregnant women were often concerned that the required X-rays would harm the fetus. A safe and effective procedure, percutaneous closure of ASD guided by transthoracic echocardiography, was widely used for this condition. This study used the 36-Item Short Form Survey (SF-36) to assess QoL in pregnant women with ASD pre- and post-procedure and compared the results to those of healthy pregnant women at a similar stage of pregnancy. Post-procedure QoL in pregnant women with ASD was improved; however, the younger women and those on their first pregnancy performed more poorly in some dimensions (social functioning and role emotional). Our results suggested that these groups should receive more proactive intervention.
Assuntos
Comunicação Interatrial , Dispositivo para Oclusão Septal , Gravidez , Feminino , Humanos , Adulto Jovem , Adulto , Qualidade de Vida , Cateterismo Cardíaco/métodos , Comunicação Interatrial/diagnóstico por imagem , Comunicação Interatrial/terapia , Ecocardiografia , Inquéritos e Questionários , Resultado do TratamentoRESUMO
Bupleurum chinense DC. (Chaihu) is a traditional Chinese medicine (TCM) used in the treatment of anxiety. But the anxiolytic mechanisms of bupleurum are still unclear. Therefore, this unknown is predicted by network pharmacology study with molecular docking in the present study. The components of bupleurum were obtained from the databases. Genes associated with components and disease were also provided by databases. Overlapping genes between components and disease were analyzed. The network of medicine-components-targets-disease was constructed, visualized, and analyzed. Protein-protein interaction (PPI), gene ontology (GO), pathway enrichment (KEGG) and molecular docking were conducted to predict the potential mechanisms of bupleurum on anxiety. A total of 9 bioactive components derived from bupleurum with 80 target genes were involved in anxiety. Neurotransmitter receptor activity, G protein-coupled amine receptor activity, regulation of blood circulation, neuroactive ligand-receptor interaction, calcium signaling pathway and salivary secretion may play significant roles in the anxiolytic of bupleurum. Molecular docking implicated that ACHE and MAOA showed high affinity for stigmasterol. Based on network pharmacology study with molecular docking, multi-component-multi-target-multi-pathway action mode of bupleurum on anxiety was elaborated. Stigmasterol might be the core bioactive component, while ACHE and MAOA might be the core target genes in the pharmacological profile of bupleurum on anxiety.
Assuntos
Ansiolíticos , Bupleurum , Medicamentos de Ervas Chinesas , Estigmasterol/farmacologia , Ansiolíticos/farmacologia , Ansiolíticos/uso terapêutico , Ansiedade/tratamento farmacológico , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico , Simulação de Acoplamento Molecular , Farmacologia em Rede , Estigmasterol/químicaRESUMO
About 350 million people worldwide suffered from depression, but less than half of the patients received effective and regular treatments. Traditional Chinese Medicine (TCM) such as pinellia has been proven effective for antidepressant treatment with fewer side effects. However, the exact mechanisms remain unclear. Herein, we use the methods of network pharmacology and molecular docking to analyze the effective monomer components of pinellia and reveal the involved signaling pathways to produce antidepressant effects. TCMSP, BATMAN-TCM, and TCMID databases were utilized to analyze the bioactive ingredients and target genes derived from pinellia via the screening the molecular weight (MW), oral bioavailability (OB), blood-brain barrier (BBB) and drug similarity (DL). OMIM, TTD, DisGeNET, GeneCards and DrugBank databases were used to obtain key genes of depression. Then, the networks of protein-protein interaction (PPI) and "medicine-ingredients-targets-pathways" were built. The target signaling pathways were enriched by GO and KEGG by using R language. Furthermore, bioactive ingredients binding of the targets were verified by molecular docking. Nine active monomer ingredients and 96 pivotal gene targets were selected from pinellia. 10,124 disease genes and 87 drug-disease intersecting genes were verified. GO analysis proposed that the receptor activity of neurotransmitter, postsynaptic neurotransmitter, G protein-coupled neurotransmitter, and acetylcholine through the postsynaptic membrane could be modulated by pinellia. KEGG pathway analysis revealed that pinellia influenced depression-related neural tissue interaction, cholinergic synapse, serotonin activated synapse and calcium signaling pathway. Besides, the reliability and accuracy of results obtained from the indirect network pharmacology were validated by molecular docking. The bioactive components of pinellia made significant antidepressant effects by regulating the key target genes/proteins in the pathophysiology of depression.