Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(23): e2407437121, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38814864

RESUMO

The accessory protease transmembrane protease serine 2 (TMPRSS2) enhances severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) uptake into ACE2-expressing cells, although how increased entry impacts downstream viral and host processes remains unclear. To investigate this in more detail, we performed infection assays in engineered cells promoting ACE2-mediated entry with and without TMPRSS2 coexpression. Electron microscopy and inhibitor experiments indicated TMPRSS2-mediated cell entry was associated with increased virion internalization into endosomes, and partially dependent upon clathrin-mediated endocytosis. TMPRSS2 increased panvariant uptake efficiency and enhanced early rates of virus replication, transcription, and secretion, with variant-specific profiles observed. On the host side, transcriptional profiling confirmed the magnitude of infection-induced antiviral and proinflammatory responses were linked to uptake efficiency, with TMPRSS2-assisted entry boosting early antiviral responses. In addition, TMPRSS2-enhanced infections increased rates of cytopathology, apoptosis, and necrosis and modulated virus secretion kinetics in a variant-specific manner. On the virus side, convergent signatures of cell-uptake-dependent innate immune induction were recorded in viral genomes, manifesting as switches in dominant coupled Nsp3 residues whose frequencies were correlated to the magnitude of the cellular response to infection. Experimentally, we demonstrated that selected Nsp3 mutations conferred enhanced interferon antagonism. More broadly, we show that TMPRSS2 orthologues from evolutionarily diverse mammals facilitate panvariant enhancement of cell uptake. In summary, our study uncovers previously unreported associations, linking cell entry efficiency to innate immune activation kinetics, cell death rates, virus secretion dynamics, and convergent selection of viral mutations. These data expand our understanding of TMPRSS2's role in the SARS-CoV-2 life cycle and confirm its broader significance in zoonotic reservoirs and animal models.


Assuntos
COVID-19 , Imunidade Inata , SARS-CoV-2 , Serina Endopeptidases , Internalização do Vírus , SARS-CoV-2/imunologia , SARS-CoV-2/fisiologia , SARS-CoV-2/metabolismo , Humanos , Serina Endopeptidases/metabolismo , Serina Endopeptidases/genética , COVID-19/virologia , COVID-19/imunologia , COVID-19/metabolismo , Enzima de Conversão de Angiotensina 2/metabolismo , Enzima de Conversão de Angiotensina 2/genética , Replicação Viral , Animais , Endocitose , Células HEK293 , Chlorocebus aethiops , Citologia
2.
Gut ; 72(5): 972-983, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36707234

RESUMO

OBJECTIVES: A major goal of curative hepatitis B virus (HBV) treatments is the reduction or inactivation of intrahepatic viral covalently closed circular DNA (cccDNA). Hence, precise cccDNA quantification is essential in preclinical and clinical studies. Southern blot (SB) permits cccDNA visualisation but lacks sensitivity and is very laborious. Quantitative PCR (qPCR) has no such limitations but inaccurate quantification due to codetection of viral replicative intermediates (RI) can occur. The use of different samples, preservation conditions, DNA extraction, nuclease digestion methods and qPCR strategies has hindered standardisation. Within the ICE-HBV consortium, available and novel protocols for cccDNA isolation and qPCR quantification in liver tissues and cell cultures were compared in six laboratories to develop evidence-based guidance for best practices. DESIGN: Reference material (HBV-infected humanised mouse livers and HepG2-NTCP cells) was exchanged for cross-validation. Each group compared different DNA extraction methods (Hirt extraction, total DNA extraction with or without proteinase K treatment (+PK/-PK)) and nuclease digestion protocols (plasmid-safe ATP-dependent DNase (PSD), T5 exonuclease, exonucleases I/III). Samples were analysed by qPCR and SB. RESULTS: Hirt and -PK extraction reduced coexisting RI forms. However, both cccDNA and the protein-free relaxed circular HBV DNA (pf-rcDNA) form were detected by qPCR. T5 and Exo I/III nucleases efficiently removed all RI forms. In contrast, PSD did not digest pf-rcDNA, but was less prone to induce cccDNA overdigestion. In stabilised tissues (eg, Allprotect), nucleases had detrimental effects on cccDNA. CONCLUSIONS: We present here a comprehensive evidence-based guidance for optimising, controlling and validating cccDNA measurements using available qPCR assays.


Assuntos
DNA Circular , Vírus da Hepatite B , Animais , Camundongos , Humanos , Vírus da Hepatite B/genética , DNA Circular/genética , Fígado , Reação em Cadeia da Polimerase/métodos , Células Hep G2 , DNA Viral/genética
3.
Sleep Breath ; 26(4): 1947-1951, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-34997900

RESUMO

OBJECTIVE: To investigate the positive impact of e-aid cognitive behavioural therapy on the sleep quality, anxiety, and depression of nurses on site during the COVID-19 pandemic. METHODS: Nurses on site at the Tianjin Medical University General Hospital Airport Site experiencing insomnia, anxiety and depression during the COVID-19 prevention and control period, from February 2020 to April 2021, were selected and divided into either an e-aid cognitive behavioural therapy (eCBT-I) group or a control group using a randomized grouping method. The eCBT-I group was given standard eCBT-I for 6 weeks; the control group did not get any intervention. The Pittsburgh Sleep Quality Index (PSQI) and the Insomnia Severity Index (ISI) were used to evaluate the sleep quality of the subjects. The Generalized Anxiety Disorder 7-item (GAD-7) and the Patient Health Questionnaire (PHQ-9) were used to assess the subjects' anxiety and depression. Changes in sleep quality, anxiety and depression before and after treatment were compared between the two groups. RESULTS: Of 118 nurses randomized, the PSQI and ISI scores within the eCBT-I group (n=60) were significantly lower after treatment (5.9 ± 3.9, 6.7 ± 4.5) than before treatment (10.4 ± 3.5, 12.4 ± 4.7) (p <0.05). Compared to the scores of the control group (n=58) (9.1 ± 3.9, 10.6 ± 4.1), the PSQI and ISI scores in the eCBT-I group (5.9 ± 3.9, 6.7 ± 4.5) were lower after treatment (p <0.05). The GAD-7 and PHQ-9 scores in the eCBT-I group were all lower after treatment (3.7±3.4, 4.2±4.1) than before treatment (6.7±4.9, 7.7±5.1) (p <0.05). Compared with subjects in the control group (7.1±5.6, 7.3±5.1), subjects in the eCBT-I group (3.7±3.4, 4.2±4.1) had lower scores on the GAD-7 and PHQ-9 scales after treatment (p <0.05). CONCLUSION: eCBT-I improved the sleep quality of frontline nurses during the COVID-19 prevention and control period and relieved anxiety and depression.


Assuntos
COVID-19 , Terapia Cognitivo-Comportamental , Distúrbios do Início e da Manutenção do Sono , Humanos , Pandemias , Distúrbios do Início e da Manutenção do Sono/terapia , Qualidade do Sono , Terapia Cognitivo-Comportamental/métodos , Ansiedade/terapia , Ansiedade/psicologia
4.
Gastroenterology ; 154(6): 1791-1804.e22, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29410097

RESUMO

BACKGROUND & AIMS: Hepatitis C virus (HCV) infection is sensitive to interferon (IFN)-based therapy, whereas hepatitis B virus (HBV) infection is not. It is unclear whether HBV escapes detection by the IFN-mediated immune response or actively suppresses it. Moreover, little is known on how HBV and HCV influence each other in coinfected cells. We investigated interactions between HBV and the IFN-mediated immune response using HepaRG cells and primary human hepatocytes (PHHs). We analyzed the effects of HBV on HCV replication, and vice versa, at the single-cell level. METHODS: PHHs were isolated from liver resection tissues from HBV-, HCV-, and human immunodeficiency virus-negative patients. Differentiated HepaRG cells overexpressing the HBV receptor sodium taurocholate cotransporting polypeptide (dHepaRGNTCP) and PHHs were infected with HBV. Huh7.5 cells were transfected with circular HBV DNA genomes resembling viral covalently closed circular DNA (cccDNA), and subsequently infected with HCV; this served as a model of HBV and HCV coinfection. Cells were incubated with IFN inducers, or IFNs, and antiviral response and viral replication were analyzed by immune fluorescence, reverse-transcription quantitative polymerase chain reaction, enzyme-linked immunosorbent assays, and flow cytometry. RESULTS: HBV infection of dHepaRGNTCP cells and PHHs neither activated nor inhibited signaling via pattern recognition receptors. Incubation of dHepaRGNTCP cells and PHHs with IFN had little effect on HBV replication or levels of cccDNA. HBV infection of these cells did not inhibit JAK-STAT signaling or up-regulation of IFN-stimulated genes. In coinfected cells, HBV did not prevent IFN-induced suppression of HCV replication. CONCLUSIONS: In dHepaRGNTCP cells and PHHs, HBV evades the induction of IFN and IFN-induced antiviral effects. HBV infection does not rescue HCV from the IFN-mediated response.


Assuntos
Antivirais/farmacologia , Hepacivirus/imunologia , Vírus da Hepatite B/imunologia , Hepatócitos/imunologia , Imunidade Inata/imunologia , Interferons/farmacologia , Coinfecção/tratamento farmacológico , Coinfecção/imunologia , Coinfecção/virologia , DNA Viral/efeitos dos fármacos , DNA Viral/imunologia , Hepacivirus/efeitos dos fármacos , Hepacivirus/genética , Hepatite B/tratamento farmacológico , Hepatite B/imunologia , Hepatite B/virologia , Vírus da Hepatite B/efeitos dos fármacos , Vírus da Hepatite B/genética , Hepatite C/tratamento farmacológico , Hepatite C/imunologia , Hepatite C/virologia , Hepatócitos/efeitos dos fármacos , Hepatócitos/virologia , Humanos , Fígado/citologia , Fígado/imunologia , Fígado/virologia , Replicação Viral/efeitos dos fármacos
5.
J Virol ; 92(23)2018 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-30232183

RESUMO

Chronic infection with the human hepatitis B virus (HBV) is a major health problem. Virus persistence requires the establishment and maintenance of covalently closed circular DNA (cccDNA), the episomal virus template in the nucleus of infected hepatocytes. Compared to replicative DNA intermediates (relaxed circular DNA [rcDNA]), copy numbers of cccDNA in infected hepatocytes are low. Accordingly, accurate analyses of cccDNA require enrichment of nuclear fractions and Southern blotting or selective quantitative PCR (qPCR) methods allowing discrimination of cccDNA and rcDNA. In this report, we analyzed cccDNA-specific primer pairs for their ability to amplify cccDNA selectively. Using mixtures of defined forms of HBV and genomic DNA, we determined the potential of different nucleases for targeted digestion of the open/relaxed circular DNA forms in the absence and presence of genomic DNA without affecting cccDNA. We found that the combination of T5 exonuclease with a primer set amplifying an approximately 1-kb fragment permits reliable quantification of cccDNA without the requirement of prior nucleus enrichment or Hirt extraction. We tested this method in four different in vitro infection systems and quantified cccDNA copy numbers at increasing multiplicities of inoculated genome equivalents. We further analyzed the kinetics of cccDNA formation and the effect of drugs (interferon, entry inhibitors, and capsid inhibitors) on cccDNA. Our method allows reliable cccDNA quantification at early stages of infection in the presence of a high excess of input virus and replicative intermediates and is thereby suitable for drug screening and investigation of cccDNA formation and maintenance.IMPORTANCE cccDNA elimination is a major goal in future curative regimens for chronic HBV patients. However, PCR-based assays for cccDNA quantification show a principally constrained specificity when high levels of input virus or replicative intermediates are present. Here, we characterized T5 exonuclease as a suitable enzyme for medium-throughput in vitro assays that preserves cccDNA but efficiently removes rcDNA prior to PCR-based quantification. We compared T5 exonuclease with the previously described exonuclease III and showed that both nucleases are suitable for reliable quantification of cccDNA by PCR. We substantiated the applicability of our method through examination of early cccDNA formation and stable accumulation in several in vitro infection models and analyzed cccDNA stability after administration of anti-HBV drugs. Our results support the use of T5 exonuclease for fast and convenient rcDNA removal, especially for early cccDNA quantification and rapid drug testing in in vitro studies.


Assuntos
Antivirais/farmacologia , DNA Circular/análise , DNA Viral/metabolismo , Exonucleases/metabolismo , Vírus da Hepatite B/genética , Hepatite B Crônica/genética , Reação em Cadeia da Polimerase/métodos , Replicação do DNA , DNA Circular/genética , DNA Circular/metabolismo , DNA Viral/genética , Células Hep G2 , Vírus da Hepatite B/metabolismo , Hepatite B Crônica/tratamento farmacológico , Hepatite B Crônica/virologia , Hepatócitos/citologia , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Hepatócitos/virologia , Humanos , Hidrólise , Replicação Viral
6.
Hepatology ; 66(3): 703-716, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28195359

RESUMO

Infections with the human hepatitis B virus (HBV) and hepatitis D virus (HDV) depend on species-specific host factors like the receptor human sodium taurocholate cotransporting polypeptide (hNTCP). Complementation of mouse hepatocytes with hNTCP confers susceptibility to HDV but not HBV, indicating the requirement of additional HBV-specific factors. As an essential premise toward the establishment of an HBV-susceptible animal model, we investigated the role of hNTCP as a limiting factor of hepatocytes in commonly used laboratory animals. Primary hepatocytes from mice, rats, dogs, pigs, rhesus macaques, and cynomolgus macaques were transduced with adeno-associated viral vectors encoding hNTCP and subsequently infected with HBV. Cells were analyzed for Myrcludex B binding, taurocholate uptake, HBV covalently closed circular DNA formation, and expression of all HBV markers. Sodium taurocholate cotransporting polypeptide (Ntcp) from the respective species was cloned and analyzed for HBV and HDV receptor activity in a permissive hepatoma cell line. Expression of hNTCP in mouse, rat, and dog hepatocytes permits HDV infection but does not allow establishment of HBV infection. Contrarily, hepatocytes from cynomolgus macaques, rhesus macaques, and pigs became fully susceptible to HBV upon hNTCP expression with efficiencies comparable to human hepatocytes. Analysis of cloned Ntcp from all species revealed a pronounced role of the human homologue to support HBV and HDV infection. CONCLUSION: Ntcp is the key host factor limiting HBV infection in cynomolgus and rhesus macaques and in pigs. In rodents (mouse, rat) and dogs, transfer of hNTCP supports viral entry but additional host factors are required for the establishment of HBV infection. This finding paves the way for the development of macaques and pigs as immunocompetent animal models to study HBV infection in vivo, immunological responses against the virus and viral pathogenesis. (Hepatology 2017;66:703-716).


Assuntos
Regulação Viral da Expressão Gênica , Vírus da Hepatite B/genética , Fator Proteico 1 do Hospedeiro/metabolismo , Transportadores de Ânions Orgânicos Dependentes de Sódio/genética , Simportadores/genética , Ácido Taurocólico/metabolismo , Replicação Viral/genética , Animais , Células Cultivadas , Modelos Animais de Doenças , Cães , Hepatite B/genética , Hepatite B/fisiopatologia , Hepatócitos/metabolismo , Hepatócitos/virologia , Macaca mulatta , Camundongos , Camundongos Endogâmicos C57BL , Distribuição Aleatória , Ratos , Ratos Wistar , Receptores Virais/metabolismo , Transdução de Sinais , Especificidade da Espécie , Suínos , Transfecção
7.
Mediators Inflamm ; 2018: 3586132, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29576744

RESUMO

The PB1-F2 protein of influenza A virus has been considered a virulence factor, but its function in inducing apoptosis may be of disadvantage to viral replication. Host mechanisms to regulate PB1-F2-induced apoptosis remain unknown. We generated a PB1-F2-deficient avian influenza virus (AIV) H9N2 and found that the mutant virus replicated less efficiently in human lung epithelial cells. The PB1-F2-deficient virus produced less apoptotic cells, indicating that PB1-F2 of the H9N2 virus promotes apoptosis, occurring at the early stage of infection, in the lung epithelial cells. To understand how host cells regulate PB1-F2-induced apoptosis, we explored to identify cellular proteins interacting with PB1-F2 and found that HCLS1-associated protein X-1 (HAX-1), located mainly in the mitochondria as an apoptotic inhibitor, interacted with PB1-F2. Increased procaspase-9 activations, induced by PB1-F2, could be suppressed by HAX-1. In HAX-1 knockdown A549 cells, the replication of AIV H9N2 was suppressed in parallel to the activation of caspase-3 activation, which increased at the early stage of infection. We hypothesize that HAX-1 promotes AIV replication by interacting with PB1-F2, resulting in the suppression of apoptosis, prolonged cell survival, and enhancement of viral replication. Our data suggest that HAX-1 may be a promoting factor for AIV H9N2 replication through desensitizing PB1-F2 from its apoptotic induction in human lung epithelial cells.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Células Epiteliais/virologia , Vírus da Influenza A Subtipo H9N2/patogenicidade , Pulmão/citologia , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Apoptose/genética , Apoptose/fisiologia , Linhagem Celular , Cães , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Células HEK293 , Humanos , Vírus da Influenza A/genética , Vírus da Influenza A/patogenicidade , Replicação Viral/genética , Replicação Viral/fisiologia
8.
J Virol ; 90(9): 4827-4831, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26865711

RESUMO

Hepatitis B virus (HBV) enters hepatocytes via its receptor, human sodium taurocholate cotransporting polypeptide (hNTCP). So far, HBV infection has been achieved only in human hepatic cells reconstituted with hNTCP and not in cells of mouse origin. Here, the first mouse liver cell line (AML12) which gains susceptibility to HBV upon hNTCP expression is described. Thus, HBV infection of receptor-expressing mouse hepatocytes does not principally require a human cofactor but can be triggered by endogenous murine determinants.


Assuntos
Vírus da Hepatite B/fisiologia , Hepatite B/metabolismo , Hepatite B/virologia , Transportadores de Ânions Orgânicos Dependentes de Sódio/metabolismo , Simportadores/metabolismo , Animais , Linhagem Celular , Suscetibilidade a Doenças , Expressão Gênica , Hepatite B/genética , Vírus Delta da Hepatite/fisiologia , Hepatócitos/metabolismo , Hepatócitos/virologia , Interações Hospedeiro-Patógeno , Humanos , Camundongos , Transportadores de Ânions Orgânicos Dependentes de Sódio/genética , Simportadores/genética , Internalização do Vírus
9.
J Virol ; 88(6): 3067-76, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24335286

RESUMO

Cells are equipped with pattern recognition receptors (PRRs) such as the Toll-like and RIG-I-like receptors that mount innate defenses against viruses. However, viruses have evolved multiple strategies to evade or thwart host antiviral responses. Viral inclusion bodies (IBs), which are accumulated aggregates of viral proteins, are commonly formed during the replication of some viruses in infected cells, but their role in viral immune evasion has rarely been explored. Severe fever with thrombocytopenia syndrome (SFTS) is an emerging febrile illness caused by a novel phlebovirus in the Bunyaviridae. The SFTS viral nonstructural protein NSs can suppress host beta interferon (IFN-ß) responses. NSs can form IBs in infected and transfected cells. Through interaction with tank-binding kinase 1 (TBK1), viral NSs was able to sequester the IKK complex, including IKKε and IRF3, into IBs, although NSs did not interact with IKKε or IRF3 directly. When cells were infected with influenza A virus, IRF3 was phosphorylated and active phosphorylated IRF3 (p-IRF3) was translocated into the nucleus. In the presence of NSs, IRF3 could still be phosphorylated, but p-IRF3 was trapped in cytoplasmic IBs, resulting in reduced IFN-ß induction and enhanced viral replication. Sequestration of the IKK complex and active IRF3 into viral IBs through the interaction of NSs and TBK1 is a novel mechanism for viral evasion of innate immunity.


Assuntos
Quinase I-kappa B/metabolismo , Evasão da Resposta Imune , Corpos de Inclusão Viral/metabolismo , Fator Regulador 3 de Interferon/metabolismo , Febre por Flebótomos/metabolismo , Phlebovirus/imunologia , Proteínas Serina-Treonina Quinases/metabolismo , Humanos , Quinase I-kappa B/genética , Quinase I-kappa B/imunologia , Imunidade Inata , Corpos de Inclusão Viral/imunologia , Fator Regulador 3 de Interferon/genética , Fator Regulador 3 de Interferon/imunologia , Febre por Flebótomos/imunologia , Febre por Flebótomos/virologia , Phlebovirus/genética , Phlebovirus/metabolismo , Ligação Proteica , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/imunologia , Proteínas não Estruturais Virais/imunologia , Proteínas não Estruturais Virais/metabolismo
10.
Microbiol Spectr ; 12(1): e0246923, 2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38009950

RESUMO

IMPORTANCE: We present the first study of the 3D kinetics of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and the early host response in a large lung volume using a combination of tissue imaging and transcriptomics. This approach allowed us to make a number of important findings: Spatially restricted antiviral response is shown, including the formation of monocytic macrophage clusters and upregulation of the major histocompatibility complex II in infected epithelial cells. The monocyte-derived macrophages are linked to SARS-CoV-2 clearance, and the appearance of these cells is associated with post-infection endothelial damage; thus, we shed light on the role of these cells in infected tissue. An early onset of tissue repair occurring simultaneously with inflammatory and necrotizing processes provides the basis for longer-term alterations in the lungs.


Assuntos
COVID-19 , Animais , Cricetinae , Humanos , SARS-CoV-2 , Pulmão , Macrófagos , Análise Espaço-Temporal
11.
J Virol ; 86(16): 8388-401, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22623799

RESUMO

Severe fever with thrombocytopenia syndrome (SFTS) is an emerging infectious disease characterized by high fever, thrombocytopenia, multiorgan dysfunction, and a high fatality rate between 12 and 30%. It is caused by SFTS virus (SFTSV), a novel Phlebovirus in family Bunyaviridae. Although the viral pathogenesis remains largely unknown, hemopoietic cells appear to be targeted by the virus. In this study we report that human monocytes were susceptible to SFTSV, which replicated efficiently, as shown by an immunofluorescence assay and real-time reverse transcription-PCR. We examined host responses in the infected cells and found that antiviral interferon (IFN) and IFN-inducible proteins were induced upon infection. However, our data also indicated that downregulation of key molecules such as mitochondrial antiviral signaling protein (MAVS) or weakened activation of interferon regulatory factor (IRF) and NF-κB responses may contribute to a restricted innate immunity against the infection. NSs, the nonstructural protein encoded by the S segment, suppressed the beta interferon (IFN-ß) and NF-κB promoter activities, although NF-κB activation appears to facilitate SFTSV replication in human monocytes. NSs was found to be associated with TBK1 and may inhibit the activation of downstream IRF and NF-κB signaling through this interaction. Interestingly, we demonstrated that the nucleoprotein (N), also encoded by the S segment, exhibited a suppressive effect on the activation of IFN-ß and NF-κB signaling as well. Infected monocytes, mainly intact and free of apoptosis, may likely be implicated in persistent viral infection, spreading the virus to the circulation and causing primary viremia. Our findings provide the first evidence in dissecting the host responses in monocytes and understanding viral pathogenesis in humans infected with a novel deadly Bunyavirus.


Assuntos
Interações Hospedeiro-Patógeno , Evasão da Resposta Imune , Interferon beta/antagonistas & inibidores , NF-kappa B/antagonistas & inibidores , Phlebovirus/patogenicidade , Proteínas não Estruturais Virais/metabolismo , Linhagem Celular , Perfilação da Expressão Gênica , Humanos , Monócitos/virologia , Phlebovirus/imunologia , Replicação Viral
12.
Vaccines (Basel) ; 11(3)2023 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-36992187

RESUMO

The coronavirus (COVID-19) pandemic has been a global threat for the past three years at the time of writing, leading to more than 675 million confirmed cases and 6 [...].

13.
Pathogens ; 11(6)2022 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-35745520

RESUMO

Highly pathogenic influenza A virus H5 subtype remains a risk for transmission in humans. The H5N8 subtype has caused multiple outbreaks in poultry in Europe over the past few winters. During one recent outbreak in poultry in Astrakhan, workers on the farm were also infected. So far, little is known about how this virus evolves and adapts to infect humans. Here, we performed a time-resolved phylogenetic analysis of 129 HA sequences representing all 1891 available H5N8 viruses collected from 2010 to 2020. We also conducted a whole-genome scan on the human virus at the protein level. We found that H5N8 viruses have spilled over in 34 European countries during the flu season of 2020-2021. These viruses underwent two significant evolutionary steps during 2015-2016 and after 2018. Furthermore, we characterized a number of critical mutations in all viral proteins except PB1-F2, which contribute to increased virulence and avian-to-human adaptation. Our findings suggested that the accumulated mutations under evolution led to quantitative and qualitative changes, likely allowing the virus to spread to humans. Given that the H5N8 virus is co-circulating with other H5 viruses in Europe, the risk of a pandemic should not be underestimated. Continental surveillance and pandemic preparedness are to be established.

14.
J Alzheimers Dis ; 88(4): 1523-1532, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35811533

RESUMO

BACKGROUND: The Hong Kong Brief Cognitive Test (HKBC), a brief instrument designed to screen for cognitive impairment in older adults, has been validated in Cantonese-speaking populations and has shown better performance than the Mini-Mental State Examination (MMSE) in detecting both mild and major neurocognitive disorder (NCD). OBJECTIVE: This study aimed to validate the HKBC for detecting patients with amnestic mild cognitive impairment (aMCI) and Alzheimer's disease (AD) in a Mandarin-speaking Chinese population. METHODS: Two hundred forty-eight patients with aMCI, 67 patients with mild AD and 306 healthy controls (HCs) were recruited for this study and completed both the HKBC and the MMSE. The performance of the HKBC and MMSE in distinguishing patients with aMCI from HCs and distinguishing patients with AD from patients with aMCI was compared in the whole population and in age- and education-stratified subgroups. RESULTS: The optimal HKBC cutoff score for distinguishing patients with aMCI from HCs was 23, and the optimal cutoff score for distinguishing patients with AD from patients with aMCI was 17. The HKBC significantly outperformed the MMSE at differentiating patients with aMCI from HCs in the whole population (z = 12.38, p < 0.01) and all subgroups stratified by age or education. Regarding the discrimination of patients with AD from patients with aMCI, the HKBC showed better performance than the MMSE in the oldest subgroup (z = 2.18, p = 0.03). CONCLUSION: The HKBC is a sensitive and specific screening tool for detecting aMCI and AD in the Chinese population across age groups and educational levels.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Idoso , Doença de Alzheimer/diagnóstico , Disfunção Cognitiva/diagnóstico , Disfunção Cognitiva/psicologia , Hong Kong , Humanos , Testes de Estado Mental e Demência , Testes Neuropsicológicos
15.
JHEP Rep ; 4(10): 100551, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36124123

RESUMO

Background & Aims: HBV persistence is maintained by both an episomal covalently closed circular (ccc)DNA reservoir and genomic integration of HBV DNA fragments. While cccDNA transcription is regulated by Cullin4A-DDB1-HBx-mediated degradation of the SMC5/6 complex, HBsAg expression from integrants is largely SMC5/6 independent. Inhibiting neddylation of Cullin-RING ubiquitin ligases impairs degradation of substrates. Herein, we show that targeting neddylation pathway components by small-interfering (si)RNAs or the drug MLN4924 (pevonedistat) suppresses expression of HBV proteins from both cccDNA and integrants. Methods: An siRNA screen targeting secretory pathway regulators and neddylation genes was performed. Activity of MLN4924 was assessed in infection and integration models. Trans-complementation assays were used to study HBx function in cccDNA-driven expression. Results: siRNA screening uncovered neddylation pathway components (Nedd8, Ube2m) that promote HBsAg production post-transcriptionally. Likewise, MLN4924 inhibited production of HBsAg encoded by integrants and reduced intracellular HBsAg levels, independent of HBx. MLN4924 also profoundly inhibited cccDNA transcription in three infection models. Using the HBV inducible cell line HepAD38 as a model, we verified the dual action of MLN4924 on both cccDNA and integrants with sustained suppression of HBV markers during 42 days of treatment. Conclusions: Neddylation is required both for transcription of a cccDNA reservoir and for the genomic integration of viral DNA. Therefore, blocking neddylation might offer an attractive approach towards functional cure of chronic hepatitis B. Lay summary: Current treatments for chronic hepatitis B are rarely able to induce a functional cure. This is partly because of the presence of a pool of circular viral DNA in the host nucleus, as well as viral DNA fragments that are integrated into the host genome. Herein, we show that a host biological pathway called neddylation could play a key role in infection and viral DNA integration. Inhibiting this pathway could hold therapeutic promise for patients with chronic hepatitis B.

16.
Am J Respir Cell Mol Biol ; 44(1): 24-33, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20118223

RESUMO

The avian influenza virus H9N2 subtype has circulated in wild birds, is prevalent in domestic poultry, and has successfully crossed the species boundary to infect humans. Phylogenetic analyses showed that viruses of this subtype appear to have contributed to the generation of highly pathogenic H5N1 viruses. Little is known about the host responses to H9N2 viruses in human airway respiratory epithelium, the primary portal for viral infection. Using an apically differentiated primary human tracheobronchial epithelial (TBE) culture, we examined host immune responses to infection by an avian H9N2 virus, in comparison with a human H9N2 isolate. We found that IFN-ß was the prominent antiviral component, whereas interferon gamma-induced protein 10 kDa (IP-10), chemokine (C-C motif) ligand (CCL)-5 and TNF-α may be critical in proinflammatory responses to H9N2 viruses. In contrast, proinflammatory IL-1ß, IL-8, and even IL-6 may only play a minor role in pathogenicity. Apparently Toll-like receptor (TLR)-3, TLR-7, and melanoma differentiation-associated gene 5 (MDA-5) contributed to the innate immunity against the H9N2 viruses, and MDA-5 was important in the induction of IFN-ß. We showed that the avian H9N2 virus induced apoptosis through the mitochondria/cytochrome c-mediated intrinsic pathway, in addition to the caspase 8-mediated extrinsic pathway, as evidenced by the cytosolic presence of active caspase 9 and cytochrome c, independent of truncated BH3 interacting domain death agonist (Bid) activation. Further, we demonstrated that FLICE-like inhibitory protein (FLIP), an apoptotic dual regulator, and the p53-dependent Bcl-2 family members, Bax and Bcl-x(s), appeared to be involved in the regulation of extrinsic and intrinsic apoptotic pathways, respectively. The findings in this study will further our understanding of host defense mechanisms and the pathogenesis of H9N2 influenza viruses in human respiratory epithelium.


Assuntos
Apoptose , Brônquios/virologia , Células Epiteliais/virologia , Imunidade Inata , Vírus da Influenza A Subtipo H9N2/patogenicidade , Influenza Aviária/virologia , Influenza Humana/virologia , Traqueia/virologia , Animais , Apoptose/genética , Proteína Agonista de Morte Celular de Domínio Interatuante com BH3/metabolismo , Aves , Brônquios/imunologia , Brônquios/patologia , Proteína Reguladora de Apoptosis Semelhante a CASP8 e FADD/metabolismo , Caspases/metabolismo , Células Cultivadas , Citocinas/genética , Citocinas/metabolismo , Efeito Citopatogênico Viral , RNA Helicases DEAD-box/genética , RNA Helicases DEAD-box/metabolismo , Ativação Enzimática , Células Epiteliais/imunologia , Células Epiteliais/patologia , Regulação da Expressão Gênica , Humanos , Imunidade Inata/genética , Mediadores da Inflamação/metabolismo , Vírus da Influenza A Subtipo H9N2/crescimento & desenvolvimento , Influenza Aviária/imunologia , Influenza Aviária/patologia , Influenza Humana/imunologia , Influenza Humana/patologia , Helicase IFIH1 Induzida por Interferon , Interferência de RNA , Fatores de Tempo , Receptores Toll-Like/genética , Receptores Toll-Like/metabolismo , Traqueia/imunologia , Traqueia/patologia , Proteína Supressora de Tumor p53/metabolismo , Proteína X Associada a bcl-2/metabolismo , Proteína bcl-X/metabolismo
17.
Anticancer Drugs ; 22(1): 79-88, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20881478

RESUMO

Signal transducer and activator of transcription 3 (STAT3) is constitutively active in approximately 50% of acute myeloid leukemia (AML) cases and mediates multiple cellular processes including cell resistance to apoptosis. Inhibition of constitutively active STAT3 has been shown to induce AML cell apoptosis. Our aim was to ascertain if sorafenib, a multikinase inhibitor, may also inhibit STAT3 signaling and, therefore, be efficacious for AML. We found that sorafenib inhibited proliferation and induced apoptosis in human AML cell line (HL60) cells. In addition, sorafenib exposure reduced constitutive STAT3 phosphorylation in HL60 cells and repressed STAT3 DNA-binding activity and Mcl-1 and Bcl-2 expression. Similar results were obtained with the Src kinase inhibitor I, suggesting that sorafenib suppresses STAT3 phosphorylation by inhibiting Src-kinase activity. Furthermore, significant inhibition of Src kinase activity by sorafenib was observed in the kinase assay. In addition, Src could be co-immunoprecipitated with STAT3, and the phosphorylation of STAT3 was significantly inhibited by sorafenib only in cell lines in which phosphorylated Src is highly expressed. Taken together, our study indicates that sorafenib blocks Src kinase-mediated STAT3 phosphorylation and decreases the expression of apoptosis regulatory proteins Mcl-1 and Bcl-2, which are associated with increased apoptosis in HL60 cells. These findings provide a rationale for the treatment of human AML.


Assuntos
Apoptose/efeitos dos fármacos , Benzenossulfonatos/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Piridinas/farmacologia , Fator de Transcrição STAT3/antagonistas & inibidores , Quinases da Família src/antagonistas & inibidores , Ciclo Celular/efeitos dos fármacos , Processos de Crescimento Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , DNA de Neoplasias/antagonistas & inibidores , DNA de Neoplasias/metabolismo , Células HL-60 , Humanos , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/patologia , Mitocôndrias/efeitos dos fármacos , Proteína de Sequência 1 de Leucemia de Células Mieloides , Niacinamida/análogos & derivados , Compostos de Fenilureia , Fosforilação/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-bcl-2/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-bcl-2/biossíntese , Proteínas Proto-Oncogênicas c-bcl-2/genética , Fator de Transcrição STAT3/genética , Fator de Transcrição STAT3/metabolismo , Sorafenibe , Quinases da Família src/metabolismo
18.
JHEP Rep ; 3(1): 100195, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33385130

RESUMO

BACKGROUND & AIMS: Chronic HBV infection cannot be cured by current therapeutics owing to their limited ability to reduce covalently closed circular (ccc)DNA levels in the livers of infected individuals. Therefore, greater understanding of the molecular determinants of cccDNA formation and persistence is required. One key issue is the extent to which de novo nucleocapsid-mediated replenishment (reimport) contributes to cccDNA levels in an infected hepatocyte. METHODS: We engineered an infectious HBV mutant with a genome encoding a stop codon at position T67 in the HBV core open reading frame (ΔHBc HBV). Importantly, ΔHBc HBV virions cannot initiate nucleocapsid synthesis upon infection. Long-term in vitro HBV infection markers were followed for up for 9 weeks in HepG2-NTCP cells (A3 clone) and HBV DNA was quantified using a newly-developed, highly-precise PCR assay (cccDNA inversion quantitative PCR). RESULTS: ΔHBc and wild-type (WT) HBV resulted in comparable expression of HBV surface antigen (HBsAg), which could be blocked using the entry inhibitor Myrcludex B, confirming bona fide infection via the receptor sodium taurocholate cotransporting polypeptide (NTCP). In primary human hepatocytes, Huh7-NTCP, HepG2-NTCP, and HepaRG-NTCP cells, comparable copy numbers of cccDNA were formed. cccDNA levels, transcription of viral RNA, and HBsAg secretion remained comparably stable in WT and ΔHBc HBV-infected cells for at least 9 weeks. CONCLUSIONS: Our results imply that de novo synthesised HBc plays a minor role in transcriptional regulation of cccDNA. Importantly, we show that initially-formed cccDNA is stable in hepatocytes without requiring continuous replenishment in in vitro infection systems and contribution from de novo DNA-containing nucleocapsids is not required. Thus, short-term therapeutic targeting of capsid-reimport is likely an inefficient strategy in eliminating cccDNA in chronically infected hepatocytes. LAY SUMMARY: The hepatitis B virus can maintain itself in the liver for a patient's lifetime, causing liver injury and cancer. We have clarified exactly how it maintains itself in an infected cell. This now means we have a better idea at how to target the virus and cure a chronic infection.

19.
Viruses ; 13(7)2021 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-34372533

RESUMO

Approximately 240 million people are chronically infected with hepatitis B virus (HBV), despite four decades of effective HBV vaccination. During chronic infection, HBV forms two distinct templates responsible for viral transcription: (1) episomal covalently closed circular (ccc)DNA and (2) host genome-integrated viral templates. Multiple ubiquitous and liver-specific transcription factors are recruited onto these templates and modulate viral gene transcription. This review details the latest developments in antivirals that inhibit HBV gene transcription or destabilize viral transcripts. Notably, nuclear receptor agonists exhibit potent inhibition of viral gene transcription from cccDNA. Small molecule inhibitors repress HBV X protein-mediated transcription from cccDNA, while small interfering RNAs and single-stranded oligonucleotides result in transcript degradation from both cccDNA and integrated templates. These antivirals mediate their effects by reducing viral transcripts abundance, some leading to a loss of surface antigen expression, and they can potentially be added to the arsenal of drugs with demonstrable anti-HBV activity. Thus, these candidates deserve special attention for future repurposing or further development as anti-HBV therapeutics.


Assuntos
Vírus da Hepatite B/genética , Hepatite B/prevenção & controle , Transcrição Gênica/genética , Antivirais/farmacologia , DNA Circular/metabolismo , DNA Viral/genética , Hepatite B/tratamento farmacológico , Hepatite B/genética , Vírus da Hepatite B/patogenicidade , Humanos , Fígado/virologia , RNA Interferente Pequeno/metabolismo , Transcrição Gênica/fisiologia , Integração Viral/efeitos dos fármacos , Replicação Viral/efeitos dos fármacos
20.
Org Lett ; 23(23): 9151-9156, 2021 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-34780172

RESUMO

A cooperative Rh(II)/Pd(0) dual-catalysis strategy that promotes a cyclization/allylic alkylation cascade of stable α-diazo-δ-keto-esters has been developed. Highly substituted 3(2H)-furanones with a C2-quaternary center can be obtained efficiently under mild conditions via one-pot synthesis. Remarkably, this binary catalytic system shows high chemo-, regio-, and stereoselectivity and excellent tolerance to various functionalities.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA