Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Bioresour Technol ; 376: 128856, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36907227

RESUMO

Enhancing the degradation of lignocellulosic structure is essential for the efficient use of corn stover. This study investigated the effects of using urea combined with steam explosion on the enzymatic hydrolysis and ethanol production of corn stover. The results demonstrated that 4.87% urea addition and 1.22 MPa steam pressure were optimal for ethanol production. The highest reducing sugar yield (350.12 mg/g) was increased by 116.42% (p < 0.05), and the corresponding degradation rates of cellulose, hemicellulose, and lignin in pretreated corn stover were increased by 40.26%, 45.89% and 53.71% compared with the untreated corn stover (p < 0.05). Moreover, the maximal sugar alcohol conversion rate was approximately 48.3%, and the ethanol yield reached 66.5%. In addition, the key functional groups in corn stover lignin under combined pretreatment were identified. These findings offer new insights into corn stover pretreatment and can help develop feasible technologies to enhance ethanol production.


Assuntos
Lignina , Vapor , Lignina/química , Zea mays/metabolismo , Etanol/metabolismo , Celulose/metabolismo , Hidrólise
2.
Bioresour Technol ; 320(Pt A): 124174, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33147529

RESUMO

In this study, the combined bacteria (CB) were constructed by Phanerochaete chrysosporium, Trametes versicolor and Pleurotus ostreatus, which have a good ability to degrade lignocellulose, and the optimum degradation conditions and internal degradation mechanism of combined bacteria were investigated. The results showed that under conditions of temperature (32 °C), pH (3.5), solid-liquid ratio (10%), culture time (20 d), the degradation rates of lignin, cellulose and hemicellulose were 43.36%, 31.29%, 48.36%, respectively. The construction of combined bacteria significantly enhances the degradation ability of lignocellulose, and showed good correlation and coordination mechanism.


Assuntos
Phanerochaete , Pleurotus , Celulose , Lignina , Polyporaceae , Trametes , Zea mays
3.
Bioresour Technol ; 321: 124460, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33307482

RESUMO

An outdoor anaerobic fermentation reactor loses a significant amount of energy due to heat dissipation to the surrounding environment. The digester of direct absorption biogas can effectively utilize solar energy and scattering of the medium to enhance reaction temperature, which can promote anaerobic fermentation of microorganisms. A numerical model for the direct absorption methane digester was established to investigate the mechanism of photo biochemical transformation. The average relative values of simulated results were 4.1% and 9.6%, indicating that the model can effectively simulate the heat transfer process of biogas slurry under solar irradiation. Decreasing the albedo and increasing the effect of forward scattering of small particles can improve the regenerative performance and biogas production of digester. Increasing the backward scattering effect of small particles limited biogas fermentation. Scattering distribution had bigger effects on the rates of biogas and propionic acid production than those of albedo.


Assuntos
Reatores Biológicos , Metano , Anaerobiose , Biocombustíveis , Fermentação , Temperatura Alta
4.
Bioresour Technol ; 320(Pt A): 124332, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33157447

RESUMO

Aerobic hydrolysis of stover before anaerobic digestion is beneficial to improve the biodegradability of corn stover. Aerobic hydrolysis of corn stover at 43 °C was conducted to investigate the effects of hydrolysis time (0 h, 8 h, 16 h, and 24 h) on the degradation of lignocellulose from corn stover and material conversion. Further anaerobic digestion and energy consumption analysis with the digestion temperature of 36 °C were carried out. The accumulation rate of volatile fatty acids began to slow down after 16 h of hydrolysis, and the concentration of acetic acid reached 221.85 mmol/L at 24 h of hydrolysis. The degradation rate of lignocellulose was obviously increased after hydrolysis. When the hydrolysis time was 16 h, it reached the maximum cumulative methane production with 268.75 ml/g VS. In terms of biogas production and energy conversion efficiency, it is more appropriate to choose 16 h as hydrolysis time in biogas engineering.


Assuntos
Biocombustíveis , Metano , Anaerobiose , Hidrólise , Zea mays
5.
PLoS One ; 16(7): e0253714, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34260590

RESUMO

Co-digestion of organic biomass mixed with inorganic amendments could have an impact on composting dynamics. Various studies highlighted fertilizers' role as an additive to lesser the nitrogen loss, while some studies focused on the addition of fertilizers to enhance the efficiency. The changes in carbon, nitrogen components, and humic substances during the organic-inorganic co-compost process were seldom studied. Clarifying these changes might help improve the production process and compost nutrients contents. Thus, this study's purpose is to investigate the effects of inorganic amendments on compost characteristics, compost temperature, biochemical methane production (BMP), and nutritional contents. The inorganic phosphorous (P), sulfur (S), and sulfur solubilizing agent (SSA) were added to Farmyard manure (FYM) mixed with biodegradable waste (BW), including wheat straw, corn stalks, and green lawn waste. The P and S amended treatments were carried out into two sets, with and without SSA. The mixed feedstocks were added in the insulated RBC composting pit (15 x 15 x 10 feet). The compost material's moisture content was maintained 50-65% during the entire composting process for optimum waste digestion i.e., the moisture content (MC) of FYM was 82.7% and for BW ranged 8.8-10.2%, while the C/N ratio was found 10.5 for FYM, 74.5 for wheat straw, 83.5 for corn stalks, and 84.8 for lawn waste. At the condition of compost maturity, the inorganic amendments have no significant effect on composted material's moisture content. The maximum organic matter of 69.7% and C/N ratio of 44.6 was measured in T1. On the 6th day of composting, the temperature reached to thermophilic range (>45 oC) in all the treatments due to aeration of compost increased microbial activities and waste decomposition rate and decreased gradually to mesophilic range (35-45 oC) because the supply of high-energy compounds becomes exhausted. The highest temperature was reached in T4 (58 oC) and lowest in CT (47 oC). The significantly maximum methane of 8.95 m3 and biogas burning was 818 minutes in CT, followed by T1 and T4. The results of this study revealed that P enriched compost is a feasible and sustainable way to overcome P deficiency in the soil as well as in plants and best way to use low-grade P and organic waste material.


Assuntos
Biomassa , Compostagem/métodos , Esterco , Carbono/metabolismo , Estudos de Viabilidade , Metano/metabolismo , Nitrogênio/metabolismo , Fosfatos/metabolismo , Enxofre/metabolismo
6.
ACS Omega ; 5(45): 29231-29242, 2020 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-33225154

RESUMO

With the development of industry, the discharge of wastewater containing mercury ions posed a serious threat to human health. Using biomass waste as an adsorbent to treat wastewater containing mercury ions was a better way due to its positive impacts on the environment and resource saving. In this research, activated carbon (AC) was prepared from rice husk (RH) by the KOH chemical activation method. The characterization results of scanning electron microscopy (SEM), Brunauer-Emmett-Teller (BET), Fourier transform infrared (FTIR), Raman spectroscopy, and X-ray photoelectron spectroscopy (XPS) showed that rice husk-activated carbon (RHAC) had good pore structure and oxygen-containing functional groups. The influences of contact time, initial concentration of Hg(II), adsorbent dosage, pH, and ionic strength on mercury ion removal were investigated. The Langmuir model was most suitable for the adsorption isotherm of RHAC, and its maximum adsorption capacity for Hg(II) was 55.87 mg/g. RHAC still had a high removal capacity for Hg(II) after five regeneration cycles. RHAC had excellent removal efficiency for mercury ion wastewater. At the same time, RH could be used as a nonpolluting and outstanding characteristic adsorbent material.

7.
Bioresour Technol ; 306: 123154, 2020 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-32172084

RESUMO

In the present study, activated carbon was prepared from corn cob. Corn cob by potassium hydroxide activation. SEM, BET, Raman, FTIR and XPS analysis methods were used to characterize the physical and chemical properties of activated carbon. The effects of adsorbent dosage, adsorption time, pH and initial Hg(II) concentration on mercury ion removal rate were studied. The specific surface area of this material is 1054.2 m2 g-1. The Langmuir and Freundlich adsorption models were used to verify the adsorption isotherms. The adsorption isotherms were simulated well by the Langmuir model, which implied that it is a monolayer adsorption process. The kinetic data conformed to the pseudo-second-order model, which implied that the predominant process is chemisorption.

8.
Bioresour Technol ; 293: 121962, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31449921

RESUMO

In this study, corn stalk (CS) was pretreated with furfural wastewater (FWW) for whole slurry anaerobic digestion (AD), which increased the degradability of CS components, changed the parameters in pretreatment slurry and improved the biochemical methane potential (BMP). The ultimate goal was to optimize the time and temperature for FWW pretreatment and evaluate whether FWW pretreatment is feasible from BMP and energy conversion. The results of path analysis suggested that lignocellulosic degradability (LD) was the main factor affecting methane production with the comprehensive decision of 0.7006. The highest BMP (166.34 mL/g VS) was achieved by the pretreatment at 35 °C for 6 days, which was 70.36% higher than that of control check (CK) (97.64 mL/g VS) and the optimal pretreatment condition was predicted at 40.69 °C for 6.49 days by response surface methodology (RSM). The net residual value (NRV) for the pretreatment of 35 °C and 6 days was the highest (0.6201), which was the most appropriate condition for AD in real application.


Assuntos
Águas Residuárias , Zea mays , Anaerobiose , Furaldeído , Metano
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA