Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 445
Filtrar
1.
Cell ; 186(22): 4773-4787.e12, 2023 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-37806310

RESUMO

Pollen-pistil interactions establish interspecific/intergeneric pre-zygotic hybridization barriers in plants. The rejection of undesired pollen at the stigma is crucial to avoid outcrossing but can be overcome with the support of mentor pollen. The mechanisms underlying this hybridization barrier are largely unknown. Here, in Arabidopsis, we demonstrate that receptor-like kinases FERONIA/CURVY1/ANJEA/HERCULES RECEPTOR KINASE 1 and cell wall proteins LRX3/4/5 interact on papilla cell surfaces with autocrine stigmatic RALF1/22/23/33 peptide ligands (sRALFs) to establish a lock that blocks the penetration of undesired pollen tubes. Compatible pollen-derived RALF10/11/12/13/25/26/30 peptides (pRALFs) act as a key, outcompeting sRALFs and enabling pollen tube penetration. By treating Arabidopsis stigmas with synthetic pRALFs, we unlock the barrier, facilitating pollen tube penetration from distantly related Brassicaceae species and resulting in interspecific/intergeneric hybrid embryo formation. Therefore, we uncover a "lock-and-key" system governing the hybridization breadth of interspecific/intergeneric crosses in Brassicaceae. Manipulating this system holds promise for facilitating broad hybridization in crops.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Hormônios Peptídicos , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Brassicaceae/genética , Brassicaceae/metabolismo , Hormônios Peptídicos/metabolismo , Peptídeos/metabolismo , Pólen/metabolismo , Tubo Polínico/metabolismo , Isolamento Reprodutivo
2.
Plant Cell ; 36(5): 1673-1696, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38142229

RESUMO

Autocrine signaling pathways regulated by RAPID ALKALINIZATION FACTORs (RALFs) control cell wall integrity during pollen tube germination and growth in Arabidopsis (Arabidopsis thaliana). To investigate the role of pollen-specific RALFs in another plant species, we combined gene expression data with phylogenetic and biochemical studies to identify candidate orthologs in maize (Zea mays). We show that Clade IB ZmRALF2/3 mutations, but not Clade III ZmRALF1/5 mutations, cause cell wall instability in the sub-apical region of the growing pollen tube. ZmRALF2/3 are mainly located in the cell wall and are partially able to complement the pollen germination defect of their Arabidopsis orthologs AtRALF4/19. Mutations in ZmRALF2/3 compromise pectin distribution patterns leading to altered cell wall organization and thickness culminating in pollen tube burst. Clade IB, but not Clade III ZmRALFs, strongly interact as ligands with the pollen-specific Catharanthus roseus RLK1-like (CrRLK1L) receptor kinases Z. mays FERONIA-like (ZmFERL) 4/7/9, LORELEI-like glycosylphosphatidylinositol-anchor (LLG) proteins Z. mays LLG 1 and 2 (ZmLLG1/2), and Z. mays pollen extension-like (PEX) cell wall proteins ZmPEX2/4. Notably, ZmFERL4 outcompetes ZmLLG2 and ZmPEX2 outcompetes ZmFERL4 for ZmRALF2 binding. Based on these data, we suggest that Clade IB RALFs act in a dual role as cell wall components and extracellular sensors to regulate cell wall integrity and thickness during pollen tube growth in maize and probably other plants.


Assuntos
Parede Celular , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas , Tubo Polínico , Transdução de Sinais , Zea mays , Zea mays/genética , Zea mays/crescimento & desenvolvimento , Zea mays/metabolismo , Parede Celular/metabolismo , Tubo Polínico/crescimento & desenvolvimento , Tubo Polínico/genética , Tubo Polínico/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Mutação , Filogenia , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Pectinas/metabolismo , Germinação/genética
3.
Proc Natl Acad Sci U S A ; 120(5): e2214684120, 2023 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-36693099

RESUMO

Embryo implantation, a crucial step in human reproduction, is tightly controlled by estrogen and progesterone (P4) via estrogen receptor alpha and progesterone receptor (PGR), respectively. Here, we report that N6-methyladenosine (m6A), the most abundant mRNA modification in eukaryotes, plays an essential role in embryo implantation through the maintenance of P4 signaling. Conditional deletion of methyltransferase-like 3 (Mettl3), encoding the m6A writer METTL3, in the female reproductive tract using a Cre mouse line with Pgr promoter (Pgr-Cre) resulted in complete implantation failure due to pre-implantation embryo loss and defective uterine receptivity. Moreover, the uterus of Mettl3 null mice failed to respond to artificial decidualization. We further found that Mettl3 deletion was accompanied by a marked decrease in PGR protein expression. Mechanistically, we found that Pgr mRNA is a direct target for METTL3-mediated m6A modification. A luciferase assay revealed that the m6A modification in the 5' untranslated region (5'-UTR) of Pgr mRNA enhances PGR protein translation efficiency in a YTHDF1-dependent manner. Finally, we demonstrated that METTL3 is required for human endometrial stromal cell decidualization in vitro and that the METTL3-PGR axis is conserved between mice and humans. In summary, this study provides evidence that METTL3 is essential for normal P4 signaling during embryo implantation via m6A-mediated translation control of Pgr mRNA.


Assuntos
Progesterona , Receptores de Progesterona , Feminino , Camundongos , Humanos , Animais , Progesterona/metabolismo , Receptores de Progesterona/genética , Receptores de Progesterona/metabolismo , Implantação do Embrião/genética , Útero/metabolismo , Metiltransferases/genética , Metiltransferases/metabolismo , Camundongos Knockout , RNA Mensageiro/metabolismo
4.
Plant J ; 117(1): 212-225, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37828913

RESUMO

Phosphatidylinositol 4-phosphate 5-kinase (PIP5K) is a key enzyme producing the signaling lipid phosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)P2 ] in eukaryotes. Although PIP5K genes are reported to be involved in pollen tube germination and growth, the essential roles of PIP5K in these processes remain unclear. Here, we performed a comprehensive genetic analysis of the Arabidopsis thaliana PIP5K4, PIP5K5, and PIP5K6 genes and revealed that their redundant function is essential for pollen germination. Pollen with the pip5k4pip5k5pip5k6 triple mutation was sterile, while pollen germination efficiency and pollen tube growth were reduced in the pip5k6 single mutant and further reduced in the pip5k4pip5k6 and pip5k5pip5k6 double mutants. YFP-fusion proteins, PIP5K4-YFP, PIP5K5-YFP, and PIP5K6-YFP, which could rescue the sterility of the triple mutant pollen, preferentially localized to the tricolpate aperture area and the future germination site on the plasma membrane prior to germination. Triple mutant pollen grains under the germination condition, in which spatiotemporal localization of the PtdIns(4,5)P2 fluorescent marker protein 2xmCHERRY-2xPHPLC as seen in the wild type was abolished, exhibited swelling and rupture of the pollen wall, but neither the conspicuous protruding site nor site-specific deposition of cell wall materials for germination. These data indicate that PIP5K4-6 and their product PtdIns(4,5)P2 are essential for pollen germination, possibly through the establishment of the germination polarity in a pollen grain.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Germinação/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Tubo Polínico/metabolismo , Pólen
5.
Plant Cell ; 34(8): 2871-2891, 2022 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-35522002

RESUMO

Seed germination represents a major developmental switch in plants that is vital to agriculture, but how this process is controlled at the chromatin level remains obscure. Here we demonstrate that successful germination in Arabidopsis thaliana requires a chromatin mechanism that progressively silences 9-CIS-EPOXYCAROTENOID DIOXYGENASE 6 (NCED6), which encodes a rate-limiting enzyme in abscisic acid (ABA) biosynthesis, through the cooperative action of the RNA-binding protein RZ-1 and the polycomb repressive complex 2 (PRC2). Simultaneous inactivation of RZ-1 and PRC2 blocked germination and synergistically derepressed NCEDs and hundreds of genes. At NCED6, in part by promoting H3 deacetylation and suppressing H3K4me3, RZ-1 facilitates transcriptional silencing and also an H3K27me3 accumulation process that occurs during seed germination and early seedling growth. Genome-wide analysis revealed that RZ-1 is preferentially required for transcriptional silencing of many PRC2 targets early during seed germination, when H3K27me3 is not yet established. We propose RZ-1 confers a novel silencing mechanism to compensate for and synergize with PRC2. Our work highlights the progressive chromatin silencing of ABA biosynthesis genes via the RNA-binding protein RZ-1 and PRC2 acting in synergy, a process that is vital for seed germination.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Ácido Abscísico/metabolismo , Arabidopsis/fisiologia , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Cromatina/genética , Regulação da Expressão Gênica de Plantas/genética , Germinação/genética , Histonas/genética , Histonas/metabolismo , Sementes
6.
J Cell Mol Med ; 28(5): e18092, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38303549

RESUMO

Endoplasmic reticulum stress (ERS) and unfolded protein response are the critical processes of tumour biology. However, the roles of ERS regulatory genes in pancreatic adenocarcinoma (PAAD) remain elusive. A novel ERS-related risk signature was constructed using the Lasso regression analysis. Its prognostic value, immune effect, metabolic influence, mutational feature and therapeutic correlation were comprehensively analysed through multiple bioinformatic approaches. The biofunctions of KDELR3 and YWHAZ in pancreatic cancer (PC) cells were also investigated through colony formation, Transwell assays, flow cytometric detection and a xenograft model. The upstream miRNA regulatory mechanism of KDELR3 was predicted and validated. ERS risk score was identified as an independent prognostic factor and could improve traditional prognostic model. Meanwhile, it was closely associated with metabolic reprogramming and tumour immune. High ERS risk enhanced glycolysis process and nucleotide metabolism, but was unfavourable for anti-tumour immune response. Moreover, ERS risk score could act as a potential biomarker for predicting the efficacy of ICBs. Overexpression of KDELR3 and YWHAZ stimulated the proliferation, migration and invasion of SW1990 and BxPC-3 cells. Silencing KDELR3 suppressed tumour growth in a xenograft model. miR-137 could weaken the malignant potentials of PC cells through inhibiting KDELR3 (5'-AGCAAUAA-3'). ERS risk score greatly contributed to PAAD clinical assessment. KDELR3 and YWHAZ possessed cancer-promoting capacities, showing promise as a novel treatment target.

7.
New Phytol ; 2024 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-38702992

RESUMO

Leaf senescence is a complex process regulated by developmental and environmental factors, and plays a pivotal role in the development and life cycle of higher plants. Casein kinase 1 (CK1) is a highly conserved serine/threonine protein kinase in eukaryotes and functions in various cellular processes including cell proliferation, light signaling and hormone effects of plants. However, the biological function of CK1 in plant senescence remains unclear. Through systemic genetic and biochemical studies, we here characterized the function of Arabidopsis EL1-like (AEL), a CK1, in promoting leaf senescence by stimulating ethylene biosynthesis through phosphorylating transcription factor WRKY22. Seedlings lacking or overexpressing AELs presented delayed or accelerated leaf senescence, respectively. AELs interact with and phosphorylate WRKY22 at Thr57, Thr60 and Ser69 residues to enhance whose transactivation activity. Being consistent, increased or suppressed phosphorylation of WRKY22 resulted in the promoted or delayed leaf senescence. WRKY22 directly binds to promoter region and stimulates the transcription of 1-amino-cyclopropane-1-carboxylate synthase 7 gene to promote ethylene level and hence leaf senescence. Our studies demonstrated the crucial role of AEL-mediated phosphorylation in regulating ethylene biosynthesis and promoting leaf senescence by enhancing WRKY22 transactivation activity, which helps to elucidate the fine-controlled ethylene biosynthesis and regulatory network of leaf senescence.

8.
Plant Cell ; 33(9): 3042-3056, 2021 09 24.
Artigo em Inglês | MEDLINE | ID: mdl-34125904

RESUMO

In eukaryotes, homotypic fusion and vacuolar protein sorting (HOPS) as well as class C core vacuole/endosome tethering (CORVET) are evolutionarily conserved membrane tethering complexes that play important roles in lysosomal/vacuolar trafficking. Whether HOPS and CORVET control endomembrane trafficking in pollen tubes, the fastest growing plant cells, remains largely elusive. In this study, we demonstrate that the four core components shared by the two complexes, Vacuole protein sorting 11 (VPS11), VPS16, VPS33, and VPS18, are all essential for pollen tube growth in Arabidopsis thaliana and thus for plant reproduction success. We used VPS18 as a representative core component of the complexes to show that the protein is localized to both multivesicular bodies (MVBs) and the tonoplast in a growing pollen tube. Mutant vps18 pollen tubes grew more slowly in vivo, resulting in a significant reduction in male transmission efficiency. Additional studies revealed that membrane fusion from MVBs to vacuoles is severely compromised in vps18 pollen tubes, corroborating the function of VPS18 in late endocytic trafficking. Furthermore, vps18 pollen tubes produce excessive exocytic vesicles at the apical zone and excessive amounts of pectin and pectin methylesterases in the cell wall. In conclusion, this study establishes an additional conserved role of HOPS/CORVET in homotypic membrane fusion during vacuole biogenesis in pollen tubes and reveals a feedback regulation of HOPS/CORVET in the secretion of cell wall modification enzymes of rapidly growing plant cells.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Pectinas/metabolismo , Tubo Polínico/crescimento & desenvolvimento , Proteínas de Transporte Vesicular/genética , Arabidopsis/enzimologia , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Corpos Multivesiculares/enzimologia , Tubo Polínico/genética , Proteínas de Transporte Vesicular/metabolismo
9.
Neurochem Res ; 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38834846

RESUMO

Neuroinflammation and endothelial cell apoptosis are prominent features of blood-brain barrier (BBB) disruption, which have been described in Alzheimer's disease (AD) and can predict cognitive decline. Recent reports revealed vascular ß-amyloid (Aß) deposits, Muller cell degeneration and microglial dysfunction in the retina of AD patients. However, there has been no in-depth research on the roles of inflammation, retinal endothelial cell apoptosis, and blood-retinal barrier (BRB) damage in AD retinopathy. We found that Raddeanin A (RDA) could improve pathological and cognitive deficits in a mouse model of Alzheimer's disease by targeting ß-amyloidosis, However, the effects of RDA on AD retinal function require further study. To clarify whether RDA inhibits inflammation and apoptosis and thus improves BRB function in AD-related retinopathy. In vitro we used Aß-treated HRECs and MIO-M1 cells, and in vivo we used 3×Tg-AD mice to investigate the effect of RDA on BRB in AD-related retinopathy. We found that RDA could improve BRB function in AD-related retinopathy by inhibiting NLRP3-mediated inflammation and suppressing Wnt/ß-catenin pathway-mediated apoptosis, which is expected to improve the pathological changes in AD-related retinopathy and the quality of life of AD patients.

10.
Cancer Control ; 31: 10732748241247170, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38662732

RESUMO

Among the post-transcriptional modifications, m6A RNA methylation has gained significant research interest due to its critical role in regulating transcriptional expression. This modification affects RNA metabolism in several ways, including processing, nuclear export, translation, and decay, making it one of the most abundant transcriptional modifications and a crucial regulator of gene expression. The dysregulation of m6A RNA methylation-related proteins in many tumors has been shown to lead to the upregulation of oncoprotein expression, tumor initiation, proliferation, cancer cell progression, and metastasis.Although the impact of m6A RNA methylation on cancer cell growth and proliferation has been extensively studied, its role in DNA repair processes, which are crucial to the pathogenesis of various diseases, including cancer, remains unclear. However, recent studies have shown accumulating evidence that m6A RNA methylation significantly affects DNA repair processes and may play a role in cancer drug resistance. Therefore, a comprehensive literature review is necessary to explore the potential biological role of m6A-modified DNA repair processes in human cancer and cancer drug resistance.In conclusion, m6A RNA methylation is a crucial regulator of gene expression and a potential player in cancer development and drug resistance. Its dysregulation in many tumors leads to the upregulation of oncoprotein expression and tumor progression. Furthermore, the impact of m6A RNA methylation on DNA repair processes, although unclear, may play a crucial role in cancer drug resistance. Therefore, further studies are warranted to better understand the potential biological role of m6A-modified DNA repair processes in human cancer and cancer drug resistance.


Assuntos
Dano ao DNA , Reparo do DNA , Resistencia a Medicamentos Antineoplásicos , Neoplasias , Humanos , Neoplasias/genética , Neoplasias/patologia , Neoplasias/terapia , Neoplasias/tratamento farmacológico , Resistencia a Medicamentos Antineoplásicos/genética , Quimiorradioterapia/métodos , Regulação Neoplásica da Expressão Gênica
11.
Mol Biol Rep ; 51(1): 520, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38625436

RESUMO

BACKGROUND: Mutations in human ether-à-go-go-related gene (hERG) potassium channels are closely associated with long QT syndrome (LQTS). Previous studies have demonstrated that macrolide antibiotics increase the risk of cardiovascular diseases. To date, the mechanisms underlying acquired LQTS remain elusive. METHODS: A novel hERG mutation I1025N was identified in an azithromycin-treated patient with acquired long QT syndrome via Sanger sequencing. The mutant I1025N plasmid was transfected into HEK-293 cells, which were subsequently incubated with azithromycin. The effect of azithromycin and mutant I1025N on the hERG channel was evaluated via western blot, immunofluorescence, and electrophysiology techniques. RESULTS: The protein expression of the mature hERG protein was down-regulated, whereas that of the immature hERG protein was up-regulated in mutant I1025N HEK-293 cells. Azithromycin administration resulted in a negative effect on the maturation of the hERG protein. Additionally, the I1025N mutation exerted an inhibitory effect on hERG channel current. Moreover, azithromycin inhibited hERG channel current in a concentration-dependent manner. The I1025N mutation and azithromycin synergistically decreased hERG channel expression and hERG current. However, the I1025N mutation and azithromycin did not alter channel gating dynamics. CONCLUSIONS: These findings suggest that hERG gene mutations might be involved in the genetic susceptibility mechanism underlying acquired LQTS induced by azithromycin.


Assuntos
Azitromicina , Síndrome do QT Longo , Humanos , Azitromicina/efeitos adversos , Células HEK293 , Antibacterianos/efeitos adversos , Síndrome do QT Longo/induzido quimicamente , Síndrome do QT Longo/genética , Mutação
12.
PLoS Genet ; 17(12): e1009905, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34879072

RESUMO

Phospholipase D (PLD) hydrolyzes membrane phospholipids and is crucial in various physiological processes and transduction of different signals. Secretory phospholipases play important roles in mammals, however, whose functions in plants remain largely unknown. We previously identified a rice secretory PLD (spPLD) that harbors a signal peptide and here we reported the secretion and function of spPLD in rice heading time regulation. Subcellular localization analysis confirmed the signal peptide is indispensable for spPLD secretion into the extracellular spaces, where spPLD hydrolyzes substrates. spPLD overexpression results in delayed heading time which is dependent on its secretory character, while suppression or deficiency of spPLD led to the early heading of rice under both short-day and long-day conditions, which is consistent with that spPLD overexpression/suppression indeed led to the reduced/increased Hd3a/RFT1 (Arabidopsis Flowing Locus T homolog) activities. Interestingly, rice Hd3a and RFT1 bind to phosphatidylcholines (PCs) and a further analysis by lipidomic approach using mass spectrometry revealed the altered phospholipids profiles in shoot apical meristem, particularly the PC species, under altered spPLD expressions. These results indicate the significance of secretory spPLD and help to elucidate the regulatory network of rice heading time.


Assuntos
Regulação da Expressão Gênica de Plantas , Oryza/crescimento & desenvolvimento , Fosfatidilcolinas/metabolismo , Fosfolipase D/metabolismo , Proteínas de Plantas/metabolismo , Oryza/enzimologia , Fosfolipase D/genética , Fotoperíodo , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas
13.
Ann Plast Surg ; 93(1): 22-29, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38885161

RESUMO

OBJECTIVE: This study aims to investigate the patient-reported outcomes (PROs) and complications of distinct implant-based breast reconstruction modality for patients with postmastectomy radiation therapy (PMRT). METHODS: A retrospective review was conducted on breast cancer patients with stage II-III disease who performed implant-based breast reconstruction following with PMRT between September 2016 and April 2022. The patients were categorized into two matched groups: (1) patients receiving prepectoral breast reconstruction (PBR) or (2) subpectoral breast reconstruction (SBR) followed by PMRT. Following reconstruction, the patients were further compared for PMRT with the tissue expander (PMRT-TE) versus PMRT with permanent implant (PMRT-PI). PROs were measured with BREAST-Q questionnaire. Early and late complications were recorded and analyzed. RESULTS: A total of 55 eligible patients were recruited. Patients who underwent PBR reported significantly higher satisfaction with breasts scores (P = 0.003) compared with the SBR group. The PMRT-TE group had higher satisfaction with breasts (P = 0.001) but lower physical well-being (P = 0.029) scores compared with PMRT-PI group. Moreover, patients in SBR cohort had a higher risk of capsular contracture (Baker grade III or IV) (20.5% vs 6.3%) and implant dislocation (48.7% vs 12.5%) than patients in PBR cohort. Patients in PMRT-PI group had a slightly higher rate of capsular contracture (Baker grade III or IV) than PMRT-TE group (20.8% vs 12.9%). CONCLUSIONS: PBR was associated with lower rates of late complications, especially for implant dislocation, and higher satisfaction with breasts scores compared to SBR. In addition, compared to PMRT-TE with PMRT-PI, patients in PMRT-TE cohort reported superior PROs of satisfaction with breasts.


Assuntos
Implante Mamário , Implantes de Mama , Neoplasias da Mama , Mastectomia , Medidas de Resultados Relatados pelo Paciente , Complicações Pós-Operatórias , Humanos , Feminino , Estudos Retrospectivos , Pessoa de Meia-Idade , Neoplasias da Mama/radioterapia , Neoplasias da Mama/cirurgia , Implante Mamário/métodos , Implante Mamário/instrumentação , Complicações Pós-Operatórias/epidemiologia , Complicações Pós-Operatórias/etiologia , Adulto , Radioterapia Adjuvante , Satisfação do Paciente , Mamoplastia/métodos
14.
Acta Pharmacol Sin ; 44(1): 189-200, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35778489

RESUMO

The high incidence of lymphatic metastasis is closely related to poor prognosis and mortality in cancers. Potent inhibitors to prevent pathological lymphangiogenesis and lymphatic spread are urgently needed. The VEGF-C-VEGFR3 pathway plays a vital role in driving lymphangiogenesis and lymph node metastasis. In addition, COX2 in tumor cells and tumor-associated macrophages (TAMs) facilitates lymphangiogenesis. We recently reported that aiphanol, a natural stilbenolignan, attenuates tumor angiogenesis by repressing VEGFR2 and COX2. In this study, we evaluated the antilymphangiogenic and antimetastatic potency of aiphanol using in vitro, ex vivo and in vivo systems. We first demonstrated that aiphanol directly bound to VEGFR3 and blocked its kinase activity with an half-maximal inhibitory concentration (IC50) value of 0.29 µM in an in vitro ADP-GloTM kinase assay. Furthermore, we showed that aiphanol (7.5-30 µM) dose-dependently counteracted VEGF-C-induced proliferation, migration and tubular formation of lymphatic endothelial cells (LECs), which was further verified in vivo. VEGFR3 knockdown markedly mitigated the inhibitory potency of aiphanol on lymphangiogenesis. In 4T1-luc breast tumor-bearing mice, oral administration of aiphanol (5 and 30 mg· kg-1 ·d-1) dose-dependently decreased lymphatic metastasis and prolonged survival time, which was associated with impaired lymphangiogenesis, angiogenesis and, interestingly, macrophage infiltration. In addition, we found that aiphanol decreased the COX2-dependent secretion of PGE2 and VEGF-C from tumor cells and macrophages. These results demonstrate that aiphanol is an appealing agent for preventing lymphangiogenesis and lymphatic dissemination by synergistically targeting VEGFR3 and inhibiting the COX2-PGE2-VEGF-C signaling axis.


Assuntos
Linfangiogênese , Fator C de Crescimento do Endotélio Vascular , Animais , Camundongos , Linhagem Celular Tumoral , Ciclo-Oxigenase 2/metabolismo , Dinoprostona/metabolismo , Células Endoteliais/metabolismo , Metástase Linfática , Fator C de Crescimento do Endotélio Vascular/metabolismo
15.
Ann Noninvasive Electrocardiol ; 28(2): e13024, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36573893

RESUMO

OBJECTIVE: This study aimed to analyze the conventional surface electrocardiogram (ECG) characteristics of premature ventricular contractions (PVCs) originating from the tricuspid annulus and to investigate the efficacy of locating their origins according to ECG results. METHODS: Eight patients who underwent radiofrequency ablation in the First Hospital of Shanxi Medical University (China) were included in the study. Pace mapping (PM) was used to analyze the characteristics of the PVCs originating from the tricuspid annulus recorded via 12-lead body surface ECGs. RESULTS: An R-wave was found in leads I, V5 , and V6 . The QRS wave was narrower when the PVCs originated from the septum and shifted in lead V3 (R-wave amplitude/S-wave amplitude in the precordial lead-1). The QRS wave was broadest when the PVCs originated from the 7 to 9 o'clock position. The augmented vector left lead showed RS, QS, or RSR-type waves with a low amplitude when the PVCs originated from the upper part of the annulus. When the PVCs originated from the lower part of the annulus, the augmented vector right lead reflected multidirectional and QS-type waves. CONCLUSION: The ECG-lead characteristics related to the origin of PVCs in the tricuspid annulus indicate some level of significance and can be used to formulate a specific diagnosis.


Assuntos
Ablação por Cateter , Taquicardia Ventricular , Complexos Ventriculares Prematuros , Humanos , Complexos Ventriculares Prematuros/diagnóstico , Complexos Ventriculares Prematuros/cirurgia , Sistema de Condução Cardíaco , Eletrocardiografia/métodos , Ablação por Cateter/métodos
16.
BMC Womens Health ; 23(1): 487, 2023 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-37705033

RESUMO

BACKGROUND: The objective of the present study was to investigate whether associations exist between inflammatory biomarkers and all-cause mortality and cardiovascular disease (CVD) mortality in women with postmenopausal osteoporosis (PMOP) or osteopenia. METHODS: In this retrospective cohort study, data were obtained from the National Health and Nutrition Examination Survey database from the years 2007 to 2010, 2013 to 2014, and 2017 to 2018. The inflammatory biomarkers including neutrophil/lymphocyte ratio (NLR), platelet/lymphocyte ratio (PLR), monocyte/lymphocyte ratio (MLR), neutrophil × platelet/lymphocyte (SII), neutrophil × monocyte/lymphocyte (SIRI), and neutrophil × monocyte × platelet/lymphocyte ratio (AISI) were calculated. RESULTS: A total of 2,834 women were included, with a median survival of 113.51 (3.15) months. During follow-up, 602 women died of all-cause mortality and 185 women died of CVD. NLR, MLR, SIRI, and AISI were significantly associated with all-cause mortality in postmenopausal women with osteoporosis or osteopenia. NLR, MLR, SIRI, and AISI were related to CVD mortality in postmenopausal women with osteoporosis or osteopenia (All P < 0.05). Based on the results of the subgroup analysis, AISI, SIRI, and MLR were associated with all-cause mortality and CVD mortality in postmenopausal women with PMOP or osteopenia who had a history of CVD and diabetes. AISI, SII, MLR, and NLR were associated with all-cause mortality and CVD mortality in PMOP or osteopenia women with a body mass index (BMI) > 25 kg/m2. PLR was associated with all-cause mortality in PMOP or osteopenia women aged ≥ 65 years. CONCLUSION: Inflammatory biomarkers were correlated with mortality risk in the PMOP or osteopenia population. This finding may be helpful for the prognosis management of PMOP or osteopenia in postmenopausal women.


Assuntos
Doenças Ósseas Metabólicas , Doenças Cardiovasculares , Osteoporose Pós-Menopausa , Osteoporose , Feminino , Humanos , Inquéritos Nutricionais , Pós-Menopausa , Estudos Retrospectivos
17.
Nanomedicine ; 47: 102618, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36270453

RESUMO

Ferroptosis plays an important role in ischemia-reperfusion (I/R)-induced cardiac injury and there are many defects in current targeted delivery of miRNAs for the treatment of ferroptosis. We herein report a unique hydrogel (Gel) that can be triggered by a near-infrared-II (NIR-II) light with deep tissue penetration and biocompatible maximum permissible exposure (MPE) value for in situ treatment after I/R. The mir-196c-3p mimic (mimics) and photothermal nanoparticles (BTN) were co-encapsulated in an injectable Gel (mimics + Gel/BTN) with NIR-II light-triggered release. Using 1064 nm light irradiation, local microenvironment photothermal-triggered on-demand noninvasive controllable delivery of miRNA was achieved, aiming to inhibit I/R-induced ferroptosis. Consequently, declined ferroptosis in cardiomyocytes and improved cardiac function, survival rate in rats was achieved through the controlled release of Gel/BTN mimics in I/R model to simultaneously inhibit ferroptosis hub genes NOX4, P53, and LOX expression.


Assuntos
Traumatismo por Reperfusão , Animais , Ratos
18.
J Appl Clin Med Phys ; 24(8): e13998, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37087557

RESUMO

BACKGROUND: We retrospectively studied the dosimetry and setup accuracy of deep inspiration breath-hold (DIBH) radiotherapy in right-sided breast cancer patients with regional nodal irradiation (RNI) who had completed treatment based on surface-guided radiotherapy (SGRT) technology by Sentinel/Catalyst system, aiming to clarify the clinical application value and related issues. METHODS: Dosimetric indicators of four organs at risk (OARs), namely the heart, right coronary artery (RCA), right lung, and liver, were compared on the premise that the planning target volume met dose-volume prescription requirements. Meanwhile, the patients were divided into the edge of the xiphoid process (EXP), sternum middle (SM), and left breast wall (LBW) groups according to different positions of respiratory gating primary points. The CBCT setup error data of the three groups were contrasted for the treatment accuracy study, and the effects of different gating window heights on the right lung volume increases were compared among the three groups. RESULTS: Compared with free breath (FB), DIBH reduced the maximum dose of heart and RCA by 739.3 ± 571.2 cGy and 509.8 ± 403.8 cGy, respectively (p < 0.05). The liver changed the most in terms of the mean dose (916.9 ± 318.9 cGy to 281.2 ± 150.3 cGy, p < 0.05). The setup error of the EXP group in the anterior-posterior (AP) direction was 3.6 ± 4.5 mm, which is the highest among the three groups. The right lung volume increases in the EXP, SM, and LBW groups were 72.3%, 69.9%, and 67.2%, respectively (p = 0.08), and the corresponding breath-holding heights were 13.5 ± 3.7 mm, 10.3 ± 2.4 mm, and 9.6 ± 2.8 mm, respectively (p < 0.05). CONCLUSIONS: SGRT-based DIBH radiotherapy can better protect the four OARs of right-sided breast cancer patients with RNI. Different respiratory gating primary points have different setup accuracy and breath-hold height.


Assuntos
Neoplasias da Mama , Neoplasias Unilaterais da Mama , Humanos , Feminino , Estudos Retrospectivos , Dosagem Radioterapêutica , Neoplasias Unilaterais da Mama/radioterapia , Neoplasias da Mama/radioterapia , Planejamento da Radioterapia Assistida por Computador , Suspensão da Respiração , Coração/efeitos da radiação , Órgãos em Risco/efeitos da radiação
19.
Cancer Immunol Immunother ; 71(10): 2449-2467, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35254477

RESUMO

BACKGROUND: Histone lysine demethylases (KDMs) are closely related to the occurrence and development of different tumors through epigenetic mechanisms. However, the prognosis and immune infiltration of KDMs in hepatocellular carcinoma (HCC) remain undefined. METHODS: In the current study, we analyzed the expression of KDMs on HCC patients using the Oncomine, GEPIA, UALCAN, Kaplan-Meier Plotter, cBioPortal, GeneMANIA, STRING, Metascape, GSEA, and TIMER databases. Finally, we investigated KDM expression in HCC by qRT-PCR, Western blotting, and IHC. RESULTS: We found that KDM3A/3B/5A/5B and KDM6A were upregulated in HCC patients, while KDM6B and KDM8 were downregulated. The high expressions of KDM1A/2B/3B/5B/5C were markedly related to tumor stages and grades of HCC patients. The abnormal expression of KDM1A/1B/3A/4A/5A/5C/6A/6B/7A and KDM8 were associated with HCC patients' prognosis. Also, we found that HCC tissues presented higher expression levels of KDM1A/2A/5A/5B and lower expression levels of KDM6B. The function of KDMs was primarily related to the histone demethylase activity and cell cycle, p53 signaling pathway, pathways in cancer, transcriptional mis-regulation in cancer, viral carcinogenesis, and FoxO signaling pathway. Furthermore, we indicated that the pathways most involved were the mitotic spindle and DNA repair. Additionally, we found that the expression of KDM1A/1B/3A/4A/5B/5C and KDM6A were significantly correlated with HCC immune infiltration. CONCLUSIONS: Overall, our current results indicated that KDM1A/1B/3A/4A/5B/5C and KDM6A could be novel prognostic biomarkers and provide insights into potential immunotherapy targets to HCC patients.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Biomarcadores , Biomarcadores Tumorais/genética , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Histona Desmetilases/genética , Histona Desmetilases/metabolismo , Humanos , Histona Desmetilases com o Domínio Jumonji/genética , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Prognóstico
20.
Plant Physiol ; 187(2): 917-930, 2021 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-34608955

RESUMO

Cell cycle is one of the most fundamentally conserved biological processes of plants and mammals. Casein kinase1s (CK1s) are critical for cell proliferation in mammalian cells; however, how CK1s coordinate cell division in plants remains unknown. Through genetic and biochemical studies, here we demonstrated that plant CK1, Arabidopsis (Arabidopsis thaliana) EL1-like (AELs), regulate cell cycle/division by modulating the stability and inhibitory effects of Kip-related protein6 (KRP6) through phosphorylation. Cytological analysis showed that AELs deficiency results in suppressed cell-cycle progression mainly due to the decreased DNA replication rate at S phase and increased period of G2 phase. AELs interact with and phosphorylate KRP6 at serines 75 and 109 to stimulate KRP6's interaction with E3 ligases, thus facilitating the KRP6 degradation through the proteasome. These results demonstrate the crucial roles of CK1s/AELs in regulating cell division through modulating cell-cycle rates and elucidate how CK1s/AELs regulate cell division by destabilizing the stability of cyclin-dependent kinase inhibitor KRP6 through phosphorylation, providing insights into the plant cell-cycle regulation through CK1s-mediated posttranslational modification.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Proteínas de Transporte , Divisão Celular , Arabidopsis/genética , Arabidopsis/fisiologia , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Divisão Celular/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA