Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 175
Filtrar
1.
Circ Res ; 132(1): 127-149, 2023 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-36603066

RESUMO

Cardiac alternans arises from dynamical instabilities in the electrical and calcium cycling systems of the heart, and often precedes ventricular arrhythmias and sudden cardiac death. In this review, we integrate clinical observations with theory and experiment to paint a holistic portrait of cardiac alternans: the underlying mechanisms, arrhythmic manifestations and electrocardiographic signatures. We first summarize the cellular and tissue mechanisms of alternans that have been demonstrated both theoretically and experimentally, including 3 voltage-driven and 2 calcium-driven alternans mechanisms. Based on experimental and simulation results, we describe their relevance to mechanisms of arrhythmogenesis under different disease conditions, and their link to electrocardiographic characteristics of alternans observed in patients. Our major conclusion is that alternans is not only a predictor, but also a causal mechanism of potentially lethal ventricular and atrial arrhythmias across the full spectrum of arrhythmia mechanisms that culminate in functional reentry, although less important for anatomic reentry and focal arrhythmias.


Assuntos
Cálcio , Coração , Humanos , Arritmias Cardíacas , Morte Súbita Cardíaca/etiologia , Eletrocardiografia/métodos
2.
PLoS Comput Biol ; 20(2): e1011930, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38416778

RESUMO

Early afterdepolarizations (EADs) are abnormal depolarizations during the plateau phase of the action potential, which are known to be associated with lethal arrhythmias in the heart. There are two major hypotheses for EAD genesis based on experimental observations, i.e., the voltage (Vm)-driven and intracellular calcium (Ca)-driven mechanisms. In ventricular myocytes, Ca and Vm are bidirectionally coupled, which can affect each other's dynamics and result in new dynamics, however, the roles of Ca cycling and its coupling with Vm in the genesis of EADs have not been well understood. In this study, we use an action potential model that is capable of independent Vm and Ca oscillations to investigate the roles of Vm and Ca coupling in EAD genesis. Four different mechanisms of EADs are identified, which are either driven by Vm oscillations or Ca oscillations alone, or oscillations caused by their interactions. We also use 5 other ventricular action potential models to assess these EAD mechanisms and show that EADs in these models are mainly Vm-driven. These mechanistic insights from our simulations provide a theoretical base for understanding experimentally observed EADs and EAD-related arrhythmogenesis.


Assuntos
Cálcio , Miócitos Cardíacos , Humanos , Miócitos Cardíacos/fisiologia , Potenciais de Ação , Arritmias Cardíacas , Ventrículos do Coração
3.
Am J Physiol Heart Circ Physiol ; 326(6): H1350-H1365, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38551483

RESUMO

Premature ventricular complexes (PVCs) are spontaneous excitations occurring in the ventricles of the heart that are associated with ventricular arrhythmias and sudden cardiac death. Under long QT conditions, PVCs can be mediated by repolarization gradient (RG) and early afterdepolarizations (EADs), yet the effects of heterogeneities or geometry of the RG or EAD regions on PVC genesis remain incompletely understood. In this study, we use computer simulation to systematically investigate the effects of the curvature of the RG border region on PVC genesis under long QT conditions. We show that PVCs can be either promoted or suppressed by negative or positive RG border curvature depending on the source and sink conditions. When the origin of oscillation is in the source region and the source is too strong, a positive RG border curvature can promote PVCs by causing the source area to oscillate. When the origin of oscillation is in the sink region, a negative RG border curvature can promote PVCs by causing the sink area to oscillate. Furthermore, EAD-mediated PVCs are also promoted by negative border curvature. We also investigate the effects of wavefront curvature and show that PVCs are promoted by convex but suppressed by concave wavefronts; however, the effect of wavefront curvature is much smaller than that of RG border curvature. In conclusion, besides the increase of RG and occurrence of EADs caused by QT prolongation, the geometry of the RG border plays important roles in PVC genesis, which can greatly increase the risk of arrhythmias in cardiac diseases.NEW & NOTEWORTHY The effects of the curvature or geometry of the repolarization gradient region and wavefront curvature on the genesis of premature ventricular complexes are systematically investigated using computer modeling and simulation. Premature ventricular complexes can be promoted by either positive or negative curvature of the gradient region depending on the source and sink conditions. The underlying mechanisms of the curvature effects are revealed, which provides mechanistic insights into arrhythmogenesis in cardiac diseases.


Assuntos
Simulação por Computador , Síndrome do QT Longo , Modelos Cardiovasculares , Complexos Ventriculares Prematuros , Complexos Ventriculares Prematuros/fisiopatologia , Humanos , Síndrome do QT Longo/fisiopatologia , Potenciais de Ação , Frequência Cardíaca , Sistema de Condução Cardíaco/fisiopatologia , Ventrículos do Coração/fisiopatologia
4.
Biophys J ; 121(18): 3499-3507, 2022 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-35962548

RESUMO

It has been demonstrated experimentally that slow and fast conduction waves with distinct conduction velocities can occur in the same nerve system depending on the strength or the form of the stimulus, which give rise to two modes of nerve functions. However, the mechanisms remain to be elucidated. In this study, we use computer simulations of the cable equation with modified Hodgkin-Huxley kinetics and analytical solutions of a simplified model to show that stimulus-dependent slow and fast waves recapitulating the experimental observations can occur in the cable, which are the two stable conduction states of a bistable conduction behavior. The bistable conduction is caused by a positive feedback loop of the wavefront upstroke speed, mediated by the sodium channel inactivation properties. Although the occurrence of bistable conduction only requires the presence of the sodium current, adding a calcium current to the model further promotes bistable conduction by potentiating the slow wave. We also show that the bistable conduction is robust, occurring for sodium and calcium activation thresholds well within the experimentally determined ones of the known sodium and calcium channel families. Since bistable conduction can occur in the cable equation of Hodgkin-Huxley kinetics with a single inward current, i.e., the sodium current, it can be a generic mechanism applicable to stimulus-dependent fast and slow conduction not only in the nerve systems but also in other electrically excitable systems, such as cardiac muscles.


Assuntos
Cálcio , Condução Nervosa , Potenciais de Ação/fisiologia , Cálcio/metabolismo , Canais de Cálcio , Humanos , Condução Nervosa/fisiologia , Sódio/metabolismo , Canais de Sódio
5.
Phys Rev Lett ; 129(4): 048101, 2022 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-35939013

RESUMO

Rhythmic activities, which are usually driven by pacemakers, are common in biological systems. In noisy excitable media, pacemakers are self-organized firing clusters, but the underlying dynamics remains to be elucidated. Here we develop a Kramers rate theory of coupled cells to describe the firing properties of pacemakers and their dependence on coupling strength and system size and dimension. The theory captures accurately the simulation results of tissue models with stochastic Hodgkin-Huxley equations except when transitions from pacemakers to spiral waves occur under weak coupling.


Assuntos
Marca-Passo Artificial , Simulação por Computador
6.
PLoS Comput Biol ; 17(1): e1008624, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33493168

RESUMO

Mitochondria are vital organelles inside the cell and contribute to intracellular calcium (Ca2+) dynamics directly and indirectly via calcium exchange, ATP generation, and production of reactive oxygen species (ROS). Arrhythmogenic Ca2+ alternans in cardiac myocytes has been observed in experiments under abnormal mitochondrial depolarization. However, complex signaling pathways and Ca2+ cycling between mitochondria and cytosol make it difficult in experiments to reveal the underlying mechanisms of Ca2+ alternans under abnormal mitochondrial depolarization. In this study, we use a newly developed spatiotemporal ventricular myocyte computer model that integrates mitochondrial Ca2+ cycling and complex signaling pathways to investigate the mechanisms of Ca2+ alternans during mitochondrial depolarization. We find that elevation of ROS in response to mitochondrial depolarization plays a critical role in promoting Ca2+ alternans. Further examination reveals that the redox effect of ROS on ryanodine receptors and sarco/endoplasmic reticulum Ca2+-ATPase synergistically promote alternans. Upregulation of mitochondrial Ca2+ uniporter promotes Ca2+ alternans via Ca2+-dependent mitochondrial permeability transition pore opening. Due to their relatively slow kinetics, oxidized Ca2+/calmodulin-dependent protein kinase II activation and ATP do not play significant roles acutely in the genesis of Ca2+ alternans after mitochondrial depolarization, but their roles can be significant in the long term, mainly through their effects on sarco/endoplasmic reticulum Ca2+-ATPase activity. In conclusion, mitochondrial depolarization promotes Ca2+ alternans acutely via the redox effect of ROS and chronically by ATP reduction. It suppresses Ca2+ alternans chronically through oxidized Ca2+/calmodulin-dependent protein kinase II activation.


Assuntos
Potenciais de Ação/fisiologia , Arritmias Cardíacas , Cálcio/metabolismo , Mitocôndrias/fisiologia , Modelos Cardiovasculares , Animais , Arritmias Cardíacas/metabolismo , Arritmias Cardíacas/fisiopatologia , Células Cultivadas , Biologia Computacional , Simulação por Computador , Ventrículos do Coração/citologia , Mitocôndrias/enzimologia , Mitocôndrias/metabolismo , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/fisiologia , Coelhos , Espécies Reativas de Oxigênio/metabolismo
7.
Biophys J ; 120(2): 352-369, 2021 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-33333033

RESUMO

QT prolongation, due to lengthening of the action potential duration in the ventricles, is a major risk factor of lethal ventricular arrhythmias. A widely known consequence of QT prolongation is the genesis of early afterdepolarizations (EADs), which are associated with arrhythmias through the generation of premature ventricular complexes (PVCs). However, the vast majority of the EADs observed experimentally in isolated ventricular myocytes are phase-2 EADs, and whether phase-2 EADs are mechanistically linked to PVCs in cardiac tissue remains an unanswered question. In this study, we investigate the genesis of PVCs using computer simulations with eight different ventricular action potential models of various species. Based on our results, we classify PVCs as arising from two distinct mechanisms: repolarization gradient (RG)-induced PVCs and phase-2 EAD-induced PVCs. The RG-induced PVCs are promoted by increasing RG and L-type calcium current and are insensitive to gap junction coupling. EADs are not required for this PVC mechanism. In a paced beat, a single or multiple PVCs can occur depending on the properties of the RG. In contrast, phase-2 EAD-induced PVCs occur only when the RG is small and are suppressed by increasing RG and more sensitive to gap junction coupling. Unlike with RG-induced PVCs, in each paced beat, only a single EAD-induced PVC can occur no matter how many EADs in an action potential. In the wide parameter ranges we explore, RG-induced PVCs can be observed in all models, but the EAD-induced PVCs can only be observed in five of the eight models. The links between these two distinct PVC mechanisms and arrhythmogenesis in animal experiments and clinical settings are discussed.


Assuntos
Síndrome do QT Longo , Potenciais de Ação , Animais , Arritmias Cardíacas , Ventrículos do Coração , Miócitos Cardíacos
8.
Am J Physiol Heart Circ Physiol ; 320(2): H826-H837, 2021 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-33385322

RESUMO

Spiral wave reentry as a mechanism of lethal ventricular arrhythmias has been widely demonstrated in animal experiments and recordings from human hearts. It has been shown that in structurally normal hearts spiral waves are unstable, breaking up into multiple wavelets via dynamical instabilities. However, many of the second-generation action potential models give rise only to stable spiral waves, raising issues regarding the underlying mechanisms of spiral wave breakup. In this study, we carried out computer simulations of two-dimensional homogeneous tissues using five ventricular action potential models. We show that the transient outward potassium current (Ito), although it is not required, plays a key role in promoting spiral wave breakup in all five models. As the maximum conductance of Ito increases, it first promotes spiral wave breakup and then stabilizes the spiral waves. In the absence of Ito, speeding up the L-type calcium kinetics can prevent spiral wave breakup, however, with the same speedup kinetics, spiral wave breakup can be promoted by increasing Ito. Increasing Ito promotes single-cell dynamical instabilities, including action potential duration alternans and chaos, and increasing Ito further suppresses these action potential dynamics. These cellular properties agree with the observation that increasing Ito first promotes spiral wave breakup and then stabilizes spiral waves in tissue. Implications of our observations to spiral wave dynamics in the real hearts and action potential model improvements are discussed.NEW & NOTEWORTHY Spiral wave breakup manifesting as multiple wavelets is a mechanism of ventricular fibrillation. It has been known that spiral wave breakup in cardiac tissue can be caused by a steeply sloped action potential duration restitution curve, a property mainly determined by the recovery of L-type calcium current. Here, we show that the transient outward potassium current (Ito) is another current that plays a key role in spiral wave breakup, that is, spiral waves can be stable for low and high maximum Ito conductance but breakup occurs for intermediate maximum Ito conductance. Since Ito is present in normal hearts of many species and required for Brugada syndrome, it may play an important role in the spiral wave stability and arrhythmogenesis under both normal condition and Brugada syndrome.


Assuntos
Potenciais de Ação , Arritmias Cardíacas/etiologia , Frequência Cardíaca , Ventrículos do Coração/metabolismo , Modelos Cardiovasculares , Miócitos Cardíacos/metabolismo , Canais de Potássio/metabolismo , Potássio/metabolismo , Animais , Arritmias Cardíacas/metabolismo , Arritmias Cardíacas/fisiopatologia , Canais de Cálcio Tipo L/metabolismo , Sinalização do Cálcio , Simulação por Computador , Cobaias , Ventrículos do Coração/fisiopatologia , Humanos , Cinética , Coelhos
9.
PLoS Comput Biol ; 16(10): e1007931, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-33017392

RESUMO

Biological excitable media, such as cardiac or neural cells and tissue, exhibit memory in which a change in the present excitation may affect the behaviors in the next excitation. For example, a change in calcium (Ca2+) concentration in a cell in the present excitation may affect the Ca2+ dynamics in the next excitation via bi-directional coupling between voltage and Ca2+, forming a delayed feedback loop. Since the Ca2+ dynamics inside the excitable cells are spatiotemporal while the membrane voltage is a global signal, the feedback loop is then a delayed global feedback (DGF) loop. In this study, we investigate the roles of DGF in the genesis and stability of spatiotemporal excitation patterns in periodically-paced excitable media using mathematical models with different levels of complexity: a model composed of coupled FitzHugh-Nagumo units, a 3-dimensional physiologically-detailed ventricular myocyte model, and a coupled map lattice model. We investigate the dynamics of excitation patterns that are temporal period-2 (P2) and spatially concordant or discordant, such as subcellular concordant or discordant Ca2+alternans in cardiac myocytes or spatially concordant or discordant Ca2+ and repolarization alternans in cardiac tissue. Our modeling approach allows both computer simulations and rigorous analytical treatments, which lead to the following results and conclusions. When DGF is absent, concordant and discordant P2 patterns occur depending on initial conditions with the discordant P2 patterns being spatially random. When the DGF is negative, only concordant P2 patterns exist. When the DGF is positive, both concordant and discordant P2 patterns can occur. The discordant P2 patterns are still spatially random, but they satisfy that the global signal exhibits a temporal period-1 behavior. The theoretical analyses of the coupled map lattice model reveal the underlying instabilities and bifurcations for the genesis, selection, and stability of spatiotemporal excitation patterns.


Assuntos
Sinalização do Cálcio/fisiologia , Biologia Computacional/métodos , Retroalimentação Fisiológica/fisiologia , Modelos Cardiovasculares , Animais , Cálcio/metabolismo , Simulação por Computador , Humanos , Miócitos Cardíacos/fisiologia , Análise de Ondaletas
10.
Biophys J ; 118(10): 2574-2587, 2020 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-32101718

RESUMO

Spatially discordant alternans (SDA) of action potential duration (APD) has been widely observed in cardiac tissue and is linked to cardiac arrhythmogenesis. Theoretical studies have shown that conduction velocity restitution (CVR) is required for the formation of SDA. However, this theory is not completely supported by experiments, indicating that other mechanisms may exist. In this study, we carried out computer simulations using mathematical models of action potentials to investigate the mechanisms of SDA in cardiac tissue. We show that when CVR is present and engaged, such as fast pacing from one side of the tissue, the spatial pattern of APD in the tissue undergoes either spatially concordant alternans or SDA, independent of initial conditions or tissue heterogeneities. When CVR is not engaged, such as simultaneous pacing of the whole tissue or under normal/slow heart rates, the spatial pattern of APD in the tissue can have multiple solutions, including spatially concordant alternans and different SDA patterns, depending on heterogeneous initial conditions or pre-existing repolarization heterogeneities. In homogeneous tissue, curved nodal lines are not stable, which either evolve into straight lines or disappear. However, in heterogeneous itssue, curved nodal lines can be stable, depending on their initial locations and shapes relative to the structure of the heterogeneity. Therefore, CVR-induced SDA and non-CVR-induced SDA exhibit different dynamical properties, which may be responsible for the different SDA properties observed in experimental studies and arrhythmogenesis in different clinical settings.


Assuntos
Arritmias Cardíacas , Sistema de Condução Cardíaco , Potenciais de Ação , Simulação por Computador , Coração , Humanos , Modelos Cardiovasculares
11.
Proc Natl Acad Sci U S A ; 114(3): E270-E279, 2017 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-28049836

RESUMO

Cardiac myocytes normally initiate action potentials in response to a current stimulus that depolarizes the membrane above an excitation threshold. Aberrant excitation can also occur due to spontaneous calcium (Ca2+) release (SCR) from intracellular stores after the end of a preceding action potential. SCR drives the Na+/Ca2+ exchange current inducing a "delayed afterdepolarization" that can in turn trigger an action potential if the excitation threshold is reached. This "triggered activity" is known to cause arrhythmias, but how it is initiated and terminated is not understood. Using computer simulations of a ventricular myocyte model, we show that initiation and termination are inherently random events. We determine the probability of those events from statistical measurements of the number of beats before initiation and before termination, respectively, which follow geometric distributions. Moreover, we elucidate the origin of randomness by a statistical analysis of SCR events, which do not follow a Poisson process observed in other eukaryotic cells. Due to synchronization of Ca2+ releases during the action potential upstroke, waiting times of SCR events after the upstroke are narrowly distributed, whereas SCR amplitudes follow a broad normal distribution with a width determined by fluctuations in the number of independent Ca2+ wave foci. This distribution enables us to compute the probabilities of initiation and termination of bursts of triggered activity that are maintained by a positive feedback between the action potential upstroke and SCR. Our results establish a theoretical framework for interpreting complex and varied manifestations of triggered activity relevant to cardiac arrhythmias.


Assuntos
Modelos Cardiovasculares , Miócitos Cardíacos/fisiologia , Potenciais de Ação/fisiologia , Animais , Arritmias Cardíacas/etiologia , Arritmias Cardíacas/fisiopatologia , Sinalização do Cálcio/fisiologia , Simulação por Computador , Fenômenos Eletrofisiológicos , Retroalimentação Fisiológica , Humanos , Canais Iônicos/fisiologia , Processos Estocásticos
12.
Chaos ; 30(12): 123141, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33380024

RESUMO

Cardiac alternans, a period-2 behavior of excitation and contraction of the heart, is a precursor of ventricular arrhythmias and sudden cardiac death. One form of alternans is repolarization or action potential duration alternans. In cardiac tissue, repolarization alternans can be spatially in-phase, called spatially concordant alternans, or spatially out-of-phase, called spatially discordant alternans (SDA). In SDA, the border between two out-of-phase regions is called a node in a one-dimensional cable or a nodal line in a two-dimensional tissue. In this study, we investigate the stability and dynamics of the nodes and nodal lines of repolarization alternans driven by voltage instabilities. We use amplitude equation and coupled map lattice models to derive theoretical results, which are compared with simulation results from the ionic model. Both conduction velocity restitution induced SDA and non-conduction velocity restitution induced SDA are investigated. We show that the stability and dynamics of the SDA nodes or nodal lines are determined by the balance of the tensions generated by conduction velocity restitution, convection due to action potential propagation, curvature of the nodal lines, and repolarization and coupling heterogeneities. Our study provides mechanistic insights into the different SDA behaviors observed in experiments.


Assuntos
Sistema de Condução Cardíaco , Modelos Cardiovasculares , Potenciais de Ação , Arritmias Cardíacas , Coração , Humanos
13.
Biophys J ; 117(12): 2349-2360, 2019 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-31623883

RESUMO

Intracellular calcium (Ca2+) cycling dynamics in cardiac myocytes are spatiotemporally generated by stochastic events arising from a spatially distributed network of coupled Ca2+ release units that interact with an intertwined mitochondrial network. In this study, we developed a spatiotemporal ventricular myocyte model that integrates mitochondria-related Ca2+ cycling components into our previously developed ventricular myocyte model consisting of a three-dimensional Ca2+ release unit network. Mathematical formulations of mitochondrial membrane potential, mitochondrial Ca2+ cycling, mitochondrial permeability transition pore stochastic opening and closing, intracellular reactive oxygen species signaling, and oxidized Ca2+/calmodulin-dependent protein kinase II signaling were incorporated into the model. We then used the model to simulate the effects of mitochondrial depolarization on mitochondrial Ca2+ cycling, Ca2+ spark frequency, and Ca2+ amplitude, which agree well with experimental data. We also simulated the effects of the strength of mitochondrial Ca2+ uniporters and their spatial localization on intracellular Ca2+ cycling properties, which substantially affected diastolic and systolic Ca2+ levels in the mitochondria but exhibited only a small effect on sarcoplasmic reticulum and cytosolic Ca2+ levels under normal conditions. We show that mitochondrial depolarization can cause Ca2+ waves and Ca2+ alternans, which agrees with previous experimental observations. We propose that this new, to our knowledge, spatiotemporal ventricular myocyte model, incorporating properties of mitochondrial Ca2+ cycling and reactive-oxygen-species-dependent signaling, will be useful for investigating the effects of mitochondria on intracellular Ca2+ cycling and action potential dynamics in ventricular myocytes.


Assuntos
Cálcio/metabolismo , Ventrículos do Coração/citologia , Mitocôndrias Cardíacas/metabolismo , Modelos Cardiovasculares , Miócitos Cardíacos/citologia , Potenciais de Ação , Potencial da Membrana Mitocondrial , Análise Espaço-Temporal
14.
Phys Rev Lett ; 123(21): 218101, 2019 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-31809131

RESUMO

We develop an iterated map model to describe the bifurcations and complex dynamics caused by the feedback between voltage and intracellular Ca^{2+} and Na^{+} concentrations in paced ventricular myocytes. Voltage and Ca^{2+} can form either a positive or a negative feedback loop, while voltage and Na^{+} form a negative feedback loop. Under certain diseased conditions, when the feedback between voltage and Ca^{2+} is positive, Hopf bifurcations occur, leading to periodic oscillatory behaviors. When this feedback is negative, period-doubling bifurcation routes to alternans and chaos occur.


Assuntos
Cálcio/metabolismo , Modelos Cardiovasculares , Miócitos Cardíacos/metabolismo , Sódio/metabolismo , Relógios Biológicos , Cátions Bivalentes/metabolismo , Cátions Monovalentes/metabolismo , Membrana Celular/metabolismo , Polaridade Celular , Retroalimentação Fisiológica , Ventrículos do Coração/citologia , Ventrículos do Coração/metabolismo , Potenciais da Membrana , Miócitos Cardíacos/citologia , Trocador de Sódio e Cálcio/metabolismo
15.
PLoS Comput Biol ; 14(11): e1006382, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30475801

RESUMO

Early afterdepolarizations (EADs) are spontaneous depolarizations during the repolarization phase of an action potential in cardiac myocytes. It is widely known that EADs are promoted by increasing inward currents and/or decreasing outward currents, a condition called reduced repolarization reserve. Recent studies based on bifurcation theories show that EADs are caused by a dual Hopf-homoclinic bifurcation, bringing in further mechanistic insights into the genesis and dynamics of EADs. In this study, we investigated the EAD properties, such as the EAD amplitude, the inter-EAD interval, and the latency of the first EAD, and their major determinants. We first made predictions based on the bifurcation theory and then validated them in physiologically more detailed action potential models. These properties were investigated by varying one parameter at a time or using parameter sets randomly drawn from assigned intervals. The theoretical and simulation results were compared with experimental data from the literature. Our major findings are that the EAD amplitude and takeoff potential exhibit a negative linear correlation; the inter-EAD interval is insensitive to the maximum ionic current conductance but mainly determined by the kinetics of ICa,L and the dual Hopf-homoclinic bifurcation; and both inter-EAD interval and latency vary largely from model to model. Most of the model results generally agree with experimental observations in isolated ventricular myocytes. However, a major discrepancy between modeling results and experimental observations is that the inter-EAD intervals observed in experiments are mainly between 200 and 500 ms, irrespective of species, while those of the mathematical models exhibit a much wider range with some models exhibiting inter-EAD intervals less than 100 ms. Our simulations show that the cause of this discrepancy is likely due to the difference in ICa,L recovery properties in different mathematical models, which needs to be addressed in future action potential model development.


Assuntos
Simulação por Computador , Ventrículos do Coração/metabolismo , Modelos Biológicos , Miócitos Cardíacos/fisiologia , Potenciais de Ação , Humanos , Transporte de Íons
16.
Annu Rev Physiol ; 77: 29-55, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25340965

RESUMO

Ventricular arrhythmias have complex causes and mechanisms. Despite extensive investigation involving many clinical, experimental, and computational studies, effective biological therapeutics are still very limited. In this article, we review our current understanding of the mechanisms of ventricular arrhythmias by summarizing the state of knowledge spanning from the molecular scale to electrical wave behavior at the tissue and organ scales and how the complex nonlinear interactions integrate into the dynamics of arrhythmias in the heart. We discuss the challenges that we face in synthesizing these dynamics to develop safe and effective novel therapeutic approaches.


Assuntos
Arritmias Cardíacas/fisiopatologia , Eletrofisiologia Cardíaca , Sistema de Condução Cardíaco/anormalidades , Disfunção Ventricular/fisiopatologia , Potenciais de Ação/fisiologia , Animais , Síndrome de Brugada , Sinalização do Cálcio/fisiologia , Doença do Sistema de Condução Cardíaco , Modelos Animais de Doenças , Sistema de Condução Cardíaco/fisiopatologia , Humanos , Canais Iônicos/fisiologia , Transdução de Sinais/fisiologia
17.
J Mol Cell Cardiol ; 114: 288-299, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29217432

RESUMO

RATIONALE: The major role of a transverse-tubular (TT) network in a cardiac cell is to facilitate effective excitation-contraction coupling and signaling. The TT network structures are heterogeneous within a single cell, and vary between different types of cells and species. They are also remodeled in cardiac diseases. However, how different TT network structures predispose cardiac cells to arrhythmogenesis remains to be revealed. OBJECTIVE: To systematically investigate the roles of TT network structure and the underlying mechanisms in the genesis of intracellular calcium (Ca2+) alternans and triggered activity (TA). METHODS AND RESULTS: Based on recent experimental observations, different TT network structures, including uniformly and non-uniformly random TT distributions, were modeled in a cardiac cell model consisting of a three-dimensional network of Ca2+ release units (CRUs). Our simulations showed that both Ca2+ alternans and Ca2+ wave-mediated TA were promoted when the fraction of orphaned CRUs was in an intermediate range, but suppressed in cells exhibiting either well-organized TT networks or low TT densities. Ca2+ alternans and TA could be promoted by low TT densities when the cells were small or the CRU coupling was strong. Both alternans and TA occurred more easily in uniformly random TT networks than in non-uniformly random TT networks. Subcellular spatially discordant Ca2+ alternans was promoted by non-uniformly random TT networks but suppressed by increasing CRU coupling strength. These mechanistic insights provide a holistic understanding of the effects of TT network structure on the susceptibility to arrhythmogenesis. CONCLUSIONS: The TT network plays important roles in promoting Ca2+ alternans and TA, and different TT network structures may predispose cardiac cells differently to arrhythmogenesis.


Assuntos
Sinalização do Cálcio , Espaço Intracelular/metabolismo , Miócitos Cardíacos/metabolismo , Retículo Sarcoplasmático/metabolismo , Canais de Cálcio Tipo L/metabolismo , Tamanho Celular , Átrios do Coração/citologia , Ventrículos do Coração/citologia , Modelos Cardiovasculares , Trocador de Sódio e Cálcio/metabolismo
19.
J Physiol ; 596(8): 1341-1355, 2018 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-29377142

RESUMO

KEY POINTS: T-wave alternans (TWA) and T-wave lability (TWL) are precursors of ventricular arrhythmias in long QT syndrome; however, the mechanistic link remains to be clarified. Computer simulations show that action potential duration (APD) prolongation and slowed heart rates promote APD alternans and chaos, manifesting as TWA and TWL, respectively. Regional APD alternans and chaos can exacerbate pre-existing or induce de novo APD dispersion, which combines with enhanced ICa,L to result in premature ventricular complexes (PVCs) originating from the APD gradient region. These PVCs can directly degenerate into re-entrant arrhythmias without the need for an additional tissue substrate or further exacerbate the APD dispersion to cause spontaneous initiation of ventricular arrhythmias. Experiments conducted in transgenic long QT rabbits show that PVC alternans occurs at slow heart rates, preceding spontaneous intuition of ventricular arrhythmias. ABSTRACT: T-wave alternans (TWA) and irregular beat-to-beat T-wave variability or T-wave lability (TWL), the ECG manifestations of action potential duration (APD) alternans and variability, are precursors of ventricular arrhythmias in long QT syndromes. TWA and TWL in patients tend to occur at normal heart rates and are usually potentiated by bradycardia. Whether or how TWA and TWL at normal or slow heart rates are causally linked to arrhythmogenesis remains unknown. In the present study, we used computer simulations and experiments of a transgenic rabbit model of long QT syndrome to investigate the underlying mechanisms. Computer simulations showed that APD prolongation and slowed heart rates caused early afterdepolarization-mediated APD alternans and chaos, manifesting as TWA and TWL, respectively. Regional APD alternans and chaos exacerbated pre-existing APD dispersion and, in addition, APD chaos could also induce APD dispersion de novo via chaos desynchronization. Increased APD dispersion, combined with substantially enhanced ICa,L , resulted in a tissue-scale dynamical instability that gave rise to the spontaneous occurrence of unidirectionally propagating premature ventricular complexes (PVCs) originating from the APD gradient region. These PVCs could directly degenerate into re-entrant arrhythmias without the need for an additional tissue substrate or could block the following sinus beat to result in a longer RR interval, which further exacerbated the APD dispersion giving rise to the spontaneous occurrence of ventricular arrhythmias. Slow heart rate-induced PVC alternans was observed in experiments of transgenic LQT2 rabbits under isoproterenol, which was associated with increased APD dispersion and spontaneous occurrence of ventricular arrhythmias, in agreement with the theoretical predictions.


Assuntos
Síndrome do QT Longo/fisiopatologia , Potenciais de Ação , Animais , Eletrocardiografia , Modelos Cardiovasculares , Contração Miocárdica , Coelhos , Disfunção Ventricular/fisiopatologia
20.
Chaos ; 28(11): 113122, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30501225

RESUMO

Sudden cardiac death is known to be associated with dynamical instabilities in the heart, and thus control of dynamical instabilities is considered a potential therapeutic strategy. Different control methods were developed previously, including time-delayed feedback pacing control and constant diastolic interval pacing control. Experimental, theoretical, and simulation studies have examined the efficacy of these control methods in stabilizing action potential dynamics. In this study, we apply these control methods to control complex action potential (AP) dynamics under two diseased conditions: early repolarization syndrome and long QT syndrome, in which voltage-driven instabilities occur in the presence of short-term cardiac memory. In addition, we also develop a feedback pacing method to stabilize these instabilities. We perform theoretical analyses using iterated map models and carry out numerical simulations of AP models. We show that under the normal condition where the memory effect is minimal, all three methods can effectively control the action potential duration (APD) dynamics. Under the two diseased conditions where the memory effect is exacerbated, constant diastolic pacing control is least effective, while the feedback pacing control is most effective. Under a very strong memory effect, all three methods fail to stabilize the voltage-driven instabilities. The failure of effective control is due to memory and the all-or-none AP dynamics which results in very steep changes in APD.


Assuntos
Potenciais de Ação , Síndrome do QT Longo/fisiopatologia , Modelos Cardiovasculares , Miócitos Cardíacos/metabolismo , Animais , Humanos , Síndrome do QT Longo/patologia , Miócitos Cardíacos/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA