Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
bioRxiv ; 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38798369

RESUMO

Sensory deprivation reshapes developing neural circuits, and sensory feedback adjusts the strength of reflexive behaviors throughout life. Sensory development might therefore limit the rate with which behaviors mature, but the complexity of most sensorimotor circuits preclude identifying this fundamental constraint. Here we compared the functional development of components of the vertebrate vestibulo-ocular reflex circuit that stabilizes gaze. We found that vestibular interneuron responses to body tilt sensation developed well before behavioral performance peaked, even without motor neuron-derived feedback. Motor neuron responses developed similarly. Instead, the ontogeny of behavior matched the rate of neuromuscular junction development. When sensation was delayed until after the neuromuscular junction developed, behavioral performance was immediately strong. The matching timecourse and ability to determine behavior establish the development of the neuromuscular junction, and not sensory-derived information, as the rate-limiting process for an ancient and evolutionarilyconserved neural circuit.

2.
bioRxiv ; 2024 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-38328255

RESUMO

Sensorimotor reflex circuits engage distinct neuronal subtypes, defined by precise connectivity, to transform sensation into compensatory behavior. Whether and how motor neuron populations specify the subtype fate and/or sensory connectivity of their pre-motor partners remains controversial. Here, we discovered that motor neurons are dispensable for proper connectivity in the vestibular reflex circuit that stabilizes gaze. We first measured activity following vestibular sensation in pre-motor projection neurons after constitutive loss of their extraocular motor neuron partners. We observed normal responses and topography indicative of unchanged functional connectivity between sensory neurons and projection neurons. Next, we show that projection neurons remain anatomically and molecularly poised to connect appropriately with their downstream partners. Lastly, we show that the transcriptional signatures that typify projection neurons develop independently of motor partners. Our findings comprehensively overturn a long-standing model: that connectivity in the circuit for gaze stabilization is retrogradely determined by motor partner-derived signals. By defining the contribution of motor neurons to specification of an archetypal sensorimotor circuit, our work speaks to comparable processes in the spinal cord and advances our understanding of general principles of neural development.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA