Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 562(7726): 245-248, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30305741

RESUMO

Metal halide perovskite materials are an emerging class of solution-processable semiconductors with considerable potential for use in optoelectronic devices1-3. For example, light-emitting diodes (LEDs) based on these materials could see application in flat-panel displays and solid-state lighting, owing to their potential to be made at low cost via facile solution processing, and could provide tunable colours and narrow emission line widths at high photoluminescence quantum yields4-8. However, the highest reported external quantum efficiencies of green- and red-light-emitting perovskite LEDs are around 14 per cent7,9 and 12 per cent8, respectively-still well behind the performance of organic LEDs10-12 and inorganic quantum dot LEDs13. Here we describe visible-light-emitting perovskite LEDs that surpass the quantum efficiency milestone of 20 per cent. This achievement stems from a new strategy for managing the compositional distribution in the device-an approach that simultaneously provides high luminescence and balanced charge injection. Specifically, we mixed a presynthesized CsPbBr3 perovskite with a MABr additive (where MA is CH3NH3), the differing solubilities of which yield sequential crystallization into a CsPbBr3/MABr quasi-core/shell structure. The MABr shell passivates the nonradiative defects that would otherwise be present in CsPbBr3 crystals, boosting the photoluminescence quantum efficiency, while the MABr capping layer enables balanced charge injection. The resulting 20.3 per cent external quantum efficiency represents a substantial step towards the practical application of perovskite LEDs in lighting and display.

2.
Proc Natl Acad Sci U S A ; 118(25)2021 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-34131083

RESUMO

Organic-inorganic layered perovskites, or Ruddlesden-Popper perovskites, are two-dimensional quantum wells with layers of lead-halide octahedra stacked between organic ligand barriers. The combination of their dielectric confinement and ionic sublattice results in excitonic excitations with substantial binding energies that are strongly coupled to the surrounding soft, polar lattice. However, the ligand environment in layered perovskites can significantly alter their optical properties due to the complex dynamic disorder of the soft perovskite lattice. Here, we infer dynamic disorder through phonon dephasing lifetimes initiated by resonant impulsive stimulated Raman photoexcitation followed by transient absorption probing for a variety of ligand substitutions. We demonstrate that vibrational relaxation in layered perovskite formed from flexible alkyl-amines as organic barriers is fast and relatively independent of the lattice temperature. Relaxation in layered perovskites spaced by aromatic amines is slower, although still fast relative to bulk inorganic lead bromide lattices, with a rate that is temperature dependent. Using molecular dynamics simulations, we explain the fast rates of relaxation by quantifying the large anharmonic coupling of the optical modes with the ligand layers and rationalize the temperature independence due to their amorphous packing. This work provides a molecular and time-domain depiction of the relaxation of nascent optical excitations and opens opportunities to understand how they couple to the complex layered perovskite lattice, elucidating design principles for optoelectronic devices.

3.
Proc Natl Acad Sci U S A ; 116(26): 12648-12653, 2019 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-31189607

RESUMO

Ion exchange, as a postsynthetic transformation strategy, offers more flexibilities in controlling material compositions and structures beyond direct synthetic methodology. Observation of such transformation kinetics on the single-particle level with rich spatial and spectroscopic information has never been achieved. We report the quantitative imaging of anion exchange kinetics in individual single-crystalline halide perovskite nanoplates using confocal photoluminescence microscopy. We have systematically observed a symmetrical anion exchange pathway on the nanoplates with dependence on reaction time and plate thickness, which is governed by the crystal structure and the diffusion-limited transformation mechanism. Based on a reaction-diffusion model, the halide diffusion coefficient was estimated to be on the order of [Formula: see text] This diffusion-controlled mechanism leads to the formation of 2D perovskite heterostructures with spatially resolved coherent interface through the precisely controlled anion exchange reaction, offering a design protocol for tailoring functionalities of semiconductors at the nano-/microscale.


Assuntos
Halogênios/química , Nanoestruturas/química , Semicondutores , Energia Solar , Benzofuranos/química , Cinética , Luz , Luminescência , Nanoestruturas/efeitos da radiação , Imagem Individual de Molécula
4.
Proc Natl Acad Sci U S A ; 116(47): 23404-23409, 2019 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-31685626

RESUMO

Phase transitions in halide perovskites triggered by external stimuli generate significantly different material properties, providing a great opportunity for broad applications. Here, we demonstrate an In-based, charge-ordered (In+/In3+) inorganic halide perovskite with the composition of Cs2In(I)In(III)Cl6 in which a pressure-driven semiconductor-to-metal phase transition exists. The single crystals, synthesized via a solid-state reaction method, crystallize in a distorted perovskite structure with space group I4/m with a = 17.2604(12) Å, c = 11.0113(16) Å if both the strong reflections and superstructures are considered. The supercell was further confirmed by rotation electron diffraction measurement. The pressure-induced semiconductor-to-metal phase transition was demonstrated by high-pressure Raman and absorbance spectroscopies and was consistent with theoretical modeling. This type of charge-ordered inorganic halide perovskite with a pressure-induced semiconductor-to-metal phase transition may inspire a range of potential applications.

5.
Nano Lett ; 21(12): 5415-5421, 2021 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-34120442

RESUMO

The metal halide ionic octahedron, [MX6] (M = metal cation, X = halide anion), is considered to be the fundamental building block and functional unit of metal halide perovskites. By representing the metal halide ionic octahedron in halide perovskites as a super ion/atom, the halide perovskite can be described as an extended ionic octahedron network (ION) charge balanced by selected cations. This new perspective of halide perovskites based on ION enables the prediction of different packing and connectivity of the metal halide octahedra based on different solid-state lattices. In this work, a new halide perovskite Cs8Au3.5In1.5Cl23 was discovered on the basis of a BaTiO3-lattice ION {[InCl6][AuCl5][Au/InCl4]3}8-, which is assembled from three different ionic octahedra [InCl6], [AuCl6], and [Au/InCl6] and balanced by positively charged Cs cations. The success of this ION design concept in the discovery of Cs8Au3.5In1.5Cl23 opens up a new venue for the rational design of new halide perovskite materials.

6.
Chem Rev ; 119(15): 9153-9169, 2019 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-31282661

RESUMO

All-photonic integrated circuits are promising platforms for future systems beyond the limitation of Moore's law. Over the last several decades, one-dimensional (1D) nanowires have demonstrated great potential in photonic circuitry because of their unique 1D structure to effectively generate and tightly confine optical signals as well as easily tunable optical properties. In this Review, we categorize nanowires based on the optical properties (i.e., semiconducting, metallic, and dielectric nanowires) for their potential photonic applications (as light emitters or plasmonic and photonic waveguides). We further discuss the recent efforts in integration of nanowire-based photonic elements toward next-generation optical information processors. However, there are still several challenges remaining before the nanowires are fully utilized as photonic building blocks. The scientific and technical challenges and outlooks are provided to indicate the future directions.

7.
Chem Rev ; 119(12): 7444-7477, 2019 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-31021609

RESUMO

Next-generation displays and lighting technologies require efficient optical sources that combine brightness, color purity, stability, substrate flexibility. Metal halide perovskites have potential use in a wide range of applications, for they possess excellent charge transport, bandgap tunability and, in the most promising recent optical source materials, intense and efficient luminescence. This review links metal halide perovskites' performance as efficient light emitters with their underlying materials electronic and photophysical attributes.

8.
Nano Lett ; 20(5): 3734-3739, 2020 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-32348146

RESUMO

Because of the toxicity of lead, searching for a lead-free halide perovskite semiconducting material with comparable optical and electronic properties is of great interest. Rare-earth-based halide perovskite represents a promising class of materials for this purpose. In this work, we demonstrate the solution-phase synthesis of single-crystalline CsEuCl3 nanocrystals with a uniform size distribution centered around 15 nm. The CsEuCl3 nanocrystals have photoluminescence emission centered at 435 nm, with a full width at half-maximum of 19 nm. Furthermore, CsEuCl3 nanocrystals can be embedded in a polymer matrix that provides enhanced stability under continuous laser irradiation. Lead-free rare-earth cesium europium halide perovskite nanocrystals represent a promising candidate to replace lead halide perovskites.

9.
J Am Chem Soc ; 141(20): 8296-8305, 2019 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-31055917

RESUMO

Metal halide perovskites exhibit outstanding optoelectronic properties: superior charge carrier mobilities, low densities of deep trap states, high photoluminescence quantum yield, and wide color tunability. The introduction of dopant ions provides pathways to manipulate the electronic and chemical features of perovskites. In metal halide perovskites ABX3, where A is a monovalent cation (e.g., methylammonium (MA+), Cs+), B is the divalent metal ion(s) (e.g., Pb2+, Sn2+), and X is the halide group (e.g., Cl-, Br-, or I-), the isovalent exchange of A- and X-site ions has been widely accomplished; in contrast, strategies to exchange B-site cations are underexamined. The activation energies for vacancy-mediated diffusion of B-site cations are much higher than those for A- and X-sites, leading to slow doping processes and low doping ratios. Herein we demonstrate a new method that exchanges B-site cations in perovskites. We design a series of metal carboxylate solutions that anchor on the perovskite surface, allowing fast and efficient doping of B-sites with both homovalent and heterovalent cations (e.g., Sn2+, Zn2+, Bi3+) at room temperature. The doping process in the reduced-dimensional perovskites is complete within 1 min, whereas a similar reaction only leads to the surface attachment of dopant ions in three-dimensional structures. We offer a model based on ammonium extraction and surface ion-pair substitution.

10.
Chem Rev ; 116(24): 14982-15034, 2016 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-28027647

RESUMO

Plasmonic effects have been proposed as a solution to overcome the limited light absorption in thin-film photovoltaic devices, and various types of plasmonic solar cells have been developed. This review provides a comprehensive overview of the state-of-the-art progress on the design and fabrication of plasmonic solar cells and their enhancement mechanism. The working principle is first addressed in terms of the combined effects of plasmon decay, scattering, near-field enhancement, and plasmonic energy transfer, including direct hot electron transfer and resonant energy transfer. Then, we summarize recent developments for various types of plasmonic solar cells based on silicon, dye-sensitized, organic photovoltaic, and other types of solar cells, including quantum dot and perovskite variants. We also address several issues regarding the limitations of plasmonic nanostructures, including their electrical, chemical, and physical stability, charge recombination, narrowband absorption, and high cost. Next, we propose a few potentially useful approaches that can improve the performance of plasmonic cells, such as the inclusion of graphene plasmonics, plasmon-upconversion coupling, and coupling between fluorescence resonance energy transfer and plasmon resonance energy transfer. This review is concluded with remarks on future prospects for plasmonic solar cell use.

11.
Nano Lett ; 17(6): 3701-3709, 2017 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-28475344

RESUMO

Organo-metal halide perovskites are a promising platform for optoelectronic applications in view of their excellent charge-transport and bandgap tunability. However, their low photoluminescence quantum efficiencies, especially in low-excitation regimes, limit their efficiency for light emission. Consequently, perovskite light-emitting devices are operated under high injection, a regime under which the materials have so far been unstable. Here we show that, by concentrating photoexcited states into a small subpopulation of radiative domains, one can achieve a high quantum yield, even at low excitation intensities. We tailor the composition of quasi-2D perovskites to direct the energy transfer into the lowest-bandgap minority phase and to do so faster than it is lost to nonradiative centers. The new material exhibits 60% photoluminescence quantum yield at excitation intensities as low as 1.8 mW/cm2, yielding a ratio of quantum yield to excitation intensity of 0.3 cm2/mW; this represents a decrease of 2 orders of magnitude in the excitation power required to reach high efficiency compared with the best prior reports. Using this strategy, we report light-emitting diodes with external quantum efficiencies of 7.4% and a high luminescence of 8400 cd/m2.

12.
J Am Chem Soc ; 139(19): 6693-6699, 2017 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-28438016

RESUMO

The low toxicity and a near-ideal choice of bandgap make tin perovskite an attractive alternative to lead perovskite in low cost solar cells. However, the development of Sn perovskite solar cells has been impeded by their extremely poor stability when exposed to oxygen. We report low-dimensional Sn perovskites that exhibit markedly enhanced air stability in comparison with their 3D counterparts. The reduced degradation under air exposure is attributed to the improved thermodynamic stability after dimensional reduction, the encapsulating organic ligands, and the compact perovskite film preventing oxygen ingress. We then explore these highly oriented low-dimensional Sn perovskite films in solar cells. The perpendicular growth of the perovskite domains between electrodes allows efficient charge carrier transport, leading to power conversion efficiencies of 5.94% without the requirement of further device structure engineering. We tracked the performance of unencapsulated devices over 100 h and found no appreciable decay in efficiency. These findings raise the prospects of pure Sn perovskites for solar cells application.

13.
J Am Chem Soc ; 138(8): 2649-55, 2016 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-26841130

RESUMO

Metal halide perovskites have rapidly advanced thin-film photovoltaic performance; as a result, the materials' observed instabilities urgently require a solution. Using density functional theory (DFT), we show that a low energy of formation, exacerbated in the presence of humidity, explains the propensity of perovskites to decompose back into their precursors. We find, also using DFT, that intercalation of phenylethylammonium between perovskite layers introduces quantitatively appreciable van der Waals interactions. These drive an increased formation energy and should therefore improve material stability. Here we report reduced-dimensionality (quasi-2D) perovskite films that exhibit improved stability while retaining the high performance of conventional three-dimensional perovskites. Continuous tuning of the dimensionality, as assessed using photophysical studies, is achieved by the choice of stoichiometry in materials synthesis. We achieve the first certified hysteresis-free solar power conversion in a planar perovskite solar cell, obtaining a 15.3% certified PCE, and observe greatly improved performance longevity.

14.
Angew Chem Int Ed Engl ; 55(33): 9586-90, 2016 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-27355567

RESUMO

Bismuth-based hybrid perovskites are candidates for lead-free and air-stable photovoltaics, but poor surface morphologies and a high band-gap energy have previously limited these hybrid perovskites. A new materials processing strategy to produce enhanced bismuth-based thin-film photovoltaic absorbers by incorporation of monovalent silver cations into iodobismuthates is presented. Solution-processed AgBi2 I7 thin films are prepared by spin-coating silver and bismuth precursors dissolved in n-butylamine and annealing under an N2 atmosphere. X-ray diffraction analysis reveals the pure cubic structure (Fd3m) with lattice parameters of a=b=c=12.223 Å. The resultant AgBi2 I7 thin films exhibit dense and pinhole-free surface morphologies with grains ranging in size from 200-800 nm and a low band gap of 1.87 eV suitable for photovoltaic applications. Initial studies produce solar power conversion efficiencies of 1.22 % and excellent stability over at least 10 days under ambient conditions.

15.
Phys Chem Chem Phys ; 16(19): 9023-30, 2014 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-24695759

RESUMO

Hierarchically organized mesoporous carbon-TiO2 inverse opal nanostructures were synthesized by complementary colloid and block copolymer (BCP) self-assembly, where the triblock copolymer P123 acts simultaneously as the template and the carbon source. Highly ordered mesoporous inverse opal nanostructures with a nano-textured surface morphology and multiple-length scale nanopores provide increased light-activated surface area and scattering effects, leading to enhanced photoabsorption efficiency and the transport of matter. UV-vis absorption, X-ray photoelectron spectroscopy and Mott-Schottky measurement studies show that incorporation of carbon moieties into TiO2via direct conversion of BCPs creates a new energy level above the valence band of TiO2, resulting in an effective decrease in the band gap. A significantly enhanced visible light photocatalytic activity was demonstrated for the mesoporous carbon-TiO2 inverse opals in terms of the degradation of p-nitrophenol (~79%) and photoelectrochemical water splitting (~0.087%).

16.
Macromol Rapid Commun ; 34(18): 1487-92, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23926029

RESUMO

Hybrid Pt(platinum)/carbon nanopatterns with an extremely low loading level of Pt catalysts derived from block copolymer templates as an alternative type of counter electrodes (CEs) in dye-sensitized solar cells (DSSCs) are proposed. DSSCs employing hybrid Pt/carbon with tailored configuration as CEs exhibit higher short-circuit current and conversion efficiencies as well as stability with a lapse of time compared with conventional cells on the basis of sputtered Pt thin films, evidencing that the new class of hybrid nanostructures possess high potential for cost-effective electrodes in energy conversion devices.


Assuntos
Carbono/química , Nanopartículas/química , Platina/química , Energia Solar , Catálise , Corantes , Eletrodos , Polímeros/química
17.
Zhonghua Zhong Liu Za Zhi ; 33(1): 8-12, 2011 Jan.
Artigo em Zh | MEDLINE | ID: mdl-21575456

RESUMO

OBJECTIVE: To study the effect of arsenic trioxide (As2O3) and all-trans retinoic acid (ATRA) on human cervical carcinoma HeLa cell line. METHODS: HeLa cells were treated with As2O3 and ATRA. The cell proliferation was evaluated by MTT assay. The expressions of NDRG-1 protein and mRNA were determined by Western blot and RT-PCR analysis. RESULTS: MTT assay showed that As2O3 and ATRA inhibited the growth of human cervical carcinoma HeLa cells in vitro in a dose- and time-dependent manner. Western blot and RT-PCR techniques showed that As2O3 and ATRA down-regulated the expressions of NDRG-1 protein and mRNA (P < 0.05). CONCLUSION: As2O3 and ATRA can significantly inhibit the growth and proliferation of HeLa cells. The reason of these changes may be related with the down-regulation of expression of NDRG-1.


Assuntos
Antineoplásicos/farmacologia , Arsenicais/farmacologia , Proteínas de Ciclo Celular/metabolismo , Proliferação de Células/efeitos dos fármacos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Óxidos/farmacologia , Tretinoína/farmacologia , Antineoplásicos/administração & dosagem , Trióxido de Arsênio , Arsenicais/administração & dosagem , Western Blotting , Proteínas de Ciclo Celular/genética , Relação Dose-Resposta a Droga , Células HeLa , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Óxidos/administração & dosagem , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Tretinoína/administração & dosagem
18.
ACS Nano ; 15(7): 10775-10981, 2021 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-34137264

RESUMO

Metal-halide perovskites have rapidly emerged as one of the most promising materials of the 21st century, with many exciting properties and great potential for a broad range of applications, from photovoltaics to optoelectronics and photocatalysis. The ease with which metal-halide perovskites can be synthesized in the form of brightly luminescent colloidal nanocrystals, as well as their tunable and intriguing optical and electronic properties, has attracted researchers from different disciplines of science and technology. In the last few years, there has been a significant progress in the shape-controlled synthesis of perovskite nanocrystals and understanding of their properties and applications. In this comprehensive review, researchers having expertise in different fields (chemistry, physics, and device engineering) of metal-halide perovskite nanocrystals have joined together to provide a state of the art overview and future prospects of metal-halide perovskite nanocrystal research.

19.
Sci Adv ; 6(4): eaay4045, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32042900

RESUMO

Achieving perovskite-based high-color purity blue-emitting light-emitting diodes (LEDs) is still challenging. Here, we report successful synthesis of a series of blue-emissive two-dimensional Ruddlesden-Popper phase single crystals and their high-color purity blue-emitting LED demonstrations. Although this approach successfully achieves a series of bandgap emissions based on the different layer thicknesses, it still suffers from a conventional temperature-induced device degradation mechanism during high-voltage operations. To understand the underlying mechanism, we further elucidate temperature-induced device degradation by investigating the crystal structural and spectral evolution dynamics via in situ temperature-dependent single-crystal x-ray diffraction, photoluminescence (PL) characterization, and density functional theory calculation. The PL peak becomes asymmetrically broadened with a marked intensity decay, as temperature increases owing to [PbBr6]4- octahedra tilting and the organic chain disordering, which results in bandgap decrease. This study indicates that careful heat management under LED operation is a key factor to maintain the sharp and intense emission.

20.
Biomed Pharmacother ; 118: 109268, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31545239

RESUMO

Danshen (salvia miltiorrhiza) and honghua(Carthamus tinctorius) were traditional herb pair with promoting blood circulation and removing blood stasis actions, in China. Both were widely used to treat cardiovascular diseases (CVD) for hundreds years, especially shown definite advantage in the treatment of ischemic heart disease (IHD). However, the mechanism of danshen-honghua herb pair (DHHP) in the treatment of IHD was still unclear. This study was focused on examining the effects and possible mechanisms of DHHP in rats with acute myocardial ischemia induced by isoproterenol (ISO). The results suggested that DHHP significantly ameliorated the myocardial tissue abnormalities, notablely inhibited the elevation of lactate dehydrogenase (LDH), creatine kinase (CK), aspartate aminotransferase (AST), creatinekinase isoenzyme (CK-MB) and cardiac troponin T (CTn-T) in plasma, obviously decreased the plasma levels of Tumor Necrosis Factor α (TNF-α), outstandingly inhibited the reduction of superoxide dismutase (SOD), catalase (CAT) caused by ISO, significantly inhibited the high expression of Bcl-2 assaciated X protein (Bax) and nuclear transcriptionfactor-κBP65 (NF-κBP65) protein, significantly induced the low expression of B-cell lymphoma-2 (Bcl-2) protein in acute myocardial ischemia rats. DHHP can obviously ameliorate hemodynamic parameters. In summary, DHHP can significantly improve myocardial ischemia in acute myocardial ischemia model rats caused by ISO. Anti-free radicals, anti-peroxidation, inhibition of cell apoptosis and anti- inflammation maybe are the potential mechanisms of DHHP anti-myocardial ischemia in acute myocardial ischemia rats in duced by ISO.


Assuntos
Medicamentos de Ervas Chinesas/uso terapêutico , Isquemia Miocárdica/tratamento farmacológico , Animais , Apoptose/efeitos dos fármacos , Aspartato Aminotransferases/sangue , Carthamus tinctorius , Creatina Quinase Forma MB/sangue , Hemorreologia/efeitos dos fármacos , Interleucina-6/metabolismo , Isoproterenol , L-Lactato Desidrogenase/sangue , Masculino , Isquemia Miocárdica/sangue , Isquemia Miocárdica/enzimologia , Isquemia Miocárdica/patologia , Miocárdio/patologia , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/patologia , Ratos Sprague-Dawley , Salvia miltiorrhiza , Superóxido Dismutase/metabolismo , Fator de Transcrição RelA/metabolismo , Troponina T/sangue , Fator de Necrose Tumoral alfa/metabolismo , Proteína X Associada a bcl-2/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA