Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Nanobiotechnology ; 21(1): 170, 2023 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-37237294

RESUMO

BACKGROUND: Sepsis is a syndrome of physiological, pathological and biochemical abnormalities caused by infection. Although the mortality rate is lower than before, many survivors have persistent infection, which means sepsis calls for new treatment. After infection, inflammatory mediators were largely released into the blood, leading to multiple organ dysfunction. Therefore, anti-infection and anti-inflammation are critical issues in sepsis management. RESULTS: Here, we successfully constructed a novel nanometer drug loading system for sepsis management, FZ/MER-AgMOF@Bm. The nanoparticles were modified with LPS-treated bone marrow mesenchymal stem cell (BMSC) membrane, and silver metal organic framework (AgMOF) was used as the nanocore for loading FPS-ZM1 and meropenem which was delivery to the infectious microenvironments (IMEs) to exert dual anti-inflammatory and antibacterial effects. FZ/MER-AgMOF@Bm effectively alleviated excessive inflammatory response and eliminated bacteria. FZ/MER-AgMOF@Bm also played an anti-inflammatory role by promoting the polarization of macrophages to M2. When sepsis induced by cecal ligation and puncture (CLP) challenged mice was treated, FZ/MER-AgMOF@Bm could not only reduce the levels of pro-inflammatory factors and lung injury, but also help to improve hypothermia caused by septic shock and prolong survival time. CONCLUSIONS: Together, the nanoparticles played a role in combined anti-inflammatory and antimicrobial properties, alleviating cytokine storm and protecting vital organ functions, could be a potential new strategy for sepsis management.


Assuntos
Nanopartículas , Sepse , Camundongos , Animais , Macrófagos/metabolismo , Antibacterianos/uso terapêutico , Sepse/tratamento farmacológico , Membrana Celular/metabolismo , Modelos Animais de Doenças
2.
Zhong Nan Da Xue Xue Bao Yi Xue Ban ; 46(8): 920-924, 2021 Aug 28.
Artigo em Inglês, Zh | MEDLINE | ID: mdl-34565740

RESUMO

Pasteurella multocida empyema is rare and easy to be misdiagnosed. An 81-year-old male patient showed symptoms with cough, sputum, and fever for 3 days. Community-acquired pneumonia was diagnosed firstly. After anti-infection treatment, the patient was still in fever. Chest radiography showed pleural effusion, closed thoracic drainage was performed and the reddish-brown fluid was drained out. The second-generation sequencing was performed on pleural fluid and Pasteurella multocida was detected. Pasteurella multocida has strict requirements for growth conditions and it difficult to cultivate. The application of second-generation sequencing is helpful to diagnose the pathogen rapidly.


Assuntos
Empiema , Infecções por Pasteurella , Pasteurella multocida , Derrame Pleural , Idoso de 80 Anos ou mais , Humanos , Masculino , Infecções por Pasteurella/diagnóstico , Pasteurella multocida/genética , Escarro
3.
Pharmgenomics Pers Med ; 17: 319-336, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38952778

RESUMO

Background: Lung cancer is the leading cause of cancer deaths worldwide, primarily due to lung adenocarcinoma (LUAD). However, the heterogeneity of programmed cell death results in varied prognostic and predictive outcomes. This study aimed to develop an LUAD evaluation marker based on cuproptosis-related lncRNAs. Methods: First, transcriptome data and clinical data related to LUAD were downloaded from the Cancer Genome Atlas (TCGA), and cuproptosis-related genes were analyzed to identify cuproptosis-related lncRNAs. Univariate, LASSO, and multivariate Cox regression analyses were conducted to construct cuproptosis-associated lncRNA models. LUAD patients were categorized into high-risk and low-risk groups using prognostic risk values. Kaplan-Meier analysis, PCA, GSEA, and nomograms were employed to evaluate and validate the results. Results: 7 cuproptosis-related lncRNAs were identified, and a risk model was created. High-risk tumors exhibited cuproptosis-related gene alterations in 95.54% of cases, while low-risk tumors showed alterations in 85.65% of cases, mainly involving TP53. The risk value outperformed other clinical variables and tumor mutation burden as a predictor of 1-, 3-, and 5-year overall survival. The cuproptosis-related lncRNA-based risk model demonstrated high validity for LUAD evaluation, potentially influencing individualized treatment approaches. Expression analysis of four candidate cuproptosis-related lncRNAs (AL606834.1, AL161431.1, AC007613.1, and LINC02835) in LUAD tissues and adjacent normal tissues revealed significantly higher expression levels of AL606834.1 and AL161431.1 in LUAD tissues, positively correlating with tumor stage, lymph node metastasis, and histopathological grade. Conversely, AC007613.1 and LINC02835 exhibited lower expression levels, negatively correlating with these factors. High expression of AL606834.1 and AL161431.1 indicated poor prognosis, while low expression of AC007613.1 and LINC02835 was associated with unfavorable outcomes. Univariate and multivariate analyses confirmed these lncRNAs as independent risk factors for LUAD prognosis. Conclusion: The 4 cuproptosis-related (lncRNAsAL606834.1, AL161431.1, AC007613.1, and LINC02835) can accurately predict the prognosis of patients with LUAD and may provide new insights into clinical applications and immunotherapy.

4.
Int Immunopharmacol ; 122: 110580, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37418984

RESUMO

Lung adenocarcinoma (LUAD) is a malignant respiratory disease, resulting in a heavy social burden. Epidermal growth factor receptor-tyrosine kinase inhibitor (EGFR-TKI) resistance and tumor immune microenvironment are important directions in the treatment of LUAD. In this study, we confirmed the role of ADAM metallopeptidase domain 12 (ADAM12) in LUAD development and progression. Our bioinformatic analysis was conducted to screen ADAM12 was correlated with EGFR-TKI and immune infiltration in LUAD patients. Our results showed that the transcription and post-transcription level of ADAM12 is significantly increased in tumor samples compared to normal samples, and ADAM12 correlated with poor prognosis in LUAD patients. High level of ADAM12 accelerated the LUAD progression via promoting proliferation, cell cycle, apoptosis escaping, immune escaping, EGFR-TKI resistance, angiogenesis, invasion and migration based on experiment validation in vitro and in vivo, which could be attenuated by ADAM12 knockdown. Further mechanistic studies suggested that the PI3K/Akt/mTOR and RAS signaling pathways were activated after ADAM12 knockdown. Therefore, ADAM12 might be validated as a possible molecular therapy target and prognostic marker for patients with LUAD.


Assuntos
Adenocarcinoma de Pulmão , Neoplasias Pulmonares , Humanos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Neoplasias Pulmonares/patologia , Receptores ErbB/genética , Receptores ErbB/metabolismo , Resistencia a Medicamentos Antineoplásicos , Linhagem Celular Tumoral , Adenocarcinoma de Pulmão/tratamento farmacológico , Adenocarcinoma de Pulmão/genética , Adenocarcinoma de Pulmão/metabolismo , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo , Proliferação de Células , Microambiente Tumoral , Proteína ADAM12/genética , Proteína ADAM12/metabolismo
5.
Dis Markers ; 2022: 5709259, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35783012

RESUMO

Background: Bladder cancer is a common urinary system tumor. In the treatment of clinical patients, it is particularly important to find an effective treatment method to inhibit tumor growth. The world's first PARP inhibitor olaparib is mainly used for the treatment of BRCA1/BRCA2 mutated tumors. Metformin, an antidiabetic drug, has been reported to reduce cancer incidence in humans and improve survival in cancer patients. Methods: Cell viability and proliferation were detected by CCK-8 assay and colony formation assay; cell apoptosis was detected by flow cytometry; cell migration and invasion abilities were detected by scratch assay and Transwell assay; STAT3/C-MYC signaling pathway protein were detected by western blotting. Results: Olaparib combined with metformin has better effects on the proliferation, clone formation, migration, invasion, and apoptosis of bladder cancer cells than single drug, indicating that metformin can enhance the inhibitory effect of olaparib on tumor growth and regulate the expression of STAT3/C-MYC signaling pathway proteins. Conclusion: The results of this study showed that metformin could significantly enhance the antitumor effect of olaparib on bladder cancer cells, and these effects were mediated by downregulating STAT3/C-MYC signaling pathway proteins. This finding may have potential clinical application in the treatment of bladder cancer.


Assuntos
Metformina , Neoplasias da Bexiga Urinária , Linhagem Celular Tumoral , Proliferação de Células , Humanos , Metformina/farmacologia , Metformina/uso terapêutico , Ftalazinas , Piperazinas , Proteínas Proto-Oncogênicas c-myc , Transdução de Sinais , Neoplasias da Bexiga Urinária/tratamento farmacológico , Neoplasias da Bexiga Urinária/patologia
6.
J Oncol ; 2022: 1403454, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36420358

RESUMO

Background: Hepatocellular carcinoma (HCC) is a kind of primary liver cancer that accounts for more than 90% of primary hepatocellular carcinomas. Hyperuricemia is closely related to the development, recurrence, metastasis, and prognosis of cancer. Previous studies have proved that the serum uric acid level can increase the incidence rate and mortality of malignant tumors. However, the specific pathogenesis remains unstudied. Methods: RT-qPCR analysis showed that the mRNA expression of PDZK1 and ABCG2 increased significantly after HCC cells were exposed to different concentrations of soluble uric acid (2.5, 5, 10, 20 mg/dl) for 24 hours. Then, in HCC shRNAs, PDZK1, or over expression PDZK1 were used. CCK8, wound healing, and Transwell assay showed that PDZK1 regulates cell proliferation, invasion, and migration. Flow cytometry results revealed that PDZK1 affects cell apoptosis. Western blot results show that PDZK1 affects the STAT3/C-myc pathway. Then, in vivo tumorigenesis, allopurinol maybe an effective drug to advance: the prognosis of HCC. Results: In our study, RT-qPCR analysis showed that the mRNA expression of PDZK1 and ABCG2 increased significantly after different concentrations of soluble uric acid in HCC. Then, PDZK1 affects the proliferation, migration, and apoptosis of HCC through the STAT3/C-myc pathway. Conclusions: Hyperuricemia response affects the expression of PDZK1; PDZK1 affects the proliferation, migration, and apoptosis through the STAT3/C-myc pathway in hepatocellular carcinoma. It is suggested that PDZK1 maybe closely related to the occurrence, development, and prognosis of HCC and allopurinol maybe have potential anticancer effects.

7.
Oncol Lett ; 21(3): 175, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33574914

RESUMO

[This corrects the article DOI: 10.3892/ol.2019.9886.].

8.
Pathol Res Pract ; 216(11): 153157, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32858372

RESUMO

OBJECTIVE: This study aimed at probing into the effect of lncRNA NCK1-AS1 on proliferation, migration and invasion of non-small cell lung cancer (NSCLC) cells and its regulatory function on miR-512-5p/p21 molecular axis. METHODS: Quantitative real-time polymerase chain reaction (qRT-PCR) was used to assess the expressions of NCK1-AS1 and miR-512-5p in NSCLC tissues and cell lines. The alterations of cell proliferation, migration, invasion and cell cycle were examined by cell counting kit-8 (CCK-8) assay, BrdU experiment, Transwell experiment and flow cytometry, respectively. The dual-luciferase reporter assay and RNA immunoprecipitation experiment were performed to validate the binding relationships between miR-512-5p and NCK1-AS1, and miR-512-5p the 3'UTR of p21 mRNA. Western blot was used to determine the effects of NCK1-AS1 and miR-512-5p on p21 protein expression. RESULTS: NCK1-AS1 expression was up-regulated in NSCLC tissues and cells, and its high expression was correlated with shorter overall survival time and faster progression of patients. Overexpression of NCK1-AS1 promoted NSCLC cell proliferation, migration and invasion, and accelerated the cell cycle, whereas NCK1-AS1 siRNA inhibited these malignant biological behaviors, and arrested cell cycle. NCK1-AS1 could bind to miR-512-5p, p21 was verified as a target gene of miR-512-5p, and NCK1-AS1 could up-regulate the expression of p21 in NSCLC cells via repressing miR-512-5p expression. CONCLUSION: NCK1-AS1 promotes NSCLC progression by regulating miR-512-5p/p21 molecular axis.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Neoplasias Pulmonares/patologia , MicroRNAs/genética , Proteínas Oncogênicas/genética , RNA Antissenso/genética , RNA Longo não Codificante/genética , Adulto , Idoso , Carcinoma Pulmonar de Células não Pequenas/genética , Movimento Celular/genética , Proliferação de Células/genética , Progressão da Doença , Feminino , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Neoplasias Pulmonares/genética , Masculino , Pessoa de Meia-Idade
9.
Oncol Lett ; 17(3): 2607-2614, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30854036

RESUMO

Long non-coding RNAs (lncRNAs) have been investigated in human carcinogenesis. The lncRNA BX357664 has emerged as a novel lncRNA that was initially recognized by a microarray analysis. The present study aimed to identify the expression and functional roles of lncRNA BX357664 in lung cancer. The transcription level of BX357664 was initially revealed to be downregulated in clinical lung cancer tissues and in a series of lung cancer cell lines. Clinical data demonstrated that the high expression of BX357664 was associated with tumor size, distant metastasis and Tumor-Node-Metastasis stage. Following the overexpression of BX357664 in A549 and 95D cells, the potential of cells to form colonies, as well as the proliferation and motility abilities, were revealed to be decreased. Furthermore, the cell cycle was arrested in the G0/G1 phase by BX357664 modulation. Transwell analysis and a wound-healing assay also demonstrated that overexpression of BX357664 in A549 and 95D cells significantly inhibited cell migration and invasion. These data suggested that BX357664 inhibits cell proliferation and metastasis in lung cancer. The results of the present study provided evidence that BX357664 is a novel lncRNA that may aid in the diagnosis and treatment of lung cancer.

10.
Oncol Res ; 26(1): 9-15, 2018 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-28409548

RESUMO

RBMS3, a gene encoding a glycine-rich RNA-binding protein, belongs to the family of c-Myc gene single-strand binding proteins (MSSP). Recently, several reports have provided evidence that RBMS3 was deregulated in a diverse range of solid tumors and played a critical role in tumor progression. However, it remains unclear whether RBMS3 inhibits the progression of human breast cancer. Thus, the aim of this study was to investigate the role of RBMS3 in breast cancer and explore the underlying mechanism in breast cancer progression. Our results showed, for the first time, that the expression of RBMS3 at both the mRNA and protein levels was significantly downregulated in human breast cancer tissues and cell lines. In addition, RBMS3 overexpression dramatically suppressed the proliferation, migration, and invasion of breast cancer cells in vitro and attenuated tumor growth in vivo. Furthermore, we observed that RBMS3 greatly inhibited the protein expression of ß-catenin, cyclin D1, and c-Myc in breast cancer cells. In summary, we have shown that RBMS3 inhibited the proliferation and tumorigenesis of breast cancer cells, at least in part, through inactivation of the Wnt/ß-catenin signaling pathway. Thus, RBMS3 may be a potential treatment target for breast cancer.


Assuntos
Neoplasias da Mama/patologia , Proliferação de Células/fisiologia , Invasividade Neoplásica/patologia , Proteínas de Ligação a RNA/metabolismo , Transativadores/metabolismo , Animais , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Movimento Celular/fisiologia , Feminino , Regulação Neoplásica da Expressão Gênica/fisiologia , Xenoenxertos , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Via de Sinalização Wnt/fisiologia
11.
Mol Med Rep ; 14(1): 394-8, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27177156

RESUMO

Alisertib, a potent and selective Aurora kinase A inhibitor, has been demonstrated to exert potent anti-cancer effects in pre-clinical and clinical studies. However, mechanisms of action of alisertib, including the molecular pathways involved in alisertib-induced apoptosis and autophagy of leukemic cells, have remained elusive. The aim of the present study was to investigate the effects of alisertib on cell growth, apoptosis and autophagy and to delineate the possible molecular mechanisms in leukemic cells. Acid phosphatase, MTT and Annexin V/propidium iodide staining assays as well as immunostaining for light chain 3B showed that treatment of the REH leukemia cell line with alisertib exerted potent growth inhibitory effects, and induced apoptosis and autophagy in a dose­dependent manner. Western blot analysis indicated that these effects may be attributed to the suppression of the activity of the Akt/mammalian target of rapamycin/5'-AMP-dependent kinase/p38 mitogen-activated protein kinase signaling pathways in REH cells. The present study confirmed that alisertib may represent a promising autophagy-inducing drug for the treatment of leukemia and shed light on its molecular mechanism of action.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Azepinas/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Pirimidinas/farmacologia , Transdução de Sinais/efeitos dos fármacos , Serina-Treonina Quinases TOR/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Azepinas/química , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Humanos , Leucemia , Inibidores de Proteínas Quinases/química , Pirimidinas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA