Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Am J Med Genet A ; 173(5): 1200-1207, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28371199

RESUMO

Pathogenic variants in PHOX2B lead to congenital central hypoventilation syndrome (CCHS), a rare disorder of the nervous system characterized by autonomic dysregulation and hypoventilation typically presenting in the neonatal period, although a milder late-onset (LO) presentation has been reported. More than 90% of cases are caused by polyalanine repeat mutations (PARMs) in the C-terminus of the protein; however non-polyalanine repeat mutations (NPARMs) have been reported. Most NPARMs are located in exon 3 of PHOX2B and result in a more severe clinical presentation including Hirschsprung disease (HSCR) and/or peripheral neuroblastic tumors (PNTs). A previously reported nonsense pathogenic variant in exon 1 of a patient with LO-CCHS and no HSCR or PNTs leads to translational reinitiation at a downstream AUG codon producing an N-terminally truncated protein. Here we report additional individuals with nonsense pathogenic variants in exon 1 of PHOX2B. In vitro analyses were used to determine if these and other reported nonsense variants in PHOX2B exon 1 produced N-terminally truncated proteins. We found that all tested nonsense variants in PHOX2B exon 1 produced a truncated protein of the same size. This truncated protein localized to the nucleus and transactivated a target promoter. These data suggest that nonsense pathogenic variants in the first exon of PHOX2B likely escape nonsense mediated decay (NMD) and produce N-terminally truncated proteins functionally distinct from those produced by the more common PARMs.


Assuntos
Doença de Hirschsprung/genética , Proteínas de Homeodomínio/genética , Hipoventilação/congênito , Biossíntese de Proteínas , Apneia do Sono Tipo Central/genética , Fatores de Transcrição/genética , Códon sem Sentido/genética , Éxons/genética , Doença de Hirschsprung/patologia , Humanos , Hipoventilação/genética , Hipoventilação/patologia , Mutação , Peptídeos/genética , Regiões Promotoras Genéticas , Sequências Repetitivas de Aminoácidos/genética , Apneia do Sono Tipo Central/patologia
2.
J Virol ; 89(9): 4818-26, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25673727

RESUMO

UNLABELLED: Influenza B virus (IBV) causes seasonal epidemics in humans. Although IBV has been isolated from seals, humans are considered the primary host and reservoir of this important pathogen. It is unclear whether other animal species can support the replication of IBV and serve as a reservoir. Swine are naturally infected with both influenza A and C viruses. To determine the susceptibility of pigs to IBV infection, we conducted a serological survey for U.S. Midwest domestic swine herds from 2010 to 2012. Results of this study showed that antibodies to IBVs were detected in 38.5% (20/52) of sampled farms, and 7.3% (41/560) of tested swine serum samples were positive for IBV antibodies. Furthermore, swine herds infected with porcine reproductive and respiratory syndrome virus (PRRSV) showed a higher prevalence of IBV antibodies in our 2014 survey. In addition, IBV was detected in 3 nasal swabs collected from PRRSV-seropositive pigs by real-time RT-PCR and sequencing. Finally, an experimental infection in pigs, via intranasal and intratracheal routes, was performed using one representative virus from each of the two genetically and antigenically distinct lineages of IBVs: B/Brisbane/60/2008 (Victoria lineage) and B/Yamagata/16/1988 (Yamagata lineage). Pigs developed influenza-like symptoms and lung lesions, and they seroconverted after virus inoculation. Pigs infected with B/Brisbane/60/2008 virus successfully transmitted the virus to sentinel animals. Taken together, our data demonstrate that pigs are susceptible to IBV infection; therefore, they warrant further surveillance and investigation of swine as a potential host for human IBV. IMPORTANCE: IBV is an important human pathogen, but its ability to infect other species, for example, pigs, is not well understood. We showed serological evidence that antibodies to two genetically and antigenically distinct lineages of IBVs were present among domestic pigs, especially in swine herds previously infected with PRRSV, an immunosuppressive virus. IBV was detected in 3 nasal swabs from PRRSV-seropositive pigs by real-time reverse transcription-PCR and sequencing. Moreover, both lineages of IBV were able to infect pigs under experimental conditions, with transmissibility of influenza B/Victoria lineage virus among pigs being observed. Our results demonstrate that pigs are susceptible to IBV infections, indicating that IBV is a swine pathogen, and swine may serve as a natural reservoir of IBVs. In addition, pigs may serve as a model to study the mechanisms of transmission and pathogenesis of IBVs.


Assuntos
Anticorpos Antivirais/sangue , Vírus da Influenza B/imunologia , Infecções por Orthomyxoviridae/veterinária , Sus scrofa , Animais , Vírus da Influenza B/isolamento & purificação , Pulmão/patologia , Pulmão/virologia , Meio-Oeste dos Estados Unidos/epidemiologia , Mucosa Nasal/virologia , Infecções por Orthomyxoviridae/imunologia , Infecções por Orthomyxoviridae/patologia , Infecções por Orthomyxoviridae/virologia , Reação em Cadeia da Polimerase em Tempo Real , Análise de Sequência de DNA , Estudos Soroepidemiológicos
3.
Vet Microbiol ; 180(3-4): 281-285, 2015 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-26414999

RESUMO

Influenza D virus (FLUDV) was isolated from diseased pigs with respiratory disease symptoms in 2011, and since then the new virus has also been spread to cattle. Little is known about the susceptibility of other agricultural animals and poultry to FLUDV. This study was designed to determine if other farm animals such as goats, sheep, chickens, and turkey are possible hosts to this newly emerging influenza virus. 648 goat and sheep serum samples and 250 chicken and turkey serum samples were collected from 141 small ruminant and 25 poultry farms from different geographical locations in the United States and Canada. Serum samples were examined using the hemagglutination inhibition (HI) assay and the sheep and goat samples were further analyzed using the serum neutralization assay. Results of this study showed FLUDV antibodies were detected in 13.5% (17/126) of the sampled sheep farms, and 5.2% (29/557) of tested sheep serum samples were positive for FLUDV antibodies. For the goat results, the FLUDV antibodies were detected in 13.3% (2/15) of the sampled farms, and 8.8% (8/91) of the tested goat serum samples were positive for FLUDV antibodies. Furthermore, all tested poultry serum samples were negative for FLUDV antibodies. Our data demonstrated that sheep and goat are susceptible to FLUDV virus and multiple states in U.S. have this virus infection already in these two species. This new finding highlights a need for future surveillance of FLUDV virus in small ruminants toward better understanding both the origin and natural reservoir of this new virus.


Assuntos
Anticorpos Antivirais/sangue , Cabras/virologia , Infecções por Orthomyxoviridae/veterinária , Ruminantes/virologia , Carneiro Doméstico/virologia , Thogotovirus/isolamento & purificação , Animais , Animais Domésticos/virologia , Canadá , Galinhas/virologia , Ensaio de Imunoadsorção Enzimática/veterinária , Doenças das Cabras/virologia , Testes de Inibição da Hemaglutinação , Testes de Neutralização , Estudos Soroepidemiológicos , Ovinos , Doenças dos Ovinos/virologia , Perus/virologia , Estados Unidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA