Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Bioinformatics ; 33(10): 1565-1567, 2017 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-28069593

RESUMO

Summary: Analysis of Next Generation Sequencing (NGS) data requires the processing of large datasets by chaining various tools with complex input and output formats. In order to automate data analysis, we propose to standardize NGS tasks into modular workflows. This simplifies reliable handling and processing of NGS data, and corresponding solutions become substantially more reproducible and easier to maintain. Here, we present a documented, linux-based, toolbox of 42 processing modules that are combined to construct workflows facilitating a variety of tasks such as DNAseq and RNAseq analysis. We also describe important technical extensions. The high throughput executor (HTE) helps to increase the reliability and to reduce manual interventions when processing complex datasets. We also provide a dedicated binary manager that assists users in obtaining the modules' executables and keeping them up to date. As basis for this actively developed toolbox we use the workflow management software KNIME. Availability and Implementation: See http://ibisngs.github.io/knime4ngs for nodes and user manual (GPLv3 license). Contact: robert.kueffner@helmholtz-muenchen.de. Supplementary information: Supplementary data are available at Bioinformatics online.


Assuntos
Sequenciamento de Nucleotídeos em Larga Escala/métodos , Software , Reprodutibilidade dos Testes , Fluxo de Trabalho
2.
Metabolites ; 9(6)2019 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-31181753

RESUMO

Kit-based assays, such as AbsoluteIDQTM p150, are widely used in large cohort studies and provide a standardized method to quantify blood concentrations of phosphatidylcholines (PCs). Many disease-relevant associations of PCs were reported using this method. However, their interpretation is hampered by lack of functionally-relevant information on the detailed fatty acid side-chain compositions as only the total number of carbon atoms and double bonds is identified by the kit. To enable more substantiated interpretations, we characterized these PC sums using the side-chain resolving LipidyzerTM platform, analyzing 223 samples in parallel to the AbsoluteIDQTM. Combining these datasets, we estimated the quantitative composition of PC sums and subsequently tested their replication in an independent cohort. We identified major constituents of 28 PC sums, revealing also various unexpected compositions. As an example, PC 16:0_22:5 accounted for more than 50% of the PC sum with in total 38 carbon atoms and 5 double bonds (PC aa 38:5). For 13 PC sums, we found relatively high abundances of odd-chain fatty acids. In conclusion, our study provides insights in PC compositions in human plasma, facilitating interpretation of existing epidemiological data sets and potentially enabling imputation of PC compositions for future meta-analyses of lipidomics data.

3.
Artigo em Inglês | MEDLINE | ID: mdl-28479069

RESUMO

Identification of metabolites in non-targeted metabolomics continues to be a bottleneck in metabolomics studies in large human cohorts. Unidentified metabolites frequently emerge in the results of association studies linking metabolite levels to, for example, clinical phenotypes. For further analyses these unknown metabolites must be identified. Current approaches utilize chemical information, such as spectral details and fragmentation characteristics to determine components of unknown metabolites. Here, we propose a systems biology model exploiting the internal correlation structure of metabolite levels in combination with existing biochemical and genetic information to characterize properties of unknown molecules. Levels of 758 metabolites (439 known, 319 unknown) in human blood samples of 2279 subjects were measured using a non-targeted metabolomics platform (LC-MS and GC-MS). We reconstructed the structure of biochemical pathways that are imprinted in these metabolomics data by building an empirical network model based on 1040 significant partial correlations between metabolites. We further added associations of these metabolites to 134 genes from genome-wide association studies as well as reactions and functional relations to genes from the public database Recon 2 to the network model. From the local neighborhood in the network, we were able to predict the pathway annotation of 180 unknown metabolites. Furthermore, we classified 100 pairs of known and unknown and 45 pairs of unknown metabolites to 21 types of reactions based on their mass differences. As a proof of concept, we then looked further into the special case of predicted dehydrogenation reactions leading us to the selection of 39 candidate molecules for 5 unknown metabolites. Finally, we could verify 2 of those candidates by applying LC-MS analyses of commercially available candidate substances. The formerly unknown metabolites X-13891 and X-13069 were shown to be 2-dodecendioic acid and 9-tetradecenoic acid, respectively. Our data-driven approach based on measured metabolite levels and genetic associations as well as information from public resources can be used alone or together with methods utilizing spectral patterns as a complementary, automated and powerful method to characterize unknown metabolites.


Assuntos
Biologia Computacional/métodos , Simulação por Computador , Redes e Vias Metabólicas/fisiologia , Metabolômica/métodos , Cromatografia Líquida , Estudos de Coortes , Cromatografia Gasosa-Espectrometria de Massas , Humanos , Espectrometria de Massas , Metaboloma/fisiologia , Pessoa de Meia-Idade
4.
PLoS One ; 11(4): e0153163, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27120469

RESUMO

Angiotensin-I-converting enzyme (ACE) inhibitors are an important class of antihypertensives whose action on the human organism is still not fully understood. Although it is known that ACE especially cleaves COOH-terminal dipeptides from active polypeptides, the whole range of substrates and products is still unknown. When analyzing the action of ACE inhibitors, effects of genetic variation on metabolism need to be considered since genetic variance in the ACE gene locus was found to be associated with ACE-concentration in blood as well as with changes in the metabolic profiles of a general population. To investigate the interactions between genetic variance at the ACE-locus and the influence of ACE-therapy on the metabolic status we analyzed 517 metabolites in 1,361 participants from the KORA F4 study. We replicated our results in 1,964 individuals from TwinsUK. We observed differences in the concentration of five dipeptides and three ratios of di- and oligopeptides between ACE inhibitor users and non-users that were genotype dependent. Such changes in the concentration affected major homozygotes, and to a lesser extent heterozygotes, while minor homozygotes showed no or only small changes in the metabolite status. Two of these resulting dipeptides, namely aspartylphenylalanine and phenylalanylserine, showed significant associations with blood pressure which qualifies them-and perhaps also the other dipeptides-as readouts of ACE-activity. Since so far ACE activity measurement is substrate specific due to the usage of only one oligopeptide, taking several dipeptides as potential products of ACE into account may provide a broader picture of the ACE activity.


Assuntos
Inibidores da Enzima Conversora de Angiotensina/uso terapêutico , Metaboloma/efeitos dos fármacos , Metaboloma/genética , Peptidil Dipeptidase A/genética , Peptidil Dipeptidase A/metabolismo , Adulto , Idoso , Anti-Hipertensivos/uso terapêutico , Pressão Sanguínea/efeitos dos fármacos , Pressão Sanguínea/genética , Dipeptídeos/metabolismo , Feminino , Variação Genética/efeitos dos fármacos , Variação Genética/genética , Genótipo , Humanos , Hipertensão/tratamento farmacológico , Hipertensão/genética , Hipertensão/metabolismo , Masculino , Metabolômica/métodos , Pessoa de Meia-Idade , Oligopeptídeos/metabolismo , Farmacogenética/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA