Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 154
Filtrar
1.
PLoS Genet ; 17(11): e1009872, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34762651

RESUMO

Different species can find convergent solutions to adapt their genome to the same evolutionary constraints, although functional convergence promoted by chromosomal rearrangements in different species has not previously been found. In this work, we discovered that two domesticated yeast species, Saccharomyces cerevisiae, and Saccharomyces uvarum, acquired chromosomal rearrangements to convergently adapt to the presence of sulfite in fermentation environments. We found two new heterologous chromosomal translocations in fermentative strains of S. uvarum at the SSU1 locus, involved in sulfite resistance, an antimicrobial additive widely used in food production. These are convergent events that share similarities with other SSU1 locus chromosomal translocations previously described in domesticated S. cerevisiae strains. In S. uvarum, the newly described VIIXVI and XIXVI chromosomal translocations generate an overexpression of the SSU1 gene and confer increased sulfite resistance. This study highlights the relevance of chromosomal rearrangements to promote the adaptation of yeast to anthropic environments.


Assuntos
Adaptação Biológica/genética , Anti-Infecciosos/metabolismo , Fermentação , Conservantes de Alimentos/metabolismo , Saccharomyces cerevisiae/fisiologia , Saccharomyces/fisiologia , Sulfitos/metabolismo , Proteínas de Transporte de Ânions/genética , Cromossomos Fúngicos , Humanos , Filogenia , Regiões Promotoras Genéticas , Saccharomyces/genética , Saccharomyces/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Translocação Genética
2.
BMC Biol ; 21(1): 102, 2023 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-37158891

RESUMO

BACKGROUND: Horizontal gene transfer (HGT) is an evolutionary mechanism of adaptive importance, which has been deeply studied in wine S. cerevisiae strains, where those acquired genes conferred improved traits related to both transport and metabolism of the nutrients present in the grape must. However, little is known about HGT events that occurred in wild Saccharomyces yeasts and how they determine their phenotypes. RESULTS: Through a comparative genomic approach among Saccharomyces species, we detected a subtelomeric segment present in the S. uvarum, S. kudriavzevii, and S. eubayanus species, belonging to the first species to diverge in the Saccharomyces genus, but absent in the other Saccharomyces species. The segment contains three genes, two of which were characterized, named DGD1 and DGD2. DGD1 encodes dialkylglicine decarboxylase, whose specific substrate is the non-proteinogenic amino acid 2-aminoisobutyric acid (AIB), a rare amino acid present in some antimicrobial peptides of fungal origin. DGD2 encodes putative zinc finger transcription factor, which is essential to induce the AIB-dependent expression of DGD1. Phylogenetic analysis showed that DGD1 and DGD2 are closely related to two adjacent genes present in Zygosaccharomyces. CONCLUSIONS: The presented results show evidence of an early HGT event conferring new traits to the ancestor of the Saccharomyces genus that could be lost in the evolutionary more recent Saccharomyces species, perhaps due to loss of function during the colonization of new habitats.


Assuntos
Saccharomyces , Transaminases , Saccharomyces/genética , Transferência Genética Horizontal , Filogenia , Saccharomyces cerevisiae , Aminoácidos , Ácidos Aminoisobutíricos
3.
Int Microbiol ; 26(2): 361-370, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36370206

RESUMO

Kefir is a fermented probiotic drink obtained by placing kefir granules in a suitable substrate. The kefir granules are a consortium of bacteria and yeasts embedded in a exopolysaccharide matrix. The aim of this research was the isolation and identification of yeasts from kefir of different origin, the evaluation of their antifungal capacity against Aspergillus spp., and the characterization of virulence related traits. Using RFLP of ITS1/ITS4 region, D1/D2 region sequencing, and RAPD techniques, 20 kefir isolates were identified as Geotrichum candidum, Pichia kudriavzevii, Pichia membranifaciens, Saccharomyces cerevisiae, and Candida ethanolica. Their antifungal capacity was evaluated by their conidia germination reduction, which allowed the selection of eight isolates with high to moderate conidia germination reduction against Aspergillus flavus and Aspergillus parasiticus. Furthermore, these selected isolates showed growth inhibition on contact in the dual culture assay for both Aspergillus species and 3 of them-belonging to S. cerevisiae and P. kudriavzevii species-generated volatile organic compounds which significantly affected the growth of both fungi. For the evaluation of virulence-related traits, growth at high temperatures, enzymatic activities, and the adhesion to Caco-2 cells were analyzed. The isolates did not present more than one positive virulence-related trait simultaneously. In particular, it is important to highlight that the adhesion capacity to the model of intestinal barrier was extremely low for all of them. According to the results obtained, further studies would be of interest for the possible use of these promising yeasts as biocontrol agents against fungi in food.


Assuntos
Antifúngicos , Kefir , Humanos , Antifúngicos/farmacologia , Saccharomyces cerevisiae/genética , Técnica de Amplificação ao Acaso de DNA Polimórfico , Células CACO-2 , Leveduras/genética , Aspergillus
4.
Food Microbiol ; 114: 104276, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37290881

RESUMO

The wine industry has implemented complex starters with multiple yeast species as an efficient method to improve certain wine properties. Strains' competitive fitness becomes essential for its use in such cases. In the present work, we studied this trait in 60 S. cerevisiae strains from different origins, co-inoculated with a S. kudriavzevii strain, and confirmed it to be associated with the strains' origin. To gather deeper knowledge about the characteristics of strains with highly competitive ability versus the rest, microfermentations using representative strains from each group were performed and the carbon and nitrogen sources uptake was analysed. Our results demonstrate that despite wine strains being the subclade with the highest competitive ability, they present a wide range of behaviors as well as nutrient uptake dynamics, which points to a heterogeneous nature of domestication processes. An interesting strategy was observed in the highly competitive strains (GRE and QA23), the nitrogen sources uptake in the competition was accelerated and the sugar fermentation was slowing despite the fermentation finish at the same time. Therefore, this competition study, using particular combinations of strains, expands the knowledge in the field of the usage of mixed starters in wine manufactured products.


Assuntos
Saccharomyces cerevisiae , Vinho , Vinho/análise , Técnicas de Cocultura , Nutrientes , Nitrogênio , Fermentação
5.
Genomics ; 114(4): 110386, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35569731

RESUMO

Understanding of thermal adaptation mechanisms in yeast is crucial to develop better-adapted strains to industrial processes, providing more economical and sustainable products. We have analyzed the transcriptomic responses of three Saccharomyces cerevisiae strains, a commercial wine strain, ADY5, a laboratory strain, CEN.PK113-7D and a commercial bioethanol strain, Ethanol Red, grown at non-optimal temperatures under anaerobic chemostat conditions. Transcriptomic analysis of the three strains revealed a huge complexity of cellular mechanisms and responses. Overall, cold exerted a stronger transcriptional response in the three strains comparing with heat conditions, with a higher number of down-regulating genes than of up-regulating genes regardless the strain analyzed. The comparison of the transcriptome at both sub- and supra-optimal temperatures showed the presence of common genes up- or down-regulated in both conditions, but also the presence of common genes up- or down-regulated in the three studied strains. More specifically, we have identified and validated three up-regulated genes at sub-optimal temperature in the three strains, OPI3, EFM6 and YOL014W. Finally, the comparison of the transcriptomic data with a previous proteomic study with the same strains revealed a good correlation between gene activity and protein abundance, mainly at low temperature. Our work provides a global insight into the specific mechanisms involved in temperature adaptation regarding both transcriptome and proteome, which can be a step forward in the comprehension and improvement of yeast thermotolerance.


Assuntos
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Anaerobiose , Fermentação , Regulação Fúngica da Expressão Gênica , Proteômica , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Temperatura , Transcriptoma
6.
Food Microbiol ; 104: 103981, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35287810

RESUMO

Saccharomyces yeasts from different origins and species fermented in a semi-synthetic must containing aroma precursor of cv. Albariño and polyfunctional mercaptans precursors. The resulting wines were subjected to accelerate anoxic aging. Afterward, aroma profiles were analyzed by distinct gas chromatography methodologies. Cryotolerant strains showed better fermentation performances with significant differences in volatile and non-volatile fermentation products than Saccharomyces cerevisiae (S. cerevisiae). We suggested that the highest levels γ-butyrolactone and diethyl succinate in Saccharomyces uvarum (S. uvarum) strains, together with their substantial succinic acid yields, could be related to greater flux through the GABA shunt. These strains also had the highest production of ß-phenylethyl acetate, geraniol, and branched-chain ethyl esters. The latter compounds were highly increased by aging, while acetates and some terpenes decreased. S. kudriavzevii strains showed a remarkable ability to release polyfunctional mercaptans, with SK1 strain yielding up to 47-fold and 8-fold more 4-methyl-4-mercaptopentan-2-one (4MMP) than S. cerevisiae and S. uvarum strains, respectively. The wild S. cerevisiae beer isolate showed a particular aroma profile due to the highest production of ethyl 4-methylvalerate (lactic and fruity notes), γ-octalactone (coconut), and furfurylthiol (roasted coffee). The latter compound is possibly produced from the pentose phosphate pathway (PPP). Since erythritol, another PPP intermediate was largely produced by this strain.


Assuntos
Saccharomyces , Vinho , Odorantes/análise , Saccharomyces/metabolismo , Saccharomyces cerevisiae/metabolismo , Vinho/análise
7.
Environ Microbiol ; 23(6): 3059-3076, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33848053

RESUMO

Saccharomyces cerevisiae, a widespread yeast present both in the wild and in fermentative processes, like winemaking. During the colonization of these human-associated fermentative environments, certain strains of S. cerevisiae acquired differential adaptive traits that enhanced their physiological properties to cope with the challenges imposed by these new ecological niches. The advent of omics technologies allowed unveiling some details of the molecular bases responsible for the peculiar traits of S. cerevisiae wine strains. However, the metabolic diversity within yeasts remained poorly explored, in particular that existing between wine and wild strains of S. cerevisiae. For this purpose, we performed a dual transcriptomic and metabolomic comparative analysis between a wild and a wine S. cerevisiae strains during wine fermentations performed at high and low temperatures. By using this approach, we could correlate the differential expression of genes involved in metabolic pathways, such as sulfur, arginine and thiamine metabolisms, with differences in the amounts of key metabolites that can explain some important differences in the fermentation performance between the wine and wild strains.


Assuntos
Vinho , Fermentação , Humanos , Metabolômica , Fenótipo , Saccharomyces cerevisiae/genética , Vinho/análise
8.
Food Microbiol ; 97: 103763, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33653514

RESUMO

A collection of 33 Saccharomyces yeasts were used for wine fermentation with a sole nitrogen source: ammonium and four individual aroma-inducing amino acids. The fermentation performance and chemical wine composition were evaluated. The most valuable nitrogen sources were valine as a fermentation promoter on non-cerevisiae strains, phenylalanine as fruity aromas enhancer whereas the ethanol yield was lessened by leucine and isoleucine. S. cerevisiae SC03 and S. kudriavzevii SK02 strains showed to be the greatest producers of fruity ethyl esters while S. kudriavzevii strains SK06 and SK07 by shortening the fermentation duration. S. uvarum strains produced the greatest succinic acid amounts and, together with S. eubayanus, they reached the highest production of 2-phenylethanol and its acetate ester; whereas S. kudriavzevii strains were found to be positively related to high glycerol production.


Assuntos
Nitrogênio/metabolismo , Saccharomyces/metabolismo , Vinho/microbiologia , Etanol/metabolismo , Fermentação , Glicerol/metabolismo , Odorantes/análise , Saccharomyces/classificação , Saccharomyces/genética , Saccharomyces cerevisiae/classificação , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Vinho/análise
9.
Food Microbiol ; 96: 103685, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33494889

RESUMO

Nitrogen requirements by S. cerevisiae during wine fermentation are highly strain-dependent. Different approaches were applied to explore the nitrogen requirements of 28 wine yeast strains. Based on the growth and fermentation behaviour displayed at different nitrogen concentrations, high and low nitrogen-demanding strains were selected and further verified by competition fermentation. Biomass production with increasing nitrogen concentrations in the exponential fermentation phase was analysed by chemostat cultures. Low nitrogen-demanding (LND) strains produced a larger amount of biomass in nitrogen-limited synthetic grape musts, whereas high nitrogen-demanding (HND) strains achieved a bigger biomass yield when the YAN concentration was above 100 mg/L. Constant rate fermentation was carried out with both strains to determine the amount of nitrogen required to maintain the highest fermentation rate. Large differences appeared in the analysis of the genomes of low and high-nitrogen demanding strains showed for heterozygosity and the amino acid substitutions between orthologous proteins, with nitrogen recycling system genes showing the widest amino acid divergences. The CRISPR/Cas9-mediated genome modification method was used to validate the involvement of GCN1 in the yeast strain nitrogen needs. However, the allele swapping of gene GCN1 from low nitrogen-demanding strains to high nitrogen-demanding strains did not significantly influence the fermentation rate.


Assuntos
Nitrogênio/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Biomassa , Fermentação , Genômica , Genótipo , Fenótipo , Saccharomyces cerevisiae/isolamento & purificação , Vitis/metabolismo , Vitis/microbiologia , Vinho/análise , Vinho/microbiologia
10.
Environ Microbiol ; 22(9): 3700-3721, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32573081

RESUMO

The monitoring of fermentation at low temperatures (12-15°C) is a current practice in the winery for retention and enhancement of the flavour volatile content of wines. Among Saccharomyces species, Saccharomyces uvarum and Saccharomyces kudriavzevii have revealed interesting industrial properties, including better adaptation at low temperatures. To gather deeper knowledge of the fermentative metabolism at a low temperature of these species together with S. cerevisiae, we performed a comparative metabolomic analysis using four representative strains. We used batch cultures to obtain an exhaustive and dynamic image of the metabolome of strains passing through the sequential stresses related to the winemaking environment. A great variety of intra- and extracellular metabolites (>500 compounds) were quantified across fermentation using distinct chromatographic methods. Besides a global decrease in the lipid composition of the four strains when they entered into the stationary phase, we reported some strain-specific high magnitude changes. Examples of these differences included divergent patterns of production of short-chain fatty acids and erythritol in the S. uvarum strain. Strains also differed in expression for aromatic amino acid biosynthesis and sulphur metabolism, including the glutathione pathway. These data will allow us to refine and obtain the most value of fermentations with this alternative Saccharomyces species.


Assuntos
Saccharomyces cerevisiae/metabolismo , Saccharomyces/metabolismo , Vinho , Aminoácidos/metabolismo , Fermentação , Glutationa/metabolismo , Metabolismo dos Lipídeos , Metaboloma , Enxofre/metabolismo , Temperatura
11.
Food Microbiol ; 90: 103484, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32336360

RESUMO

In this study, we presented the first metabolome time course analysis performed among a set of S. uvarum, S. kudriavzevii and S. cerevisiae strains under winemaking conditions. Extracellular and intracellular metabolites, as well as physiological parameters of yeast cells, were monitored along the process to find evidence of different metabolic strategies among species to perform alcoholic fermentation. A thorough inspection of time trends revealed several differences in utilization or accumulation of fermentation by-products. We confirmed the ability of S. uvarum and S. kudriavzevii strains to produce higher amounts of glycerol, succinate or some fusel alcohols and their corresponding esters. We also reported differences in the yields of less common fermentative by-products involved in redox homeostasis, namely 2,3 butanediol and erythritol. 2,3 butanediol yield was higher in must ferment with cryophilic strains and erythritol, a pentose phosphate pathway derivative, was particularly overproduced by S. uvarum strains. Contrary to S. cerevisiae, a singular production-consumption rate of acetate was also observed in S. uvarum and S. kudriavzevii fermentations. Since acetate is a precursor for acetyl-CoA production which is involved in the biosynthesis of membrane lipids, cryophilc strains might take advantage of extracellular acetate to remodel cell membrane as ethanol content increased during fermentation.


Assuntos
Fermentação , Saccharomyces cerevisiae/metabolismo , Saccharomyces/metabolismo , Vinho/microbiologia , Acetatos/metabolismo , Álcoois/metabolismo , Eritritol/metabolismo , Metaboloma , Oxirredução , Prolina/metabolismo , Saccharomyces/classificação , Fatores de Tempo
12.
Food Microbiol ; 92: 103554, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32950148

RESUMO

The effect of two commercial formulations (incorporating mepanipyrim and tetraconazole as active substances) on the metabolism of Saccharomyces cerevisiae Lalvin T73™, growing on a synthetic grape must, and their influence on the alcoholic fermentation course and the biosynthesis of volatiles derived from phenylalanine catabolism was studied. No relevant effects were observed for mepanipyrim except for glycerol production. On the contrary, in the presence of tetraconazole many genes and some proteins related to cell cycle progression and mitosis were repressed. This fact could explain the lower biomass concentration and the lower sugar consumption registered for tetraconazole at the end of the study. However, the biomass-to-ethanol yield was higher in connection with the overexpression of the ADH1 gene. The presence of tetraconazole residues seems to accelerate the Ehrlich pathway. These results agree with the overexpression of several genes (BAT1, PDC1, PDC5, ADH1, SFA1, ATF2, PFK1, PFK2 and ARO3) and a higher abundance of two proteins (Gap1p and Atf2p) involved in this metabolic pathway.


Assuntos
Antifúngicos/farmacologia , Fenilalanina/metabolismo , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/metabolismo , Biomassa , Clorobenzenos/farmacologia , Etanol/metabolismo , Fermentação/efeitos dos fármacos , Redes e Vias Metabólicas/efeitos dos fármacos , Pirimidinas/farmacologia , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Triazóis/farmacologia
13.
Food Microbiol ; 85: 103287, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31500707

RESUMO

Wine-related non-Saccharomyces yeasts are becoming more widely used in oenological practice for their ability to confer wine a more complex satisfying aroma, but their metabolism remains unknown. Our study explored the nitrogen utilisation profile of three popular non-Saccharomyces species, Torulaspora delbrueckii, Metschnikowia pulcherrima and Metschnikowia fructicola. The nitrogen source preferences to support growth and fermentation as well as the uptake order of different nitrogen sources during wine fermentation were investigated. While T. delbrueckii and S. cerevisiae strains shared the same nitrogen source preferences, Metschnikowia sp. Displayed a lower capacity to efficiently use the preferred nitrogen compounds, but were able to assimilate a wider range of amino acids. During alcoholic fermentation, the non-Saccharomyces strains consumed different nitrogen sources in a similar order as S. cerevisiae, but not as quickly. Furthermore, when all the nitrogen sources were supplied in the same amount, their assimilation order was similarly affected for both S. cerevisiae and non-Saccharomyces strains. Under this condition, the rate of nitrogen source consumption of non-Saccharomyces strains and S. cerevisiae was comparable. Overall, this study expands our understanding about the preferences and consumption rates of individual nitrogen sources by the investigated non-Saccharomyces yeasts in a wine environment. This knowledge provides useful information for a more efficient exploitation of non-Saccharomyces strains that improves the management of the wine fermentation.


Assuntos
Fermentação , Nitrogênio/metabolismo , Vinho/microbiologia , Leveduras/crescimento & desenvolvimento , Leveduras/metabolismo , Aminoácidos/metabolismo , Metschnikowia/crescimento & desenvolvimento , Odorantes , Saccharomyces cerevisiae , Torulaspora/crescimento & desenvolvimento
14.
Environ Microbiol ; 21(5): 1627-1644, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30672093

RESUMO

Grape must is a sugar-rich habitat for a complex microbiota which is replaced by Saccharomyces cerevisiae strains during the first fermentation stages. Interest on yeast competitive interactions has recently been propelled due to the use of alternative yeasts in the wine industry to respond to new market demands. The main issue resides in the persistence of these yeasts due to the specific competitive activity of S. cerevisiae. To gather deeper knowledge of the molecular mechanisms involved, we performed a comparative transcriptomic analysis during fermentation carried out by a wine S. cerevisiae strain and a strain representative of the cryophilic S. kudriavzevii, which exhibits high genetic and physiological similarities to S. cerevisiae, but also differences of biotechnological interest. In this study, we report that transcriptomic response to the presence of a competitor is stronger in S. cerevisiae than in S. kudriavzevii. Our results demonstrate that a wine S. cerevisiae industrial strain accelerates nutrient uptake and utilization to outcompete the co-inoculated yeast, and that this process requires cell-to-cell contact to occur. Finally, we propose that this competitive phenotype evolved recently, during the adaptation of S. cerevisiae to man-manipulated fermentative environments, since a non-wine S. cerevisiae strain, isolated from a North American oak, showed a remarkable low response to competition.


Assuntos
Saccharomyces cerevisiae/metabolismo , Saccharomyces/metabolismo , Vitis/microbiologia , Vinho/microbiologia , Adaptação Fisiológica , Fermentação , Nutrientes/metabolismo , Fenótipo , Saccharomyces/genética , Saccharomyces cerevisiae/genética , Vinho/análise
15.
Yeast ; 35(1): 157-171, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29131448

RESUMO

Interspecific hybrids among species in the Saccharomyces genus are frequently detected in anthropic habitats and can also be obtained easily in the laboratory. This occurs because the most important genetic barriers among Saccharomyces species are post-zygotic. Depending on several factors, including the involved strains, the hybridization mechanism and stabilization conditions, hybrids that bear differential genomic constitutions, and hence phenotypic variability, can be obtained. In the present study, Saccharomyces cerevisiae × Saccharomyces uvarum hybrids were constructed using genetically and physiologically different S. uvarum parents at distinct temperatures (13 and 20°C). The effect of those variables on the main oenological features of the wines obtained with these hybrids was evaluated. Hybrids were successfully obtained in all cases. However, genetic stabilization based on successive fermentations in white wine at 13°C was significantly longer than that at 20°C. Our results demonstrated that, irrespective of the S. uvarum parent and temperature used for hybrid generation and stabilization, similar physicochemical and aromatic features were found in wines. The hybrids generated herein were characterized by low ethanol production, high glycerol synthesis and the capacity to grow at low temperature and to produce malic acid with particular aroma profiles. These features make these hybrids useful for the new winemaking industry within the climate change era frame. Copyright © 2017 John Wiley & Sons, Ltd.


Assuntos
Hibridização Genética , Saccharomyces/genética , Vinho/microbiologia , Acetaldeído/química , Acetaldeído/metabolismo , Álcoois/química , Álcoois/metabolismo , DNA Fúngico/genética , Ésteres/química , Ésteres/metabolismo , Fermentação , Indústria Alimentícia , Seleção Genética , Terpenos/química , Terpenos/metabolismo
16.
Yeast ; 35(1): 51-69, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29027262

RESUMO

Companies based on alcoholic fermentation products, such as wine, beer and biofuels, use yeasts to make their products. Each industrial process utilizes different media conditions, which differ in sugar content, the presence of inhibitors and fermentation temperature. Saccharomyces cerevisiae has traditionally been the main yeast responsible for most fermentation processes. However, the market is changing due to consumer demand and external factors such as climate change. Some processes, such as biofuel production or winemaking, require new yeasts to solve specific challenges, especially those associated with sustainability, novel flavours and altered alcohol content. One of the proposed solutions is the application of yeast hybrids. The lager beer market has been dominated by S. cerevisiae × S. eubayanus hybrids. However, several less thoroughly studied hybrids have been isolated from other diverse industrial processes. Here we focus on S. cerevisiae × S. kudriavzevii hybrids, which have been isolated from diverse industrial conditions that include wine, ale beer, cider and dietary supplements. Emerging data suggest an extended and complex story of adaptation of these hybrids to traditional industrial conditions. S. cerevisiae × S. kudriavzevii hybrids are also being explored for new industrial applications, such as biofuels. This review describes the past, present and future of S. cerevisiae × S. kudriavzevii hybrids. Copyright © 2017 John Wiley & Sons, Ltd.


Assuntos
Hibridização Genética , Saccharomyces/genética , Biocombustíveis , Fermentação , Indústria Alimentícia
17.
Crit Rev Food Sci Nutr ; 58(11): 1780-1790, 2018 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-28362111

RESUMO

Wine fermentation has not significantly changed since ancient times and the most traditional aspects are seen by the market as elements that uplift wine nuances and quality. In recent years, new trends have emerged from the sector in line with consumer preferences, and due to the effects of global climate change on grape ripening. In the first cases, the consumers are looking for wines with less ethanol and fruitier aromas and in the second cases the wineries want to reduce the wine alcohol levels and/or astringency. New yeast starters of alternative Saccharomyces species and their hybrids can help to solve some problems that wineries face. In this article we review several physiological and genetic aspects of S. uvarum and S. kudriavzevii and the hybrids, which are especially relevant during the winemaking process, such as their good fermentative capabilities at low temperatures, resulting in wines with lower alcohol and higher glycerol amounts.


Assuntos
Saccharomyces/metabolismo , Vinho/microbiologia , Adaptação Fisiológica , Temperatura Baixa , Etanol/análise , Fermentação , Manipulação de Alimentos , Glicerol/análise , Estrutura Molecular , Saccharomyces/classificação , Saccharomyces cerevisiae/metabolismo , Olfato , Paladar , Vitis
19.
Mol Phylogenet Evol ; 108: 49-60, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28189617

RESUMO

Horizontal gene transfer (HGT) in eukaryotic plastids and mitochondrial genomes is common, and plays an important role in organism evolution. In yeasts, recent mitochondrial HGT has been suggested between S. cerevisiae and S. paradoxus. However, few strains have been explored given the lack of accurate mitochondrial genome annotations. Mitochondrial genome sequences are important to understand how frequent these introgressions occur, and their role in cytonuclear incompatibilities and fitness. Indeed, most of the Bateson-Dobzhansky-Muller genetic incompatibilities described in yeasts are driven by cytonuclear incompatibilities. We herein explored the mitochondrial inheritance of several worldwide distributed wild Saccharomyces species and their hybrids isolated from different sources and geographic origins. We demonstrated the existence of several recombination points in mitochondrial region COX2-ORF1, likely mediated by either the activity of the protein encoded by the ORF1 (F-SceIII) gene, a free-standing homing endonuclease, or mostly facilitated by A+T tandem repeats and regions of integration of GC clusters. These introgressions were shown to occur among strains of the same species and among strains of different species, which suggests a complex model of Saccharomyces evolution that involves several ancestral hybridization events in wild environments.


Assuntos
Hibridização Genética , Mitocôndrias/genética , Saccharomyces/genética , Sequência de Bases , Complexo IV da Cadeia de Transporte de Elétrons/genética , Genoma Mitocondrial , Geografia , Haplótipos/genética , Fases de Leitura Aberta/genética , Filogenia , Alinhamento de Sequência , Especificidade da Espécie
20.
FEMS Yeast Res ; 17(1)2017 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-28011906

RESUMO

Apple chicha is a fresh low alcoholic beverage elaborated by aboriginal communities of Andean Patagonia (Argentina and Chile). In the present work, we identified the yeast microbiota associated with this fermentation, and characterized genetically those belonging to the genus Saccharomyces. Both Saccharomyces cerevisiae and S. uvarum were found in the analyzed fermentations. Phylogenetic and population structure analyses based on genes sequence analysis were carried out for both S. cerevisiae and S. uvarum strains obtained in this study and a set of additional strains from diverse origins. The results demonstrate that S. cerevisiae strains from apple chicha belong to the big group of wine/European strains of this species, while S. uvarum strains were included in the Holartic population of this species. Additionally, some S. uvarum strains from chichas evidenced as an admixture of both pure Holartic and pure South American populations. Our results suggest that Holartic strains could have been introduced in South America together with the domestication of apple trees by Mapuche communities. This Holartic population suffered admixis with the naturally present South American population of this species, originating strains bearing genetic features from the two populations, detectable in both chichas and natural habitats.


Assuntos
Bebidas Alcoólicas/microbiologia , Fermentação , Malus/metabolismo , Saccharomyces/metabolismo , Argentina , Chile , DNA Fúngico/química , DNA Fúngico/genética , Filogenia , Saccharomyces/classificação , Saccharomyces/genética , Saccharomyces/isolamento & purificação , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA