Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
New Phytol ; 234(4): 1126-1143, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35060130

RESUMO

In the tropical rainforest of Amazonia, phosphorus (P) is one of the main nutrients controlling forest dynamics, but its effects on the future of the forest biomass carbon (C) storage under elevated atmospheric CO2 concentrations remain uncertain. Soils in vast areas of Amazonia are P-impoverished, and little is known about the variation or plasticity in plant P-use and -acquisition strategies across space and time, hampering the accuracy of projections in vegetation models. Here, we synthesize current knowledge of leaf P resorption, fine-root P foraging, arbuscular mycorrhizal symbioses, and root acid phosphatase and organic acid exudation and discuss how these strategies vary with soil P concentrations and in response to elevated atmospheric CO2 . We identify knowledge gaps and suggest ways forward to fill those gaps. Additionally, we propose a conceptual framework for the variations in plant P-use and -acquisition strategies along soil P gradients of Amazonia. We suggest that in soils with intermediate to high P concentrations, at the plant community level, investments are primarily directed to P foraging strategies via roots and arbuscular mycorrhizas, whereas in soils with intermediate to low P concentrations, investments shift to prioritize leaf P resorption and mining strategies via phosphatases and organic acids.


Assuntos
Micorrizas , Fósforo , Dióxido de Carbono , Micorrizas/fisiologia , Raízes de Plantas , Plantas , Solo
2.
New Phytol ; 230(1): 116-128, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33341935

RESUMO

Soil nutrient availability can strongly affect root traits. In tropical forests, phosphorus (P) is often considered the main limiting nutrient for plants. However, support for the P paradigm is limited, and N and cations might also control tropical forests functioning. We used a large-scale experiment to determine how the factorial addition of nitrogen (N), P and cations affected root productivity and traits related to nutrient acquisition strategies (morphological traits, phosphatase activity, arbuscular mycorrhizal colonisation and nutrient contents) in a primary rainforest growing on low-fertility soils in Central Amazonia after 1 yr of fertilisation. Multiple root traits and productivity were affected. Phosphorus additions increased annual root productivity and root diameter, but decreased root phosphatase activity. Cation additions increased root productivity at certain times of year, also increasing root diameter and mycorrhizal colonisation. P and cation additions increased their element concentrations in root tissues. No responses were detected with N addition. Here we showed that rock-derived nutrients determined root functioning in low-fertility Amazonian soils, demonstrating not only the hypothesised importance of P, but also highlighting the role of cations. The changes in fine root traits and productivity indicated that even slow-growing tropical rainforests can respond rapidly to changes in resource availability.


Assuntos
Fósforo , Clima Tropical , Cátions , Florestas , Nitrogênio/análise , Raízes de Plantas/química , Solo , Árvores
3.
Proc Natl Acad Sci U S A ; 115(46): 11671-11679, 2018 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-30397144

RESUMO

Large uncertainties still dominate the hypothesis of an abrupt large-scale shift of the Amazon forest caused by climate change [Amazonian forest dieback (AFD)] even though observational evidence shows the forest and regional climate changing. Here, we assess whether mitigation or adaptation action should be taken now, later, or not at all in light of such uncertainties. No action/later action would result in major social impacts that may influence migration to large Amazonian cities through a causal chain of climate change and forest degradation leading to lower river-water levels that affect transportation, food security, and health. Net-present value socioeconomic damage over a 30-year period after AFD is estimated between US dollar (USD) $957 billion (×109) and $3,589 billion (compared with Gross Brazilian Amazon Product of USD $150 billion per year), arising primarily from changes in the provision of ecosystem services. Costs of acting now would be one to two orders of magnitude lower than economic damages. However, while AFD mitigation alternatives-e.g., curbing deforestation-are attainable (USD $64 billion), their efficacy in achieving a forest resilience that prevents AFD is uncertain. Concurrently, a proposed set of 20 adaptation measures is also attainable (USD $122 billion) and could bring benefits even if AFD never occurs. An interdisciplinary research agenda to fill lingering knowledge gaps and constrain the risk of AFD should focus on developing sound experimental and modeling evidence regarding its likelihood, integrated with socioeconomic assessments to anticipate its impacts and evaluate the feasibility and efficacy of mitigation/adaptation options.


Assuntos
Conservação dos Recursos Naturais/economia , Agricultura Florestal/economia , Agricultura Florestal/métodos , Brasil , Mudança Climática , Simulação por Computador , Ecossistema , Florestas , Políticas , Medição de Risco/métodos , Árvores
4.
New Phytol ; 214(3): 1002-1018, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-27389684

RESUMO

We examined whether variations in photosynthetic capacity are linked to variations in the environment and/or associated leaf traits for tropical moist forests (TMFs) in the Andes/western Amazon regions of Peru. We compared photosynthetic capacity (maximal rate of carboxylation of Rubisco (Vcmax ), and the maximum rate of electron transport (Jmax )), leaf mass, nitrogen (N) and phosphorus (P) per unit leaf area (Ma , Na and Pa , respectively), and chlorophyll from 210 species at 18 field sites along a 3300-m elevation gradient. Western blots were used to quantify the abundance of the CO2 -fixing enzyme Rubisco. Area- and N-based rates of photosynthetic capacity at 25°C were higher in upland than lowland TMFs, underpinned by greater investment of N in photosynthesis in high-elevation trees. Soil [P] and leaf Pa were key explanatory factors for models of area-based Vcmax and Jmax but did not account for variations in photosynthetic N-use efficiency. At any given Na and Pa , the fraction of N allocated to photosynthesis was higher in upland than lowland species. For a small subset of lowland TMF trees examined, a substantial fraction of Rubisco was inactive. These results highlight the importance of soil- and leaf-P in defining the photosynthetic capacity of TMFs, with variations in N allocation and Rubisco activation state further influencing photosynthetic rates and N-use efficiency of these critically important forests.


Assuntos
Altitude , Florestas , Umidade , Fotossíntese/fisiologia , Folhas de Planta/fisiologia , Clima Tropical , Dióxido de Carbono/metabolismo , Ensaios Enzimáticos , Cinética , Modelos Biológicos , Nitrogênio/metabolismo , Peru , Folhas de Planta/anatomia & histologia , Folhas de Planta/química , Ribulose-Bifosfato Carboxilase/metabolismo , Especificidade da Espécie , Temperatura
5.
Glob Chang Biol ; 22(12): 3996-4013, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27082541

RESUMO

Understanding the processes that determine above-ground biomass (AGB) in Amazonian forests is important for predicting the sensitivity of these ecosystems to environmental change and for designing and evaluating dynamic global vegetation models (DGVMs). AGB is determined by inputs from woody productivity [woody net primary productivity (NPP)] and the rate at which carbon is lost through tree mortality. Here, we test whether two direct metrics of tree mortality (the absolute rate of woody biomass loss and the rate of stem mortality) and/or woody NPP, control variation in AGB among 167 plots in intact forest across Amazonia. We then compare these relationships and the observed variation in AGB and woody NPP with the predictions of four DGVMs. The observations show that stem mortality rates, rather than absolute rates of woody biomass loss, are the most important predictor of AGB, which is consistent with the importance of stand size structure for determining spatial variation in AGB. The relationship between stem mortality rates and AGB varies among different regions of Amazonia, indicating that variation in wood density and height/diameter relationships also influences AGB. In contrast to previous findings, we find that woody NPP is not correlated with stem mortality rates and is weakly positively correlated with AGB. Across the four models, basin-wide average AGB is similar to the mean of the observations. However, the models consistently overestimate woody NPP and poorly represent the spatial patterns of both AGB and woody NPP estimated using plot data. In marked contrast to the observations, DGVMs typically show strong positive relationships between woody NPP and AGB. Resolving these differences will require incorporating forest size structure, mechanistic models of stem mortality and variation in functional composition in DGVMs.


Assuntos
Biomassa , Florestas , Modelos Teóricos , Árvores/crescimento & desenvolvimento , Clima Tropical , América do Sul
6.
Glob Chang Biol ; 21(6): 2283-95, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25640987

RESUMO

Understanding the relationship between photosynthesis, net primary productivity and growth in forest ecosystems is key to understanding how these ecosystems will respond to global anthropogenic change, yet the linkages among these components are rarely explored in detail. We provide the first comprehensive description of the productivity, respiration and carbon allocation of contrasting lowland Amazonian forests spanning gradients in seasonal water deficit and soil fertility. Using the largest data set assembled to date, ten sites in three countries all studied with a standardized methodology, we find that (i) gross primary productivity (GPP) has a simple relationship with seasonal water deficit, but that (ii) site-to-site variations in GPP have little power in explaining site-to-site spatial variations in net primary productivity (NPP) or growth because of concomitant changes in carbon use efficiency (CUE), and conversely, the woody growth rate of a tropical forest is a very poor proxy for its productivity. Moreover, (iii) spatial patterns of biomass are much more driven by patterns of residence times (i.e. tree mortality rates) than by spatial variation in productivity or tree growth. Current theory and models of tropical forest carbon cycling under projected scenarios of global atmospheric change can benefit from advancing beyond a focus on GPP. By improving our understanding of poorly understood processes such as CUE, NPP allocation and biomass turnover times, we can provide more complete and mechanistic approaches to linking climate and tropical forest carbon cycling.


Assuntos
Ciclo do Carbono , Florestas , Fotossíntese , Árvores/crescimento & desenvolvimento , Árvores/metabolismo , Animais , Biomassa , Carbono/metabolismo , Secas , Modelos Teóricos , América do Sul , Clima Tropical
7.
Ecol Lett ; 17(5): 527-36, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24589190

RESUMO

The Amazon rain forest sustains the world's highest tree diversity, but it remains unclear why some clades of trees are hyperdiverse, whereas others are not. Using dated phylogenies, estimates of current species richness and trait and demographic data from a large network of forest plots, we show that fast demographic traits--short turnover times--are associated with high diversification rates across 51 clades of canopy trees. This relationship is robust to assuming that diversification rates are either constant or decline over time, and occurs in a wide range of Neotropical tree lineages. This finding reveals the crucial role of intrinsic, ecological variation among clades for understanding the origin of the remarkable diversity of Amazonian trees and forests.


Assuntos
Biodiversidade , Modelos Biológicos , Árvores/fisiologia , América do Sul , Clima Tropical
8.
Glob Ecol Biogeogr ; 23(8): 935-946, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26430387

RESUMO

AIM: The accurate mapping of forest carbon stocks is essential for understanding the global carbon cycle, for assessing emissions from deforestation, and for rational land-use planning. Remote sensing (RS) is currently the key tool for this purpose, but RS does not estimate vegetation biomass directly, and thus may miss significant spatial variations in forest structure. We test the stated accuracy of pantropical carbon maps using a large independent field dataset. LOCATION: Tropical forests of the Amazon basin. The permanent archive of the field plot data can be accessed at: http://dx.doi.org/10.5521/FORESTPLOTS.NET/2014_1. METHODS: Two recent pantropical RS maps of vegetation carbon are compared to a unique ground-plot dataset, involving tree measurements in 413 large inventory plots located in nine countries. The RS maps were compared directly to field plots, and kriging of the field data was used to allow area-based comparisons. RESULTS: The two RS carbon maps fail to capture the main gradient in Amazon forest carbon detected using 413 ground plots, from the densely wooded tall forests of the north-east, to the light-wooded, shorter forests of the south-west. The differences between plots and RS maps far exceed the uncertainties given in these studies, with whole regions over- or under-estimated by > 25%, whereas regional uncertainties for the maps were reported to be < 5%. MAIN CONCLUSIONS: Pantropical biomass maps are widely used by governments and by projects aiming to reduce deforestation using carbon offsets, but may have significant regional biases. Carbon-mapping techniques must be revised to account for the known ecological variation in tree wood density and allometry to create maps suitable for carbon accounting. The use of single relationships between tree canopy height and above-ground biomass inevitably yields large, spatially correlated errors. This presents a significant challenge to both the forest conservation and remote sensing communities, because neither wood density nor species assemblages can be reliably mapped from space.

9.
Science ; 379(6630): eabo5003, 2023 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-36701466

RESUMO

Amazonian environments are being degraded by modern industrial and agricultural activities at a pace far above anything previously known, imperiling its vast biodiversity reserves and globally important ecosystem services. The most substantial threats come from regional deforestation, because of export market demands, and global climate change. The Amazon is currently perched to transition rapidly from a largely forested to a nonforested landscape. These changes are happening much too rapidly for Amazonian species, peoples, and ecosystems to respond adaptively. Policies to prevent the worst outcomes are known and must be enacted immediately. We now need political will and leadership to act on this information. To fail the Amazon is to fail the biosphere, and we fail to act at our peril.


Assuntos
Efeitos Antropogênicos , Ecossistema , Florestas , Humanos , Biodiversidade , Conservação dos Recursos Naturais , Brasil
10.
Tree Physiol ; 42(5): 922-938, 2022 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-33907798

RESUMO

Most leaf functional trait studies in the Amazon basin do not consider ontogenetic variations (leaf age), which may influence ecosystem productivity throughout the year. When leaf age is taken into account, it is generally considered discontinuous, and leaves are classified into age categories based on qualitative observations. Here, we quantified age-dependent changes in leaf functional traits such as the maximum carboxylation rate of ribulose-1,5-biphosphate carboxylase/oxygenase (Rubisco) (Vcmax), stomatal control (Cgs%), leaf dry mass per area and leaf macronutrient concentrations for nine naturally growing Amazon tropical trees with variable phenological strategies. Leaf ages were assessed by monthly censuses of branch-level leaf demography; we also performed leaf trait measurements accounting for leaf chronological age based on days elapsed since the first inclusion in the leaf demography, not predetermined age classes. At the tree community scale, a nonlinear relationship between Vcmax and leaf age existed: young, developing leaves showed the lowest mean photosynthetic capacity, increasing to a maximum at 45 days and then decreasing gradually with age in both continuous and categorical age group analyses. Maturation times among species and phenological habits differed substantially, from 8 ± 30 to 238 ± 30 days, and the rate of decline of Vcmax varied from -0.003 to -0.065 µmol CO2 m-2 s-1 day-1. Stomatal control increased significantly in young leaves but remained constant after peaking. Mass-based phosphorus and potassium concentrations displayed negative relationships with leaf age, whereas nitrogen did not vary temporally. Differences in life strategies, leaf nutrient concentrations and phenological types, not the leaf age effect alone, may thus be important factors for understanding observed photosynthesis seasonality in Amazonian forests. Furthermore, assigning leaf age categories in diverse tree communities may not be the recommended method for studying carbon uptake seasonality in the Amazon, since the relationship between Vcmax and leaf age could not be confirmed for all trees.


Assuntos
Ecossistema , Árvores , Dióxido de Carbono , Fotossíntese , Folhas de Planta
11.
Nat Ecol Evol ; 6(7): 878-889, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35577983

RESUMO

Tropical forests are some of the most biodiverse ecosystems in the world, yet their functioning is threatened by anthropogenic disturbances and climate change. Global actions to conserve tropical forests could be enhanced by having local knowledge on the forests' functional diversity and functional redundancy as proxies for their capacity to respond to global environmental change. Here we create estimates of plant functional diversity and redundancy across the tropics by combining a dataset of 16 morphological, chemical and photosynthetic plant traits sampled from 2,461 individual trees from 74 sites distributed across four continents together with local climate data for the past half century. Our findings suggest a strong link between climate and functional diversity and redundancy with the three trait groups responding similarly across the tropics and climate gradient. We show that drier tropical forests are overall less functionally diverse than wetter forests and that functional redundancy declines with increasing soil water and vapour pressure deficits. Areas with high functional diversity and high functional redundancy tend to better maintain ecosystem functioning, such as aboveground biomass, after extreme weather events. Our predictions suggest that the lower functional diversity and lower functional redundancy of drier tropical forests, in comparison with wetter forests, may leave them more at risk of shifting towards alternative states in face of further declines in water availability across tropical regions.


Assuntos
Mudança Climática , Ecossistema , Florestas , Árvores , Água
12.
New Phytol ; 187(3): 631-46, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20659252

RESUMO

*The rich ecology of tropical forests is intimately tied to their moisture status. Multi-site syntheses can provide a macro-scale view of these linkages and their susceptibility to changing climates. Here, we report pan-tropical and regional-scale analyses of tree vulnerability to drought. *We assembled available data on tropical forest tree stem mortality before, during, and after recent drought events, from 119 monitoring plots in 10 countries concentrated in Amazonia and Borneo. *In most sites, larger trees are disproportionately at risk. At least within Amazonia, low wood density trees are also at greater risk of drought-associated mortality, independent of size. For comparable drought intensities, trees in Borneo are more vulnerable than trees in the Amazon. There is some evidence for lagged impacts of drought, with mortality rates remaining elevated 2 yr after the meteorological event is over. *These findings indicate that repeated droughts would shift the functional composition of tropical forests toward smaller, denser-wooded trees. At very high drought intensities, the linear relationship between tree mortality and moisture stress apparently breaks down, suggesting the existence of moisture stress thresholds beyond which some tropical forests would suffer catastrophic tree mortality.


Assuntos
Secas , Árvores/crescimento & desenvolvimento , Clima Tropical , Adaptação Fisiológica , Biomassa , Brasil , Ecossistema , Modelos Biológicos , Caules de Planta/crescimento & desenvolvimento , Chuva , Estresse Fisiológico , Fatores de Tempo , Água , Madeira/crescimento & desenvolvimento
13.
Plant Environ Interact ; 1(1): 3-16, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37284129

RESUMO

A common assumption in tropical ecology is that root systems respond rapidly to climatic cues but that most of that response is limited to the uppermost layer of the soil, with relatively limited changes in deeper layers. However, this assumption has not been tested directly, preventing models from accurately predicting the response of tropical forests to environmental change.We measured seasonal dynamics of fine roots in an upper-slope plateau in Central Amazonia mature forest using minirhizotrons to 90 cm depth, which were calibrated with fine roots extracted from soil cores.Root productivity and mortality in surface soil layers were positively correlated with precipitation, whereas root standing length was greater during the dry periods at the deeper layers. Contrary to historical assumptions, a large fraction of fine-root standing biomass (46%) and productivity (41%) was found in soil layers deeper than 30 cm. Furthermore, root turnover decreased linearly with soil depth.Our findings demonstrate a relationship between fine-root dynamics and precipitation regimes in Central Amazonia. Our results also emphasize the importance of deeper roots for accurate estimates of primary productivity and the interaction between roots and carbon, water, and nutrients.

14.
Sci Rep ; 10(1): 5066, 2020 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-32193471

RESUMO

Tropical rainforests harbor exceptionally high biodiversity and store large amounts of carbon in vegetation biomass. However, regional variation in plant species richness and vegetation carbon stock can be substantial, and may be related to the heterogeneity of topoedaphic properties. Therefore, aboveground vegetation carbon storage typically differs between geographic forest regions in association with the locally dominant plant functional group. A better understanding of the underlying factors controlling tropical forest diversity and vegetation carbon storage could be critical for predicting tropical carbon sink strength in response to projected climate change. Based on regionally replicated 1-ha forest inventory plots established in a region of high geomorphological heterogeneity we investigated how climatic and edaphic factors affect tropical forest diversity and vegetation carbon storage. Plant species richness (of all living stems >10 cm in diameter) ranged from 69 to 127 ha-1 and vegetation carbon storage ranged from 114 to 200 t ha-1. While plant species richness was controlled by climate and soil water availability, vegetation carbon storage was strongly related to wood density and soil phosphorus availability. Results suggest that local heterogeneity in resource availability and plant functional composition should be considered to improve projections of tropical forest ecosystem functioning under future scenarios.

15.
Sci Rep ; 5: 8280, 2015 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-25655192

RESUMO

Quantifying global patterns of terrestrial nitrogen (N) cycling is central to predicting future patterns of primary productivity, carbon sequestration, nutrient fluxes to aquatic systems, and climate forcing. With limited direct measures of soil N cycling at the global scale, syntheses of the (15)N:(14)N ratio of soil organic matter across climate gradients provide key insights into understanding global patterns of N cycling. In synthesizing data from over 6000 soil samples, we show strong global relationships among soil N isotopes, mean annual temperature (MAT), mean annual precipitation (MAP), and the concentrations of organic carbon and clay in soil. In both hot ecosystems and dry ecosystems, soil organic matter was more enriched in (15)N than in corresponding cold ecosystems or wet ecosystems. Below a MAT of 9.8°C, soil δ(15)N was invariant with MAT. At the global scale, soil organic C concentrations also declined with increasing MAT and decreasing MAP. After standardizing for variation among mineral soils in soil C and clay concentrations, soil δ(15)N showed no consistent trends across global climate and latitudinal gradients. Our analyses could place new constraints on interpretations of patterns of ecosystem N cycling and global budgets of gaseous N loss.

16.
PLoS One ; 6(2): e16996, 2011 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-21347320

RESUMO

BACKGROUND: Soil characteristics have been hypothesised as one of the possible mechanisms leading to monodominance of Gilbertiodendron dewerei in some areas of Central Africa where higher-diversity forest would be expected. However, the differences in soil characteristics between the G. dewevrei-dominated forest and its adjacent mixed forest are still poorly understood. Here we present the soil characteristics of the G. dewevrei forest and quantify whether soil physical and chemical properties in this monodominant forest are significantly different from the adjacent mixed forest. METHODOLOGY/PRINCIPAL FINDINGS: We sampled top soil (0-5, 5-10, 10-20, 20-30 cm) and subsoil (150-200 cm) using an augur in 6 × 1 ha areas of intact central Africa forest in SE Cameroon, three independent patches of G. dewevrei-dominated forest and three adjacent areas (450-800 m apart), all chosen to be topographically homogeneous. Analysis--subjected to Bonferroni correction procedure--revealed no significant differences between the monodominant and mixed forests in terms of soil texture, median particle size, bulk density, pH, carbon (C) content, nitrogen (N) content, C:N ratio, C:total NaOH-extractable P ratio and concentrations of labile phosphorous (P), inorganic NaOH-extractable P, total NaOH-extractable P, aluminium, barium, calcium, copper, iron, magnesium, manganese, molybdenum, nickel, potassium, selenium, silicon, sodium and zinc. Prior to Bonferroni correction procedure, there was a significant lower level of silicon concentration found in the monodominant than mixed forest deep soil; and a significant lower level of nickel concentration in the monodominant than mixed forest top soil. Nevertheless, these were likely to be the results of multiple tests of significance. CONCLUSIONS/SIGNIFICANCE: Our results do not provide clear evidence of soil mediation for the location of monodominant forests in relation to adjacent mixed forests. It is also likely that G. dewevrei does not influence soil chemistry in the monodominant forests.


Assuntos
Biodiversidade , Solo/química , Árvores , Clima Tropical , África Central , Fabaceae/metabolismo , Compostos Orgânicos/análise , Fenômenos Físicos
17.
Science ; 323(5919): 1344-7, 2009 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-19265020

RESUMO

Amazon forests are a key but poorly understood component of the global carbon cycle. If, as anticipated, they dry this century, they might accelerate climate change through carbon losses and changed surface energy balances. We used records from multiple long-term monitoring plots across Amazonia to assess forest responses to the intense 2005 drought, a possible analog of future events. Affected forest lost biomass, reversing a large long-term carbon sink, with the greatest impacts observed where the dry season was unusually intense. Relative to pre-2005 conditions, forest subjected to a 100-millimeter increase in water deficit lost 5.3 megagrams of aboveground biomass of carbon per hectare. The drought had a total biomass carbon impact of 1.2 to 1.6 petagrams (1.2 x 10(15) to 1.6 x 10(15) grams). Amazon forests therefore appear vulnerable to increasing moisture stress, with the potential for large carbon losses to exert feedback on climate change.


Assuntos
Biomassa , Secas , Ecossistema , Árvores , Atmosfera , Brasil , Carbono , Dióxido de Carbono , Clima , América do Sul , Árvores/crescimento & desenvolvimento , Clima Tropical
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA