Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
1.
Ann Bot ; 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38722218

RESUMO

BACKGROUND AND AIMS: The majority of the earth's land area is currently occupied by humans. Measuring how terrestrial plants reproduce in these pervasive environments is essential for understanding their long-term viability and their ability to adapt to changing environments. METHODS: We conducted hierarchical and phylogenetically-independent meta-analyses to assess the overall effects of anthropogenic land-use changes on pollination, and male and female fitness in terrestrial plants. KEY RESULTS: We found negative global effects of land use change (i.e., mainly habitat loss and fragmentation) on pollination and on female and male fitness of terrestrial flowering plants. Negative effects were stronger in plants with self-incompatibility (SI) systems and pollinated by invertebrates, regardless of life form and sexual expression. Pollination and female fitness of pollination generalist and specialist plants were similarly negatively affected by land-use change, whereas male fitness of specialist plants showed no effects. CONCLUSIONS: Our findings indicate that angiosperm populations remaining in fragmented habitats negatively affect pollination, and female and male fitness, which will likely decrease the recruitment, survival, and long-term viability of plant populations remaining in fragmented landscapes. We underline the main current gaps of knowledge for future research agendas and call out not only for a decrease in the current rates of land-use changes across the world but also to embark on active restoration efforts to increase the area and connectivity of remaining natural habitats.

2.
Am J Bot ; 110(4): e16157, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36934453

RESUMO

PREMISE: Habitat fragmentation negatively affects population size and mating patterns that directly affect progeny fitness and genetic diversity; however, little is known about the effects of habitat fragmentation on dioecious, wind pollinated trees. We assessed the effects of habitat fragmentation on population sex ratios, genetic diversity, gene flow, mating patterns, and early progeny vigor in the tropical dioecious tree, Brosimum alicastrum. METHODS: We conducted our study in three continuous and three fragmented forest sites in a Mexican tropical dry forest. We used eight microsatellite loci to characterize the genetic diversity, gene flow via pollen distances, and mean relatedness of progeny. We compared early progeny vigor parameters of seedlings growing under greenhouse conditions. RESULTS: Sex ratios did not deviate from 1:1 between habitat conditions except for one population in a fragmented habitat, which was female biased. The genetic diversity of adult trees and their offspring was similar in both habitat conditions. Pollen gene flow distances were similar across habitat types; however, paternity correlations were greater in fragmented than in continuous habitats. Germination rates did not differ between habitat conditions; however, progeny from fragmented habitats produced fewer leaves and had a lower foliar area, total height, and total dry biomass than progeny from continuous habitats. CONCLUSIONS: Changes in mating patterns because of habitat fragmentation have negative effects on early progeny vigor. We conclude that negative habitat fragmentation effects on mating patterns and early progeny vigor may be a serious threat to the long-term persistence of tropical dioecious trees.


Assuntos
Genética Populacional , Árvores , Árvores/genética , Variação Genética , Ecossistema , Reprodução/genética , Repetições de Microssatélites/genética
3.
Am J Bot ; 110(5): e16170, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37070636

RESUMO

PREMISE: Domestication of plant species results in phenotypic modifications and changes in biotic interactions. Most studies have compared antagonistic plant-herbivore interactions of domesticated plants and their wild relatives, but little attention has been given to how domestication influences plant-pollinator interactions. Floral attributes and interactions of floral visitors were compared between sister taxa of the genus Cucurbita (Cucurbitaceae), the domesticated C. moschata, C. argyrosperma ssp. argyrosperma and its wild progenitor C. argyrosperma ssp. sororia in the place of origin. METHODS: We conducted univariate and multivariate analyses to compare floral morphological traits and analyzed floral reward (nectar and pollen) quantity and quality between flowers of wild and domesticated Cucurbita taxa. Staminate and pistillate flowers of all three taxa were video recorded, and visitation and behavior of floral visitors were registered and analyzed. RESULTS: Most floral morphological characteristics of flowers of domesticated taxa were larger in both staminate and pistillate flowers. Staminate and pistillate flowers presented distinct correlations between floral traits and integration indices between domesticated and wild species. Additionally, pollen quantity and protein to lipid ratio were greater in domesticated species. Cucurbit pollen specialists, Eucera spp., had the highest probability of visit for all Cucurbita taxa. CONCLUSIONS: We provide evidence that floral traits of domesticated and wild Cucurbita species experienced different selection pressures. Domesticated Cucurbita species may have more resources invested towards floral traits, thereby increasing attractiveness to pollinators and potentially plant reproductive success. Wild ancestor plant populations should be conserved in their centers of origin to preserve plant-pollinator interactions.


Assuntos
Cucurbita , Abelhas , Animais , Cucurbita/genética , Polinização , Domesticação , Plantas , Reprodução , Flores/anatomia & histologia
4.
Glob Chang Biol ; 28(11): 3694-3710, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35243726

RESUMO

Current climate change is disrupting biotic interactions and eroding biodiversity worldwide. However, species sensitive to aridity, high temperatures, and climate variability might find shelter in microclimatic refuges, such as leaf rolls built by arthropods. To explore how the importance of leaf shelters for terrestrial arthropods changes with latitude, elevation, and climate, we conducted a distributed experiment comparing arthropods in leaf rolls versus control leaves across 52 sites along an 11,790 km latitudinal gradient. We then probed the impact of short- versus long-term climatic impacts on roll use, by comparing the relative impact of conditions during the experiment versus average, baseline conditions at the site. Leaf shelters supported larger organisms and higher arthropod biomass and species diversity than non-rolled control leaves. However, the magnitude of the leaf rolls' effect differed between long- and short-term climate conditions, metrics (species richness, biomass, and body size), and trophic groups (predators vs. herbivores). The effect of leaf rolls on predator richness was influenced only by baseline climate, increasing in magnitude in regions experiencing increased long-term aridity, regardless of latitude, elevation, and weather during the experiment. This suggests that shelter use by predators may be innate, and thus, driven by natural selection. In contrast, the effect of leaf rolls on predator biomass and predator body size decreased with increasing temperature, and increased with increasing precipitation, respectively, during the experiment. The magnitude of shelter usage by herbivores increased with the abundance of predators and decreased with increasing temperature during the experiment. Taken together, these results highlight that leaf roll use may have both proximal and ultimate causes. Projected increases in climate variability and aridity are, therefore, likely to increase the importance of biotic refugia in mitigating the effects of climate change on species persistence.


Assuntos
Artrópodes , Animais , Biodiversidade , Mudança Climática , Ecossistema , Folhas de Planta
5.
Naturwissenschaften ; 109(6): 57, 2022 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-36342544

RESUMO

Burrow builders are often classified as ecosystem engineers because their digging activities regulate the availability of resources for other organisms. As antlion larvae prefer to construct their traps in bare sandy or loose soil, they could benefit from burrowing activities. We investigated the role of burrow builders as ecosystem engineers for antlions (Myrmeleontidae) in a tropical semideciduous forest in Mexico. The number of traps of antlion larvae was recorded on 30 sampling quadrats (45 cm) at the entrance of burrows (of unidentified builders) and on 30 paired off-burrow quadrats. Additionally, the percentage of bare soil was estimated for the 60 quadrats sampled. Of the 30 quadrats at the entrance of burrows, a total of 336 traps were recorded, with 21 (70%) of them having at least one trap, while for the 30 off-burrows quadrats, only two (6.6%) of them had traps, just three in total. The percentage of bare soil and the abundance of traps were significantly greater in quadrats at the entrance of burrows compared to quadrats without burrows. The abundance of traps at the entrance of burrows was positively affected by the percentage of bare soil. The few traps in the off-burrows quadrats suggested that, in addition to the limited bare soil, ground compactness probably limits the establishment of antlion larvae. Otherwise, when digging, burrow builders create small patches of bare sandy soils that are used by these insects. We concluded that the ecosystem engineering effect of burrow builders is an important structuring element for antlion populations in the tropical semideciduous forest studied.


Assuntos
Ecossistema , Florestas , Animais , Insetos , Solo , Larva/fisiologia
6.
Am J Bot ; 108(9): 1793-1807, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34519027

RESUMO

PREMISE: The mechanisms generating the geographical distributions of genetic diversity are a central theme in evolutionary biology. The amount of genetic diversity and its distribution are controlled by several factors, including dispersal abilities, physical barriers, and environmental and climatic changes. We investigated the patterns of genetic diversity and differentiation among populations of the widespread species Brosimum alicastrum in Mexico. METHODS: Using nuclear DNA microsatellite data, we tested whether the genetic structure of B. alicastrum was associated with the roles of the Trans-Mexican Volcanic Belt and the Isthmus of Tehuantepec as geographical barriers to gene flow and to infer the role of past events in the genetic diversity patterns. We further used a maximum-likelihood population-effects mixed model (MLPE) to identify the main factor affecting population differentiation in B. alicastrum. RESULTS: Our results suggested that Mexican B. alicastrum is well differentiated into three main lineages. Patterns of the genetic structure at a finer scale did not fully correspond to the current geographical barriers to gene flow. According to the MLPE mixed model, isolation by distance is the best model for explaining the genetic differentiation of B. alicastrum in Mexico. CONCLUSIONS: We propose that the differentiation patterns might reflect (1) an ancient differentiation that occurred in Central and South America, (2) the effects of past climatic changes, and (3) the functions of some physical barriers to gene flow. This study provides insights into the possible mechanisms underlying the geographic genetic variation of B. alicastrum along a moisture gradient in tropical lowland forests.


Assuntos
Variação Genética , Moraceae , Fluxo Gênico , México , Repetições de Microssatélites/genética
7.
Naturwissenschaften ; 107(5): 45, 2020 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-33001285

RESUMO

Many arthropods modify parts of plants through the construction of domiciles or by consuming plant tissues that, after abandoned, can be used as shelter by other arthropods in a facilitating interaction process. We examined, for the first time, the potential of leaf-rolling mites to indirectly influence arthropod communities in natural forests by providing shelter sites. In early June 2019, we found a high density of leaves of Amphitecna tuxtlensis (Bignoniaceae) rolled by an undetermined leaf-rolling mite species in a tropical rainforest, in Mexico. We tested whether the species richness, abundance, and colonization frequency of arthropods was greater in rolled compared with expanded leaves. We collected 5 rolled leaves and 5 fully expanded leaves from 15 A. tuxtlensis trees (N = 150 sampled leaves) and recorded all arthropods on each leaf. We recorded 1421 arthropods from 67 unique morphospecies. We found 39 individuals from 23 morphospecies of arthropods in expanded leaves, and 1382 individuals from 56 morphospecies in rolled leaves. Ants were the most abundant and frequent group and utilized the rolled leaves mainly as nesting sites; 1260 ant individuals were found in 30 nests from three species. Arthropod species richness, abundance, and colonization frequency were greater in rolled leaves compared with expanded leaves. We concluded that the ecosystem engineering effect of leaf-rolling mites may be an important structuring element for arthropod communities on plants through an increase of high quality food resources and shelter sites for other arthropods, as well as nesting sites for ants.


Assuntos
Artrópodes/fisiologia , Biodiversidade , Ácaros/fisiologia , Folhas de Planta , Animais , Ecossistema , México , Floresta Úmida
8.
Mol Biol Rep ; 47(5): 4003-4007, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32240466

RESUMO

Microsatellite markers are a useful genetic tool to answer ecological and conservation genetics questions. Microsatellite primers were developed and characterized to evaluate forest fragmentation effects on genetic structure, diversity and gene flow patterns in the dioecious tropical tree Astroniumgraveolens (Anacardiaceae). Using genomic library enrichment, sixteen microsatellite loci were developed for A.graveolens. Polymorphism was evaluated in 80 individuals from four localities in Mexico. The overall number of alleles detected was 63, average alleles per locus 3.9 with a range from one to 11 per locus. Cross amplification trails on related species in the Anacardiaceae family: Spondiaspurpurea and Amphipterygiumadstringens, achieved successful amplification for all primers. Microsatellite markers described here are the first to be characterized for A.graveolens. These genetic markers will be a useful tool to assess the genetic consequences of habitat fragmentation and selective logging on A.graveolens populations. Cross amplification success on S.purpureaandA.adstringens suggest that they may be used for population genetic studies in other species within the family.


Assuntos
Anacardiaceae/genética , Repetições de Microssatélites/genética , Alelos , Anacardiaceae/metabolismo , Primers do DNA/genética , DNA de Plantas/genética , Fluxo Gênico/genética , Frequência do Gene/genética , Loci Gênicos/genética , Marcadores Genéticos/genética , Biblioteca Genômica , Genótipo , Heterozigoto , Desequilíbrio de Ligação/genética , México , Polimorfismo Genético/genética , Especificidade da Espécie , Árvores/genética , Árvores/metabolismo
9.
Mol Biol Rep ; 47(8): 6385-6391, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32557191

RESUMO

Palms are important components of tropical and subtropical ecosystems and have even been considered keystone plant resources that can support a large array of pollinators and frugivores. Palms are also economically important. Chamaedorea tepejilote Liebm. is a widely distributed palm with important bioeconomic potential for food, traditional medicine and ornamental purposes. Eighteen microsatellite primers were developed for C. tepejilote. Polymorphism and genetic diversity were evaluated in 71 individuals from four populations in Costa Rica. Thirteen loci were polymorphic and the number of alleles in the pooled sample ranged between 5 and 20, the average number of alleles was 10.61. Average observed heterozygosity was Ho = 0.607 ± 0.04 (SD) and the average expected heterozygosity was He = 0.600 ± 0.03. The exclusion probability of the combined 13 loci, was PE = 0.998. We tested transferability of the markers in the congeneric C. costaricana, C. pinnantifrons and C. macrospadix. Dioecious species are common in tropical forests; however, few studies have analyzed gene flow patterns in these species. The markers developed for C. tepejilote are an important tool to quantify gene flow patterns and the distribution of genetic diversity within populations. This information will be useful for the development of conservation and management practices of this dioecious tropical palm species.


Assuntos
Arecaceae/genética , Repetições de Microssatélites , Costa Rica , Ecossistema , Fluxo Gênico , Genes de Plantas , Variação Genética , Heterozigoto , Polimorfismo Genético
10.
Ecol Lett ; 22(7): 1163-1173, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31087604

RESUMO

Most of the world's land surface is currently under human use and natural habitats remain as fragmented samples of the original landscapes. Measuring the quality of plant progeny sired in these pervasive environments represents a fundamental endeavour for predicting the evolutionary potential of plant populations remaining in fragmented habitats and thus their ability to adapt to changing environments. By means of hierarchical and phylogenetically independent meta-analyses we reviewed habitat fragmentation effects on the genetic and biological characteristics of progenies across 179 plant species. Progeny sired in fragmented habitats showed overall genetic erosion in contrast with progeny sired in continuous habitats, with the exception of plants pollinated by vertebrates. Similarly, plant progeny in fragmented habitats showed reduced germination, survival and growth. Habitat fragmentation had stronger negative effects on the progeny vigour of outcrossing- than mixed-mating plant species, except for vertebrate-pollinated species. Finally, we observed that increased inbreeding coefficients due to fragmentation correlated negatively with progeny vigour. Our findings reveal a gloomy future for angiosperms remaining in fragmented habitats as fewer sired progeny of lower quality may decrease recruitment of plant populations, thereby increasing their probability of extinction.


Assuntos
Variação Genética , Plantas , Reprodução , Animais , Ecossistema , Endogamia , Plantas/genética
11.
Am J Bot ; 106(7): 1021-1031, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31299090

RESUMO

PREMISE: Closely related species occurring in sympatry may experience the negative consequences of interspecific pollen transfer if reproductive isolation (RI) barriers are not in place. We evaluated the importance of pre- and post-pollination RI barriers in three sympatric species of Achimenes (Gesneriaceae), including ecogeographic, phenological, floral isolation, self-pollination, and hybrid viability (fruit and seed set). METHODS: We recorded geographic distribution throughout species ranges and assessed flowering phenology and pollinator visitation at one site in central Mexico. In the greenhouse, we measured floral traits involved in RI and quantified fruit and seed set for from self, intraspecific, and interspecific crosses. RESULTS: Ecogeographic barriers were important in RI, but under sympatry, phenological and floral barriers contributed more to total RI. Phenological RI varied between species and years, while floral RI was 100% effective at preventing interspecific visitation. Species showed differences in floral morphology, color, and scents associated with specialized pollination systems (A. antirrhina-hummingbirds, A. flava-bees, A. patens-butterflies); heterospecific visitation events were restricted to rare secondary pollinators. Hybrid crosses consistently yielded progeny in lower numbers than intraspecific crosses. CONCLUSIONS: This study indicated that neither autogamy nor early post-pollination barriers prevent interspecific pollen flow between Achimenes species. However, floral isolation, acting through a combination of attraction and reward traits, consistently ensures specificity of the pollination system. These results suggest that selection on floral traits to reduce the costs of hybrid progeny production may have played a role in evolution or maintenance of specialized pollination systems in Achimenes.


Assuntos
Flores/fisiologia , Lamiales , Polinização , Isolamento Reprodutivo , Simpatria , Animais , Abelhas , Aves , Borboletas , Hibridização Genética , Odorantes , Néctar de Plantas/metabolismo , Autofertilização , Açúcares/metabolismo , Compostos Orgânicos Voláteis/metabolismo
12.
Mol Biol Rep ; 46(5): 5581-5585, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31321644

RESUMO

Microsatellite markers provide high polymorphism levels, useful to study genetic diversity and gene flow patterns in plant populations. Here we develop and characterize microsatellite primers to evaluate patterns of genetic structure and diversity, and gene flow levels in the dioecious tropical tree Spondias purpurea (Anacardiaceae). Twenty-four microsatellite primers were developed for Spondias purpurea. Polymorphism was evaluated in 139 individuals from three localities in Mexico. Ten loci were polymorphic. The number of alleles ranged between two and 21, the average number of alleles was 5.88. Cross-amplification trials on S. mombin, S. radlkoferi, Astronium graveolens and Amphipterygium adstringens achieved successful amplification for only six microsatellites in S. mombin and S. radlkoferi. Microsatellites developed for S. purpurea will be a useful tool to estimate genetic diversity within and among populations, as well as to assess the consequences of habitat fragmentation on gene flow patterns of this species.


Assuntos
Anacardiaceae/genética , Repetições de Microssatélites/genética , Alelos , Animais , Primers do DNA/genética , DNA de Plantas/genética , Fluxo Gênico/genética , Loci Gênicos/genética , Heterozigoto , Desequilíbrio de Ligação/genética , México , Polimorfismo Genético/genética , Especificidade da Espécie , Árvores/genética
13.
J Insect Sci ; 19(3)2019 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-31234211

RESUMO

Evolution and radiation between insects and flowering plants are both opportunistic and obligatory when the former feeds on the reproductive structures of the latter, whereas direct and indirect effects can influence the fitness of individuals, populations, and plant communities. The Araceae family constitutes an important element of the tropical rainforest of the Neotropics, and its morphology and floral biology provide a remarkable system for studying trophic interactions with insects, including the Richardiidae flies (Diptera). We studied the trophic interactions of the aroid-fly system, assessing infestation rates under natural conditions over an annual cycle. In the Neotropical region, we discovered for the first time that seven aroid species became infested by four richardiid species: Beebeomyia tuxtlaensis Hernández-Ortiz and Aguirre with Dieffenbachia oerstedii Schott and D. wendlandii Schott; B. palposa (Cresson) with Xanthosoma robustum Schott; Beebeomyia sp.3. in association with Philodendron radiatum Schott, P. tripartitum (Jacq.) Schott, and P. sagittifolium Liebm.; while Sepsisoma sp. only infested Rhodospatha wendlandii Schott. Infestation rates differed significantly among hosts, but comparisons with morphological traits did not provide evidence of a causal factor of the infestation. In contrast, larval density and time of development both exhibited significant differences between hosts. The findings suggest the high specialization of the flies, and that intrinsic factors of the plants, such as the presence of secondary metabolites and their maturation periods, may influence their infestation rates.


Assuntos
Araceae , Dípteros , Animais , Comportamento Alimentar , Frutas , Larva , México , Clima Tropical
14.
J Hered ; 109(5): 530-542, 2018 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-29509902

RESUMO

Lower Central America is an important area to study recent population history and diversification of Neotropical species due to its complex and dynamic geology and climate. Phylogeographic studies in this region are few in comparison with other regions and even less for tree species. The aim of the present study was to characterize the phylogeographic structure in 2 partially co-distributed endemic oak species (Quercus costaricensis and Q. bumelioides) of the Costa Rican mountains using chloroplast short sequence repeats (cpSSRs), and to test for the effect of geological and palaeoclimatic processes on their population history. Genetic diversity and structure, haplotype networks, patterns of seed-mediated gene flow and historical demography were estimated for both species. Results suggested contrasting patterns. Quercus costaricensis exhibited high values of genetic diversity, a marked phylogeographic structure, a north-to-south genetic diversity gradient and evidence of a demographic expansion during the Quaternary. Quercus bumelioides did not show significant genetic structure and the haplotype network and historical demography estimates suggested a recent population expansion probably during the Pleistocene-Holocene transition. The phylogeographic structure of Q. costaricensis seems to be related to Pleistocene altitudinal migration due to its higher altitudinal distribution. Meanwhile, historical seed-mediated gene flow through the lower altitudinal distribution of Q. bumelioides may have promoted the homogenization of genetic variation. Population expansion and stable availability of suitable climatic areas in both species probably indicate that palaeoclimatic changes promoted downwards altitudinal migration and formation of continuous forests allowing oak species to expand their distribution into the Panamanian mountains during glacial stages.


Assuntos
Fluxo Gênico , Quercus/embriologia , Quercus/genética , Sementes/fisiologia , Clima , Costa Rica , Ecossistema , Variação Genética , Haplótipos , Filogeografia , Quercus/classificação , Especificidade da Espécie
15.
J Insect Sci ; 18(5)2018 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-30321402

RESUMO

The twig-girdler beetle Oncideres albomarginata chamela (Chemsak and Giesbert) (Cerambycidae: Lamiinae) detaches branches of Spondias purpurea L. (Sapindales: Anacardiaceae) that fall on the forest floor or remain suspended on vegetation. Many wood-boring beetles also oviposit in these branches and larval development creates cavities that are abandoned when the adults emerge. The objective of this study was to evaluate the role of wood-boring beetles as facilitators by creating new habitats for arthropods, and test for vertical stratification and temporal variation of arthropods associated with S. purpurea branches that were previously engineered by O. albomarginata chamela in a tropical dry forest (TDF) in Jalisco, Mexico. In order to determine the effects of vertical strata and seasons on branch colonization by arthropods, we placed 60 branches on the forest floor (ground stratum) and 60 were placed in trees (vegetation stratum) from February to April (dry season), and from August to October 2016 (rainy season), for 240 branch samples in total. We collected 8,008 arthropods, which included 7,753 ants (14 species) and 255 nonsocial arthropods (80 species) from 13 different orders. We observed a greater arthropod abundance in the branches in the vegetation stratum in the dry season compared with the rainy season, whereas the richness and abundance of arthropods in the ground stratum were greater in the rainy season compared with the dry season. We concluded that wood-boring beetles are important habitat facilitators for arthropods, and that the vertical position of branches and the seasonal variations in TDFs differently affect the colonization of the abandoned cavities by arthropods.


Assuntos
Besouros/fisiologia , Ecossistema , Cadeia Alimentar , Árvores , Madeira , Anacardiaceae/crescimento & desenvolvimento , Animais , Formigas/fisiologia , Biodiversidade , Comportamento Alimentar , México , Dinâmica Populacional , Estações do Ano , Árvores/crescimento & desenvolvimento
16.
Ecol Lett ; 17(3): 388-400, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24393294

RESUMO

The idea of pollination syndromes has been largely discussed but no formal quantitative evaluation has yet been conducted across angiosperms. We present the first systematic review of pollination syndromes that quantitatively tests whether the most effective pollinators for a species can be inferred from suites of floral traits for 417 plant species. Our results support the syndrome concept, indicating that convergent floral evolution is driven by adaptation to the most effective pollinator group. The predictability of pollination syndromes is greater in pollinator-dependent species and in plants from tropical regions. Many plant species also have secondary pollinators that generally correspond to the ancestral pollinators documented in evolutionary studies. We discuss the utility and limitations of pollination syndromes and the role of secondary pollinators to understand floral ecology and evolution.


Assuntos
Adaptação Biológica , Evolução Biológica , Flores/anatomia & histologia , Magnoliopsida/fisiologia , Filogenia , Polinização/fisiologia , Simbiose/fisiologia , Geografia , Magnoliopsida/genética , Especificidade da Espécie
17.
AoB Plants ; 16(1): plad089, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38213511

RESUMO

Hybridization is commonly reported in angiosperms, generally based on morphology, and in few cases confirmed by molecular markers. Fuchsia has a long tradition of ornamental cultivars with different hybrids produced by artificial crosses, so natural hybridization between sympatric Fuchsia species could be common. Natural hybridization between F. microphylla and F. thymifolia was tested using six newly developed microsatellites for F. microphylla in addition to other molecular markers with codominant and maternal inheritance. Geometric morphometrics of leaves and floral structures were also used to identify putative hybrids. Hybrids showed a different degree of genetic admixture between both parental species. Chloroplast DNA (cpDNA) sequences indicated that hybridization occurs in both directions, in fact, some of the hybrids showed new haplotypes for cpDNA and ITS (internal transcriber spacer of nuclear ribosomal RNA genes) sequences. The morphology of hybrid individuals varied between the two parental species, but they could be better identified by their leaves and floral tubes. Our study is the first to confirm the hybridization in natural populations of Fuchsia species and suggests that hybridization has probably occurred repeatedly throughout the entire distribution of the species. Phylogeographic analysis of both species will be essential to understanding the impact of hybridization throughout their complete distribution.

18.
Evol Appl ; 17(6): e13738, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38919879

RESUMO

The Africanized honey bee, a hybrid of Apis mellifera scutellata from Africa with European subspecies, has been considered an invasive species and a problem for beekeeping. Africanized bees arrived in Mexico in 1986, 30 years after their accidental release in Brazil. Although government programs were implemented for its eradication, Africanized populations persist in Mexico, but precise information on the patterns of genetic introgression and racial ancestry is scarce. We determined maternal and parental racial ancestry of managed and feral honey bees across the five beekeeping regions of Mexico, using mitochondrial (mtDNA, COI-COII intergenic region) and nuclear markers (94 ancestrally informative SNPs), to assess the relationship between beekeeping management, beekeeping region, altitude, and latitude with the distribution of maternal and parental racial ancestry. Results revealed a predominantly African ancestry in the Mexican honey bees, but the proportion varied according to management, beekeeping regions, and latitude. The Mexican honey bees showed 31 haplotypes of four evolutionary lineages (A, M, C, and O). Managed honey bees had mitochondrial and nuclear higher proportions of European ancestry than feral honey bees, which had a higher proportion of African ancestry. Beekeeping regions of lower latitudes had higher proportions of African nuclear ancestry. Managed and feral honey bees showed differences in the proportion of maternal and nuclear racial ancestry. Managed honey bees from the Yucatan Peninsula and feral honey bees had a higher mtDNA than nuclear proportions of African ancestry. Managed honey bees, except those on the Yucatan Peninsula, had a higher nuclear than mtDNA proportion of African ancestry. Our study demonstrates that Africanized honey bee populations are genetically diverse and well established in Mexico, which highlights the limitations of management and government programs to contain the Africanization process and demands the incorporation of this lineage in any breeding program for sustainable beekeeping.

19.
PLoS One ; 19(7): e0301402, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39042665

RESUMO

Bees play a pivotal role as pollinators in crops essential for human consumption. However, the global decline in bee populations poses a significant threat to pollination services and food security worldwide. The loss and degradation of habitats due to land use change are primary factors contributing to bee declines, particularly in tropical forests facing high deforestation rates. Here, we evaluate the pollination services provided to crops of watermelon (Citrullus lanatus) and green tomato (Physalis ixocarpa) in three municipalities in the state of Jalisco, Mexico, a place with Tropical Dry Forest, during years 2008, and 2014 to 2017. Both crops are cultivated in the dry season, approximately during the months of November to March. We describe the composition of the pollinator community and their visitation frequency (measured through the number of visits per flower per hour), and we assess the impact of pollinators on plant reproductive success and the level of pollinator dependence for each crop species (measured through the number of flowers that developed into fruits). We also evaluate how the landscape configuration (through the percentage of forest cover and distance to the forest) influences richness and abundance of pollinators (measured as number of species and individuals of pollinators per line of 50 m), and we use the model Integrated Valuation of Ecosystem Services and Tradeoffs (InVEST) to map and value the pollination service in both crops. InVEST Crop pollination model is a simulation focuses on wild pollinators providing the pollinator ecosystem service. Our findings indicate that Apis mellifera was the primary pollinator of both crops, one of the few abundant pollinators in the study region during the dry season. In experiments where pollinators were excluded from flowers, watermelon yielded no fruits, while green tomato experienced a 65% reduction in production. In the case of green tomato, fruit set showed a positive correlation with pollinator abundance. A positive association between forest cover and total pollinator abundance was observed in green tomato in 2008, but not in watermelon. Additionally, a positive relationship was observed between the abundance of bees predicted by the InVEST model and the abundance of bees observed in green tomato flowers in 2008. In the study region, green tomato and watermelon rely on pollinators for fruit production, with honeybees (from feral and managed colonies) acting as the primary provider of pollination services for these crops. Consequently, the conservation of natural areas is crucial to provide food and nesting resources for pollinators. By doing so, we can ensure the diversity and abundance of pollinators, which in turn will help secure food security. The findings of this study underscore the critical need for the conservation of natural areas to support pollinator populations. Policymakers should prioritize the protection and restoration of habitats, particularly tropical forests, which are essential for maintaining the diversity and abundance of pollinators.


Assuntos
Citrullus , Produtos Agrícolas , Polinização , Citrullus/fisiologia , Polinização/fisiologia , Animais , México , Abelhas/fisiologia , Flores/fisiologia , Ecossistema , Estações do Ano
20.
Ecol Evol ; 14(6): e11456, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38895569

RESUMO

The decline of honey bee populations significantly impacts the human food supply due to poor pollination and yield decreases of essential crop species. Given the reduction of pollinators, research into critical landscape components, such as floral resource availability and land use change, might provide valuable information about the nutritional status and health of honey bee colonies. To address this issue, we examine the effects of landscape factors like agricultural area, urban area, and climatic factors, including maximum temperature, minimum temperature, relative humidity, and precipitation, on honey bee hive populations and nutritional health of 326 honey bee colonies across varying landscapes in Mexico. DNA metabarcoding facilitated the precise identification of pollen from 267 plant species, encompassing 243 genera and 80 families, revealing a primary herb-based diet. Areas characterized by high landscape diversity exhibited greater pollen diversity within the colony. Conversely, colonies situated in regions with higher proportions of agricultural and urban landscapes demonstrated lower bee density. The maximum ambient temperature outside hives positively correlated with pollen diversity, aligning with a simultaneous decrease in bee density. Conversely, higher relative humidity positively influenced both the bee density of the colony and the diversity of foraged pollen. Our national-level study investigated pollen dietary availability and colony size in different habitat types, latitudes, climatic conditions, and varied levels and types of disturbances. This effort was taken to gain a better insight into the mechanisms driving declines in honey bee populations. This study illustrates the need for more biodiverse agricultural landscapes, the preservation of diverse habitats, and the conservation of natural and semi-natural spaces. These measures can help to improve the habitat quality of other bee species, as well as restore essential ecosystem processes, such as pollination and pest control.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA