Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Assunto principal
País/Região como assunto
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Environ Res ; 195: 110510, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33245888

RESUMO

Lead is a known reproductive, developmental, and neurological toxicant. Workers with a high likelihood of being exposed to lead at work may inadvertently transport lead home from work, known as "take-home exposure." This is concerning for many workers for whom a workplace intervention is not feasible because their worksites and employers often change, rendering centralized strategies insufficient. This study aimed to better understand the connection between lead in the home of workers living with children and work in construction (n = 23), while other occupations were used as a comparison group (janitorial n = 5, autobody n = 2). Thirty workers living in disadvantaged communities in the Greater Boston area were recruited in 2018-2019 through collaboration with non-profits and worker unions with expertise working with low-income or immigrant workers. Construction workers that performed renovations, bridge constructions, welding, metal work, and demolitions were prioritized during recruitment. During a visit to their residences, a worker questionnaire was administered, and observations and a dust vacuumed sample of the home were collected. Factors predicting lead in home dust were explored by a bivariate analysis and a multivariable regression model. We found lead in homes' dust in the range of 20-8,310 ppm. Homes of construction workers generally had higher and more variable lead dust concentrations (mean 775, max 8,300 ppm) than autobody and janitor worker homes combined (mean 296, max 579 ppm). Five of the construction workers' home lead dust concentrations exceeded US guidelines for yard soil in children's play areas of 400 ppm, and were similar to other studies of homes near lead smelters, superfund sites, or in the Boston area in the early 1990s, pointing to disparities relating to work. Results from the multivariable regression model suggest that lead dust in homes of workers was associated with sociodemographic-, home-, and work-related factors, and pointed to overlapping vulnerabilities; however, a larger sample size is needed to verify findings. Results provide evidence that work-related factors are important to consider when assessing home exposures, and that take-home exposures for workers in lead high-risk jobs such as construction may be an important source of exposure in the home prime for public health intervention at work, home, and community levels.


Assuntos
Poeira , Chumbo , Boston , Criança , Poeira/análise , Habitação , Humanos , Local de Trabalho
2.
Biodivers Data J ; (3): e6313, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26379469

RESUMO

BACKGROUND: Comprehensive biotic surveys, or 'all taxon biodiversity inventories' (ATBI), have traditionally been limited in scale or scope due to the complications surrounding specimen sorting and species identification. To circumvent these issues, several ATBI projects have successfully integrated DNA barcoding into their identification procedures and witnessed acceleration in their surveys and subsequent increase in project scope and scale. The Biodiversity Institute of Ontario partnered with the rare Charitable Research Reserve and delegates of the 6th International Barcode of Life Conference to complete its own rapid, barcode-assisted ATBI of an established land trust in Cambridge, Ontario, Canada. NEW INFORMATION: The existing species inventory for the rare Charitable Research Reserve was rapidly expanded by integrating a DNA barcoding workflow with two surveying strategies - a comprehensive sampling scheme over four months, followed by a one-day bioblitz involving international taxonomic experts. The two surveys resulted in 25,287 and 3,502 specimens barcoded, respectively, as well as 127 human observations. This barcoded material, all vouchered at the Biodiversity Institute of Ontario collection, covers 14 phyla, 29 classes, 117 orders, and 531 families of animals, plants, fungi, and lichens. Overall, the ATBI documented 1,102 new species records for the nature reserve, expanding the existing long-term inventory by 49%. In addition, 2,793 distinct Barcode Index Numbers (BINs) were assigned to genus or higher level taxonomy, and represent additional species that will be added once their taxonomy is resolved. For the 3,502 specimens, the collection, sequence analysis, taxonomic assignment, data release and manuscript submission by 100+ co-authors all occurred in less than one week. This demonstrates the speed at which barcode-assisted inventories can be completed and the utility that barcoding provides in minimizing and guiding valuable taxonomic specialist time. The final product is more than a comprehensive biotic inventory - it is also a rich dataset of fine-scale occurrence and sequence data, all archived and cross-linked in the major biodiversity data repositories. This model of rapid generation and dissemination of essential biodiversity data could be followed to conduct regional assessments of biodiversity status and change, and potentially be employed for evaluating progress towards the Aichi Targets of the Strategic Plan for Biodiversity 2011-2020.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA