Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 238
Filtrar
1.
Immunol Rev ; 314(1): 210-228, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36345955

RESUMO

Neutrophils or polymorphonuclear neutrophils (PMNs) are an important component of innate host defense. These phagocytic leukocytes are recruited to infected tissues and kill invading microbes. There are several general characteristics of neutrophils that make them highly effective as antimicrobial cells. First, there is tremendous daily production and turnover of granulocytes in healthy adults-typically 1011 per day. The vast majority (~95%) of these cells are neutrophils. In addition, neutrophils are mobilized rapidly in response to chemotactic factors and are among the first leukocytes recruited to infected tissues. Most notably, neutrophils contain and/or produce an abundance of antimicrobial molecules. Many of these antimicrobial molecules are toxic to host cells and can destroy host tissues. Thus, neutrophil activation and turnover are highly regulated processes. To that end, aged neutrophils undergo apoptosis constitutively, a process that contains antimicrobial function and proinflammatory capacity. Importantly, apoptosis facilitates nonphlogistic turnover of neutrophils and removal by macrophages. This homeostatic process is altered by interaction with microbes and their products, as well as host proinflammatory molecules. Microbial pathogens can delay neutrophil apoptosis, accelerate apoptosis following phagocytosis, or cause neutrophil cytolysis. Here, we review these processes and provide perspective on recent studies that have potential to impact this paradigm.


Assuntos
Anti-Infecciosos , Neutrófilos , Humanos , Idoso , Neutrófilos/fisiologia , Fagocitose , Apoptose , Morte Celular
2.
Molecules ; 29(11)2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38893295

RESUMO

Chronic inflammation contributes to a number of diseases. Therefore, control of the inflammatory response is an important therapeutic goal. To identify novel anti-inflammatory compounds, we synthesized and screened a library of 80 pyrazolo[1,5-a]quinazoline compounds and related derivatives. Screening of these compounds for their ability to inhibit lipopolysaccharide (LPS)-induced nuclear factor κB (NF-κB) transcriptional activity in human THP-1Blue monocytic cells identified 13 compounds with anti-inflammatory activity (IC50 < 50 µM) in a cell-based test system, with two of the most potent being compounds 13i (5-[(4-sulfamoylbenzyl)oxy]pyrazolo[1,5-a]quinazoline-3-carboxamide) and 16 (5-[(4-(methylsulfinyl)benzyloxy]pyrazolo[1,5-a]quinazoline-3-carboxamide). Pharmacophore mapping of potential targets predicted that 13i and 16 may be ligands for three mitogen-activated protein kinases (MAPKs), including extracellular signal-regulated kinase 2 (ERK2), p38α, and c-Jun N-terminal kinase 3 (JNK3). Indeed, molecular modeling supported that these compounds could effectively bind to ERK2, p38α, and JNK3, with the highest complementarity to JNK3. The key residues of JNK3 important for this binding were identified. Moreover, compounds 13i and 16 exhibited micromolar binding affinities for JNK1, JNK2, and JNK3. Thus, our results demonstrate the potential for developing lead anti-inflammatory drugs based on the pyrazolo[1,5-a]quinazoline and related scaffolds that are targeted toward MAPKs.


Assuntos
Anti-Inflamatórios , Quinazolinas , Humanos , Quinazolinas/farmacologia , Quinazolinas/química , Quinazolinas/síntese química , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/química , Anti-Inflamatórios/síntese química , NF-kappa B/metabolismo , NF-kappa B/antagonistas & inibidores , Lipopolissacarídeos/farmacologia , Simulação de Acoplamento Molecular , Pirazóis/química , Pirazóis/farmacologia , Pirazóis/síntese química , Relação Estrutura-Atividade , Células THP-1
3.
Molecules ; 28(21)2023 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-37959750

RESUMO

Echinacea purpurea (L.) Moench is a medicinal plant commonly used for the treatment of upper respiratory tract infections, the common cold, sore throat, migraine, colic, stomach cramps, and toothaches and the promotion of wound healing. Based on the known pharmacological properties of essential oils (EOs), we hypothesized that E. purpurea EOs may contribute to these medicinal properties. In this work, EOs from the flowers of E. purpurea were steam-distilled and analyzed by gas chromatography-mass spectrometry (GC-MS), GC with flame-ionization detection (GC-FID), and chiral GC-MS. The EOs were also evaluated for in vitro antimicrobial and innate immunomodulatory activity. About 87 compounds were identified in five samples of the steam-distilled E. purpurea EO. The major components of the E. purpurea EO were germacrene D (42.0 ± 4.61%), α-phellandrene (10.09 ± 1.59%), ß-caryophyllene (5.75 ± 1.72%), γ-curcumene (5.03 ± 1.96%), α-pinene (4.44 ± 1.78%), δ-cadinene (3.31 ± 0.61%), and ß-pinene (2.43 ± 0.98%). Eleven chiral compounds were identified in the E. purpurea EO, including α-pinene, sabinene, ß-pinene, α-phellandrene, limonene, ß-phellandrene, α-copaene, ß-elemene, ß-caryophyllene, germacrene D, and δ-cadinene. Analysis of E. purpurea EO antimicrobial activity showed that they inhibited the growth of several bacterial species, although the EO did not seem to be effective for Staphylococcus aureus. The E. purpurea EO and its major components induced intracellular calcium mobilization in human neutrophils. Additionally, pretreatment of human neutrophils with the E. purpurea EO or (+)-δ-cadinene suppressed agonist-induced neutrophil calcium mobilization and chemotaxis. Moreover, pharmacophore mapping studies predicted two potential MAPK targets for (+)-δ-cadinene. Our results are consistent with previous reports on the innate immunomodulatory activities of ß-caryophyllene, α-phellandrene, and germacrene D. Thus, this study identified δ-cadinene as a novel neutrophil agonist and suggests that δ-cadinene may contribute to the reported immunomodulatory activity of E. purpurea.


Assuntos
Anti-Infecciosos , Echinacea , Óleos Voláteis , Humanos , Óleos Voláteis/química , Cálcio , Vapor , Cromatografia Gasosa-Espectrometria de Massas , Anti-Infecciosos/química
4.
Molecules ; 28(8)2023 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-37110594

RESUMO

Alzheimer's disease (AD) is a neurodegenerative disease characterized by progressive memory loss and cognitive impairment due in part to a severe loss of cholinergic neurons in specific brain areas. AD is the most common type of dementia in the aging population. Although several acetylcholinesterase (AChE) inhibitors are currently available, their performance sometimes yields unexpected results. Thus, research is ongoing to find potentially therapeutic AChE inhibitory agents, both from natural and synthetic sources. Here, we synthesized 13 new lupinine triazole derivatives and evaluated them, along with 50 commercial lupinine-based esters of different carboxylic acids, for AChE inhibitory activity. The triazole derivative 15 [1S,9aR)-1-((4-(4-(benzyloxy)-3-methoxyphenyl)-1H-1,2,3-triazol-1-yl)methyl)octahydro-2H-quinolizine)] exhibited the most potent AChE inhibitory activity among all 63 lupinine derivatives, and kinetic analysis demonstrated that compound 15 was a mixed-type AChE inhibitor. Molecular docking studies were performed to visualize interaction between this triazole derivative and AChE. In addition, a structure-activity relationship (SAR) model developed using linear discriminant analysis (LDA) of 11 SwissADME descriptors from the 50 lupinine esters revealed 5 key physicochemical features that allowed us to distinguish active versus non-active compounds. Thus, this SAR model could be applied for design of more potent lupinine ester-based AChE inhibitors.


Assuntos
Doença de Alzheimer , Doenças Neurodegenerativas , Humanos , Idoso , Simulação de Acoplamento Molecular , Acetilcolinesterase/metabolismo , Doenças Neurodegenerativas/tratamento farmacológico , Cinética , Inibidores da Colinesterase/química , Relação Estrutura-Atividade , Doença de Alzheimer/tratamento farmacológico , Triazóis/química
5.
Molecules ; 28(12)2023 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-37375361

RESUMO

The c-Jun N-terminal kinase (JNK) family includes three proteins (JNK1-3) that regulate many physiological processes, including cell proliferation and differentiation, cell survival, and inflammation. Because of emerging data suggesting that JNK3 may play an important role in neurodegenerative diseases, such as Alzheimer's disease (AD) and Parkinson's disease, as well as cancer pathogenesis, we sought to identify JNK inhibitors with increased selectivity for JNK3. A panel of 26 novel tryptanthrin-6-oxime analogs was synthesized and evaluated for JNK1-3 binding (Kd) and inhibition of cellular inflammatory responses. Compounds 4d (8-methoxyindolo[2,1-b]quinazolin-6,12-dione oxime) and 4e (8-phenylindolo[2,1-b]quinazolin-6,12-dione oxime) had high selectivity for JNK3 versus JNK1 and JNK2 and inhibited lipopolysaccharide (LPS)-induced nuclear factor-κB/activating protein 1 (NF-κB/AP-1) transcriptional activity in THP-1Blue cells and interleukin-6 (IL-6) production by MonoMac-6 monocytic cells in the low micromolar range. Likewise, compounds 4d, 4e, and pan-JNK inhibitor 4h (9-methylindolo[2,1-b]quinazolin-6,12-dione oxime) decreased LPS-induced c-Jun phosphorylation in MonoMac-6 cells, directly confirming JNK inhibition. Molecular modeling suggested modes of binding interaction of these compounds in the JNK3 catalytic site that were in agreement with the experimental data on JNK3 binding. Our results demonstrate the potential for developing anti-inflammatory drugs based on these nitrogen-containing heterocyclic systems with selectivity for JNK3.


Assuntos
Proteínas Quinases JNK Ativadas por Mitógeno , Lipopolissacarídeos , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Lipopolissacarídeos/farmacologia , Proteína Quinase 8 Ativada por Mitógeno/metabolismo , Fosforilação , Oximas/farmacologia , Oximas/química
6.
Molecules ; 28(18)2023 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-37764432

RESUMO

The genus Saussurea has been used in the preparation of therapies for a number of medical problems, yet not much is known about the therapeutic high-molecular-weight compounds present in extracts from these plants. Since polysaccharides are important in immune modulation, we investigated the chemical composition and immunomodulatory activity of Saussurea salicifolia L. and Saussurea frolovii Ledeb polysaccharides. Water-soluble polysaccharides from the aerial parts of these plants were extracted using water at pHs of 2 and 6 and subsequently precipitated in ethanol to obtain fractions SSP2 and SSP6 from S. salicifolia and fractions SSF2 and SSF6 from S. frolovii. The molecular weights of fractions SSP2, SSP6, SFP2, and SFP6 were estimated to be 143.7, 113.2, 75.3, and 64.3 kDa, respectively. The polysaccharides from S. frolovii contained xylose (67.1-71.7%) and glucose (28.3-32.9%), whereas the polysaccharides from S. frolovii contained xylose (63.1-76.7%), glucose (11.8-19.2%), galactose (4.7-8.3%), and rhamnose (6.8-9.4%). Fractions SSP2, SSP6, and SFP2 stimulated nitric oxide (NO) production by murine macrophages, and NO production induced by SSP2, SSP6, and SFP2 was not inhibited by polymyxin B treatment of the fractions, whereaspolymyxin B treatment diminished the effects of SFP6, suggesting that SFP6 could contain lipopolysaccharide (LPS). The LPS-free fractions SSP2, SSP6, and SFP2 had potent immunomodulatory activity, induced NO production, and activated transcription factors NF-κB/AP-1 in human monocytic THP-1 cells and cytokine production by human MonoMac-6 monocytic cells, including interleukin (IL)-1α, IL-1ß, IL-6, granulocyte macrophage colony-stimulating factor (GM-CSF), interferon-γ, monocyte chemotactic protein 1 (MCP-1), and tumor necrosis factor (TNF). These data suggest that at least part of the beneficial therapeutic effects reported for water extracts of the Saussurea species are due to the modulation of leukocyte functions by polysaccharides.


Assuntos
Saussurea , Humanos , Animais , Camundongos , Xilose , Polissacarídeos/farmacologia , Interferon gama , Lipopolissacarídeos/farmacologia , Glucose
7.
Infect Immun ; 90(1): e0042321, 2022 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-34662211

RESUMO

To understand protective immune responses against the onset of group A Streptococcus respiratory infection, we investigated whether MyD88 KO mice were susceptible to acute infection through transmission. After commingling with mice that had intranasal group A Streptococcus (GAS) inoculation, MyD88-/- recipient mice had increased GAS loads in the nasal cavity and throat that reached a mean throat colonization of 6.3 × 106 CFU/swab and mean GAS load of 5.2 × 108 CFU in the nasal cavity on day 7. Beyond day 7, MyD88-/- recipient mice became moribund, with mean 1.6 × 107 CFU/swab and 2.5 × 109 CFU GAS in the throat and nasal cavity, respectively. Systemic GAS infection occurred a couple of days after the upper respiratory infection. GAS infects the lip, the gingival sulcus of the incisor teeth, and the lamina propria of the turbinate but not the nasal cavity and nasopharyngeal tract epithelia, and C57BL/6J recipient mice had no or low levels of GAS in the nasal cavity and throat. Direct nasal GAS inoculation of MyD88-/- mice caused GAS infection, mainly in the lamina propria of the turbinate. In contrast, C57BL/6J mice with GAS inoculation had GAS bacteria in the nasal cavity but not in the lamina propria of the turbinates. Thus, MyD88-/- mice are highly susceptible to acute and lethal GAS infection through transmission, and MyD88 signaling is critical for protection of the respiratory tract lamina propria but not nasal and nasopharyngeal epithelia against GAS infection.


Assuntos
Epitélio/microbiologia , Interações Hospedeiro-Patógeno , Fator 88 de Diferenciação Mieloide/deficiência , Mucosa Respiratória/microbiologia , Infecções Respiratórias/etiologia , Infecções Estreptocócicas/etiologia , Infecções Estreptocócicas/transmissão , Streptococcus pyogenes/fisiologia , Animais , Biópsia , Suscetibilidade a Doenças , Epitélio/patologia , Predisposição Genética para Doença , Imuno-Histoquímica , Camundongos , Camundongos Knockout , Infiltração de Neutrófilos , Especificidade de Órgãos , Mucosa Respiratória/patologia , Infecções Respiratórias/patologia , Infecções Estreptocócicas/patologia
8.
BMC Endocr Disord ; 22(1): 102, 2022 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-35428234

RESUMO

BACKGROUND : Fine needle aspiration (FNA) cytology is the preferred method for assessing thyroid nodules for malignancy. Concern remains about the rate of false negative results. The primary aim of this study is to investigate the malignancy rate of thyroid nodules initially classified as benign (Thy 2). METHODS: We retrospectively examined 658 nodules in 653 (429 female) patients between January 2013 to December 2017. All FNA biopsies (FNABs) were performed under ultrasound (US) guidance by a radiologist with expertise in thyroid pathology. Nodules were cytologically classified according to the UK Royal College of Pathologists guidelines. Decisions about further management were made at a regular thyroid multidisciplinary meeting. Follow up of the Thy 2 nodules was determined based on clinical and radiological criteria. RESULTS: The mean age (± SD) was 53.2 (14.6) years. Five hundred out of 658 (76.0%) nodules were classified as Thy 2 (benign) after the first FNAB. Of these thyroid nodules initially classified as benign, 208 (41.6%) underwent repeat FNAB and 9 (1.8%) were surgically removed without repeat FNAB. The remainder were followed up clinically and/or radiologically. Seven (1.4%) of nodules initially classified as Thy 2 were later shown to be or to harbor malignancy after a follow-up of 74.5 (± 19.7) months. Papillary thyroid microcarcinomas were found co-incidentally in two thyroid glands of benign nodules, giving a true prevalence of 5/500 (1.0%). CONCLUSIONS: With a well targeted FNAB, the false negative rate of an initial benign thyroid FNA is very low thus routine second FNAB is not required in patients with a thyroid nodule initially deemed benign. Multidisciplinary input is imperative in informing decision making.


Assuntos
Neoplasias da Glândula Tireoide , Nódulo da Glândula Tireoide , Biópsia por Agulha Fina/métodos , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Retrospectivos , Neoplasias da Glândula Tireoide/diagnóstico por imagem , Neoplasias da Glândula Tireoide/epidemiologia , Nódulo da Glândula Tireoide/diagnóstico por imagem , Nódulo da Glândula Tireoide/epidemiologia
9.
Sensors (Basel) ; 22(22)2022 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-36433370

RESUMO

Particle image velocimetry is an important optical flow diagnostic tool due to its capacity for investigating a whole flow field without introducing disturbances. However, a significant drawback of PIV methods is their requirement for optical access, making capturing data in closed cavities and confined spaces extremely challenging. A potential approach to overcome this difficulty is miniaturising the system and placing the optical components inside the model. Conventional cross-correlation PIV methods do not allow this due to the size of current PIV cameras. In this study, a miniaturised autocorrelation-based stereo PIV system, which is volumetrically 1.2% of the conventional PIV cameras, was developed and tested. The miniature system is compared with a conventional stereo PIV in wind tunnel experiments up to 16 m/s free stream velocity and a 1.6% velocity difference is observed in the boundary layer flow. Despite a comparatively slow measurement rate of 4.5 Hz, the miniature PIV system demonstrates the ability to measure inside confined spaces and cavities and the ability to be mounted on board models and vehicles. However, limitations remain around conducting measurements with large velocity ranges and with regions of reversed flow due to the challenge of resolving a velocity of 0 m/s.

10.
Molecules ; 27(15)2022 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-35956847

RESUMO

Grindelia squarrosa (Pursh) Dunal is used in traditional medicine for treating various diseases; however, little is known about the immunomodulatory activity of essential oils from this plant. Thus, we isolated essential oils from the flowers (GEOFl) and leaves (GEOLv) of G. squarrosa and evaluated the chemical composition and innate immunomodulatory activity of these essential oils. Compositional analysis of these essential oils revealed that the main components were α-pinene (24.7 and 23.2% in GEOFl and GEOLv, respectively), limonene (10.0 and 14.7%), borneol (23.4 and 16.6%), p-cymen-8-ol (6.1 and 5.8%), ß-pinene (4.0 and 3.8%), bornyl acetate (3.0 and 5.1%), trans-pinocarveol (4.2 and 3.7%), spathulenol (3.0 and 2.0%), myrtenol (2.5 and 1.7%), and terpinolene (1.7 and 2.0%). Enantiomer analysis showed that α-pinene, ß-pinene, and borneol were present primarily as (-)-enantiomers (100% enantiomeric excess (ee) for (-)-α-pinene and (-)-borneol in both GEOFl and GEOLv; 82 and 78% ee for (-)-ß-pinene in GEOFl and GEOLv), while limonene was present primarily as the (+)-enantiomer (94 and 96 ee in GEOFl and GEOLv). Grindelia essential oils activated human neutrophils, resulting in increased [Ca2+]i (EC50 = 22.3 µg/mL for GEOFl and 19.4 µg/mL for GEOLv). In addition, one of the major enantiomeric components, (-)-borneol, activated human neutrophil [Ca2+]i (EC50 = 28.7 ± 2.6), whereas (+)-borneol was inactive. Since these treatments activated neutrophils, we also evaluated if they were able to down-regulate neutrophil responses to subsequent agonist activation and found that treatment with Grindelia essential oils inhibited activation of these cells by the N-formyl peptide receptor 1 (FPR1) agonist fMLF and the FPR2 agonist WKYMVM. Likewise, (-)-borneol inhibited FPR-agonist-induced Ca2+ influx in neutrophils. Grindelia leaf and flower essential oils, as well as (-)-borneol, also inhibited fMLF-induced chemotaxis of human neutrophils (IC50 = 4.1 ± 0.8 µg/mL, 5.0 ± 1.6 µg/mL, and 5.8 ± 1.4 µM, respectively). Thus, we identified (-)-borneol as a novel modulator of human neutrophil function.


Assuntos
Grindelia , Óleos Voláteis , Canfanos , Grindelia/química , Humanos , Limoneno/análise , Neutrófilos , Óleos Voláteis/química , Folhas de Planta/química , Óleos de Plantas/química
11.
Molecules ; 27(12)2022 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-35744876

RESUMO

Persistent inflammation contributes to a number of diseases; therefore, control of the inflammatory response is an important therapeutic goal. In an effort to identify novel anti-inflammatory compounds, we screened a library of pyridazinones and structurally related derivatives that were used previously to identify N-formyl peptide receptor (FPR) agonists. Screening of the compounds for their ability to inhibit lipopolysaccharide (LPS)-induced nuclear factor κB (NF-κB) transcriptional activity in human THP1-Blue monocytic cells identified 48 compounds with anti-inflammatory activity. Interestingly, 34 compounds were FPR agonists, whereas 14 inhibitors of LPS-induced NF-κB activity were not FPR agonists, indicating that they inhibited different signaling pathways. Further analysis of the most potent inhibitors showed that they also inhibited LPS-induced production of interleukin 6 (IL-6) by human MonoMac-6 monocytic cells, again verifying their anti-inflammatory properties. Structure-activity relationship (SAR) classification models based on atom pair descriptors and physicochemical ADME parameters were developed to achieve better insight into the relationships between chemical structures of the compounds and their biological activities, and we found that there was little correlation between FPR agonist activity and inhibition of LPS-induced NF-κB activity. Indeed, Cmpd43, a well-known pyrazolone-based FPR agonist, as well as FPR1 and FPR2 peptide agonists had no effect on the LPS-induced NF-κB activity in THP1-Blue cells. Thus, some FPR agonists reported to have anti-inflammatory activity may actually mediate their effects through FPR-independent pathways, as it is suggested by our results with this series of compounds. This could explain how treatment with some agonists known to be inflammatory (i.e., FPR1 agonists) could result in anti-inflammatory effects. Further research is clearly needed to define the molecular targets of pyridazinones and structurally related compounds with anti-inflammatory activity and to define their relationships (if any) to FPR signaling events.


Assuntos
Lipopolissacarídeos , NF-kappa B , Anti-Inflamatórios/farmacologia , Humanos , Lipopolissacarídeos/farmacologia , NF-kappa B/metabolismo , Transdução de Sinais , Relação Estrutura-Atividade
12.
Bioorg Med Chem Lett ; 52: 128380, 2021 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-34563669

RESUMO

Human neutrophil elastase (HNE) is a serine protease that is expressed in polymorphonuclear neutrophils. It has been recognized as an important therapeutic target for treating inflammatory diseases, especially related to the respiratory system, but also for various types of cancer. Thus, compounds able to inhibit HNE are of great interest in medicinal chemistry. In the present paper, we report the synthesis and biological evaluation of a new series of HNE inhibitors with an innovative 1,5,6,7-tetrahydro-4H-indazol-4-one core that was developed as a molecular modification of our previously reported indazole-based HNE inhibitors. Since the 1,5,6,7-tetrahydro-4H-indazol-4-one scaffold can occur in two possible tautomeric forms, the acylation/alkylation reactions resulted in a mixture of the two isomers, often widely unbalanced in favor of one form. Using analytical techniques and NMR spectroscopy, we characterized and separated the isomer pairs and confirmed the compounds used in biological testing. Analysis of the compounds for HNE inhibitory activity showed that they were potent inhibitors, with Ki values in the low nanomolar range (6-35 nM). They also had reasonable stability in aqueous buffer, with half-lives over 1 h. Overall, our results indicate that the 1,5,6,7-tetrahydro-4H-indazol-4-one core is suitable for the synthesis of potent HNE inhibitors that could be useful in the development of new therapeutics for treating diseases involving excessive HNE activity.


Assuntos
Elastase de Leucócito/antagonistas & inibidores , Inibidores de Serina Proteinase/farmacologia , Relação Dose-Resposta a Droga , Humanos , Elastase de Leucócito/metabolismo , Estrutura Molecular , Inibidores de Serina Proteinase/síntese química , Inibidores de Serina Proteinase/química , Relação Estrutura-Atividade
13.
Bioorg Med Chem ; 29: 115836, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-33218895

RESUMO

Human neutrophil elastase (HNE) is a potent protease that plays an important physiological role in many processes but is also involved in a variety of pathologies that affect the pulmonary system. Thus, compounds able to inhibit HNE proteolytic activity could represent effective therapeutics. We present here a new series of pyrazolopyridine and pyrrolopyridine derivatives as HNE inhibitors designed as modifications of our previously synthesized indazoles and indoles in order to evaluate effects of the change in position of the nitrogen and/or the insertion of an additional nitrogen in the scaffolds on biological activity and chemical stability. We obtained potent HNE inhibitors with IC50 values in the low nanomolar range (10-50 nM), and some compounds exhibited improved chemical stability in phosphate buffer (t1/2 > 6 h). Molecular modeling studies demonstrated that inhibitory activity was strictly dependent on the formation of a Michaelis complex between the OH group of HNE Ser195 and the carbonyl carbon of the inhibitor. Moreover, in silico ADMET calculations predicted that most of the new compounds would be optimally absorbed, distributed, metabolized, and excreted. Thus, these new and potent HNE inhibitors represent novel leads for future therapeutic development.


Assuntos
Desenvolvimento de Medicamentos , Compostos Heterocíclicos/farmacologia , Elastase de Leucócito/antagonistas & inibidores , Piridinas/farmacologia , Pirróis/farmacologia , Inibidores de Serina Proteinase/farmacologia , Teoria da Densidade Funcional , Relação Dose-Resposta a Droga , Compostos Heterocíclicos/síntese química , Compostos Heterocíclicos/química , Humanos , Elastase de Leucócito/metabolismo , Modelos Moleculares , Estrutura Molecular , Piridinas/síntese química , Piridinas/química , Pirróis/síntese química , Pirróis/química , Inibidores de Serina Proteinase/síntese química , Inibidores de Serina Proteinase/química , Relação Estrutura-Atividade
14.
Molecules ; 26(12)2021 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-34203809

RESUMO

Rhododendron (Ericaceae) extracts contain flavonoids, chromones, terpenoids, steroids, and essential oils and are used in traditional ethnobotanical medicine. However, little is known about the immunomodulatory activity of essential oils isolated from these plants. Thus, we isolated essential oils from the flowers and leaves of R. albiflorum (cascade azalea) and analyzed their chemical composition and innate immunomodulatory activity. Compositional analysis of flower (REOFl) versus leaf (REOLv) essential oils revealed significant differences. REOFl was comprised mainly of monoterpenes (92%), whereas sesquiterpenes were found in relatively low amounts. In contrast, REOLv was primarily composed of sesquiterpenes (90.9%), with a small number of monoterpenes. REOLv and its primary sesquiterpenes (viridiflorol, spathulenol, curzerene, and germacrone) induced intracellular Ca2+ mobilization in human neutrophils, C20 microglial cells, and HL60 cells transfected with N-formyl peptide receptor 1 (FPR1) or FPR2. On the other hand, pretreatment with these essential oils or component compounds inhibited agonist-induced Ca2+ mobilization and chemotaxis in human neutrophils and agonist-induced Ca2+ mobilization in microglial cells and FPR-transfected HL60 cells, indicating that the direct effect of these compounds on [Ca2+]i desensitized the cells to subsequent agonist activation. Reverse pharmacophore mapping suggested several potential kinase targets for these compounds; however, these targets were not supported by kinase binding assays. Our results provide a cellular and molecular basis to explain at least part of the beneficial immunotherapeutic properties of the R. albiflorum essential oils and suggest that essential oils from leaves of this plant may be effective in modulating some innate immune responses, possibly by inhibition of neutrophil migration.


Assuntos
Óleos Voláteis/química , Rhododendron/química , Flores/química , Células HL-60 , Humanos , Fatores Imunológicos/isolamento & purificação , Fatores Imunológicos/metabolismo , Imunomodulação/efeitos dos fármacos , Monoterpenos/farmacologia , Neutrófilos/efeitos dos fármacos , Óleos Voláteis/farmacologia , Folhas de Planta/química , Receptores de Formil Peptídeo/efeitos dos fármacos , Receptores de Formil Peptídeo/metabolismo , Rhododendron/metabolismo , Sesquiterpenos/farmacologia
15.
Molecules ; 26(21)2021 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-34770992

RESUMO

Rheumatoid arthritis (RA) is a chronic inflammatory disease characterized by joint inflammation, cartilage damage and bone destruction. Although the pharmacological treatment of RA has evolved over the last few years, the new drugs have serious side effects and are very expensive. Thus, the research has been directed in recent years towards new possible targets. Among these targets, N-formyl peptide receptors (FPRs) are of particular interest. Recently, the mixed FPR1/FPR2 agonist Cpd43, the FPR2 agonist AT-01-KG, and the pyridine derivative AMC3 have been shown to be effective in RA animal models. As an extension of this research, we report here a new series of pyridinone derivatives containing the (substituted)phenyl acetamide chain, which was found to be essential for activity, but with different substitutions at position 5 of the scaffold. The biological results were also supported by molecular modeling studies and additional pharmacological tests on AMC3 have been performed in a rat model of RA, by repeating the treatments of the animals with 10 mg/kg/day of compound by 1 week.


Assuntos
Artrite Reumatoide/tratamento farmacológico , Piridinas/farmacologia , Receptores de Formil Peptídeo/agonistas , Administração Oral , Animais , Artrite Reumatoide/induzido quimicamente , Artrite Reumatoide/metabolismo , Adjuvante de Freund , Humanos , Masculino , Estrutura Molecular , Piridinas/administração & dosagem , Piridinas/química , Ratos , Ratos Sprague-Dawley , Células Tumorais Cultivadas
16.
Molecules ; 26(8)2021 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-33921479

RESUMO

Synthetic and natural ionophores have been developed to catalyze ion transport and have been shown to exhibit a variety of biological effects. We synthesized 24 aza- and diaza-crown ethers containing adamantyl, adamantylalkyl, aminomethylbenzoyl, and ε-aminocaproyl substituents and analyzed their biological effects in vitro. Ten of the compounds (8, 10-17, and 21) increased intracellular calcium ([Ca2+]i) in human neutrophils, with the most potent being compound 15 (N,N'-bis[2-(1-adamantyl)acetyl]-4,10-diaza-15-crown-5), suggesting that these compounds could alter normal neutrophil [Ca2+]i flux. Indeed, a number of these compounds (i.e., 8, 10-17, and 21) inhibited [Ca2+]i flux in human neutrophils activated by N-formyl peptide (fMLF). Some of these compounds also inhibited chemotactic peptide-induced [Ca2+]i flux in HL60 cells transfected with N-formyl peptide receptor 1 or 2 (FPR1 or FPR2). In addition, several of the active compounds inhibited neutrophil reactive oxygen species production induced by phorbol 12-myristate 13-acetate (PMA) and neutrophil chemotaxis toward fMLF, as both of these processes are highly dependent on regulated [Ca2+]i flux. Quantum chemical calculations were performed on five structure-related diaza-crown ethers and their complexes with Ca2+, Na+, and K+ to obtain a set of molecular electronic properties and to correlate these properties with biological activity. According to density-functional theory (DFT) modeling, Ca2+ ions were more effectively bound by these compounds versus Na+ and K+. The DFT-optimized structures of the ligand-Ca2+ complexes and quantitative structure-activity relationship (QSAR) analysis showed that the carbonyl oxygen atoms of the N,N'-diacylated diaza-crown ethers participated in cation binding and could play an important role in Ca2+ transfer. Thus, our modeling experiments provide a molecular basis to explain at least part of the ionophore mechanism of biological action of aza-crown ethers.


Assuntos
Compostos Aza/síntese química , Compostos Aza/farmacologia , Éteres de Coroa/síntese química , Éteres de Coroa/farmacologia , Modelos Moleculares , Cálcio/metabolismo , Quimiotaxia/efeitos dos fármacos , Teoria da Densidade Funcional , Células HL-60 , Humanos , Ligantes , Neutrófilos/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Receptores de Formil Peptídeo/metabolismo , Análise de Regressão , Eletricidade Estática , Termodinâmica
17.
Molecules ; 26(24)2021 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-34946725

RESUMO

Little is known about the immunomodulatory activity of essential oils isolated from Juniperus species. Thus, we isolated essential oils from the cones and leaves of eight juniper species found in Montana and in Kazakhstan, including J. horizontalis, J. scopolorum, J. communis, J. seravschanica, J. sabina, J. pseudosabina, J. pseudosabina subsp. turkestanica, and J. sibirica. We report here the chemical composition and innate immunomodulatory activity of these essential oils. Compositional analysis of the 16 samples of Juniper essential oils revealed similarities and differences between our analyses and those previously reported for essential oils from this species. Our studies represent the first analysis of essential oils isolated from the cones of four of these Juniper species. Several essential oil samples contained high levels of cedrol, which was fairly unique to three Juniper species from Kazakhstan. We found that these essential oils and pure (+)-cedrol induced intracellular Ca2+ mobilization in human neutrophils. Furthermore, pretreatment of human neutrophils and N-formyl peptide receptor 1 and 2 (FPR1 and FPR2) transfected HL60 cells with these essential oils or (+)-cedrol inhibited agonist-induced Ca2+ mobilization, suggesting these responses were desensitized by this pretreatment. In support of this conclusion, pretreatment with essential oils from J. seravschanica cones (containing 16.8% cedrol) or pure (+)-cedrol inhibited human neutrophil chemotaxis to N-formyl peptide. Finally, reverse pharmacophore mapping predicted several potential kinase targets for cedrol. Thus, our studies have identified cedrol as a novel neutrophil agonist that can desensitize cells to subsequent stimulation by N-formyl peptide.


Assuntos
Sinalização do Cálcio/efeitos dos fármacos , Imunidade Inata/efeitos dos fármacos , Fatores Imunológicos , Juniperus/química , Neutrófilos/imunologia , Óleos Voláteis/química , Sesquiterpenos Policíclicos , Células HL-60 , Humanos , Fatores Imunológicos/química , Fatores Imunológicos/farmacologia , Juniperus/classificação , Sesquiterpenos Policíclicos/química , Sesquiterpenos Policíclicos/farmacologia
18.
Molecules ; 26(18)2021 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-34577159

RESUMO

c-Jun N-terminal kinase (JNK) plays a central role in stress signaling pathways implicated in important pathological processes, including rheumatoid arthritis and ischemia-reperfusion injury. Therefore, inhibition of JNK is of interest for molecular targeted therapy to treat various diseases. We synthesized 13 derivatives of our reported JNK inhibitor 11H-indeno[1,2-b]quinoxalin-11-one oxime and evaluated their binding to the three JNK isoforms and their biological effects. Eight compounds exhibited submicromolar binding affinity for at least one JNK isoform. Most of these compounds also inhibited lipopolysaccharide (LPS)-induced nuclear factor-κB/activating protein 1 (NF-κB/AP-1) activation and interleukin-6 (IL-6) production in human monocytic THP1-Blue cells and human MonoMac-6 cells, respectively. Selected compounds (4f and 4m) also inhibited LPS-induced c-Jun phosphorylation in MonoMac-6 cells, directly confirming JNK inhibition. We conclude that indenoquinoxaline-based oximes can serve as specific small-molecule modulators for mechanistic studies of JNKs, as well as potential leads for the development of anti-inflammatory drugs.


Assuntos
Proteínas Quinases JNK Ativadas por Mitógeno/antagonistas & inibidores , Oximas/química , Oximas/farmacologia , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacologia , Anti-Inflamatórios/química , Anti-Inflamatórios/farmacologia , Disponibilidade Biológica , Linhagem Celular , Humanos , Interleucina-6/metabolismo , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Lipopolissacarídeos/toxicidade , Monócitos/efeitos dos fármacos , Isoformas de Proteínas/antagonistas & inibidores , Isoformas de Proteínas/metabolismo , Quinoxalinas/química , Quinoxalinas/farmacologia
19.
BMC Endocr Disord ; 20(1): 133, 2020 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-32854689

RESUMO

BACKGROUND: Graves' disease is the commonest cause of thyrotoxicosis whilst thyrotropin (TSH)-producing pituitary adenomas (thyrotropinomas, TSHomas) are very rare and account for just 1-2% of all pituitary adenomas. Coexistence of a TSHoma and Graves' disease has been very rarely reported. Here, we report a case of a patient whose initial presentation with primary thyrotoxicosis due to Graves' disease, was subsequently followed by a relapse of thyrotoxicosis due to a probable TSHoma. CASE: A sixty-eight year old woman was referred to our department with classical features of thyrotoxicosis. Initial biochemistry confirmed hyperthyroxinaemia [free thyroxine (fT4) 20.4 pmol/L (reference range 7.0-16.0)] and a suppressed TSH [< 0.02mIU/L (0.50-4.20)]. A technetium pertechnetate uptake scan was consistent with Graves' Disease. She was treated with carbimazole for 18 months and remained clinically and biochemically euthyroid. After stopping carbimazole her fT4 started to rise but TSH remained normal. Laboratory assay interference was excluded. A TRH stimulation test demonstrated a flat TSH response and pituitary MRI revealed a microadenoma. Remaining pituitary hormones were in the normal range other than a slightly raised IGF-1. An 11C-methionine PET/CT scan coregistered with volumetric MRI (Met-PET-MRICR) demonstrated high tracer uptake in the left lateral sella region suggestive of a functioning adenoma. The patient declined surgery and was unable to tolerate cabergoline or octreotide. Thereafter, she has elected to pursue a conservative approach with periodic surveillance. CONCLUSION: This is a very unusual case of thyrotoxicosis caused by two different processes occurring in the same patient. It highlights the importance of considering dual pathology when previously concordant thyroid function tests become discordant. It also highlights a potential role of Met-PET-MRICR in the localisation of functioning pituitary tumours.


Assuntos
Adenoma/complicações , Doença de Graves/complicações , Hiperpituitarismo/complicações , Neoplasias Hipofisárias/complicações , Tireotoxicose/etiologia , Adenoma/diagnóstico , Adenoma/metabolismo , Adenoma/patologia , Idoso , Feminino , Doença de Graves/diagnóstico , Humanos , Hiperpituitarismo/diagnóstico , Hiperpituitarismo/metabolismo , Imageamento por Ressonância Magnética , Neoplasias Hipofisárias/diagnóstico , Neoplasias Hipofisárias/patologia , Testes de Função Tireóidea , Tireotoxicose/diagnóstico , Tireotropina/metabolismo
20.
Bioorg Chem ; 100: 103880, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32388428

RESUMO

The resolution of inflammation is an active response involving the interaction of pro-resolving mediators with specific receptors, such as N-formyl peptide receptor 2 (FPR2). FPRs represent potentially important therapeutic targets for the treatment of some pathologies, including asthma and rheumatoid arthritis. Previously, we identified selective or mixed FPR agonists with a pyridazin-3(2H)-one scaffold, all containing a 4-bromophenylacetamide fragment at N-2. The most effective compounds in this series were EC3, a potent mixed FPR1/FPR2/FPR3 agonist, and EC10, which had a preference for FPR1. We report here a new series of pyridinone and pyrimidindione derivatives containing the 4-(bromophenyl)acetamide substituent that was essential for activity in the pyridazinone series. All new compounds were evaluated for FPR agonist activity in HL60 cells transfected with FPR1 or FPR2 and in human neutrophils. While most of the pyridinone derivatives had reasonable FPR agonist activity in the submicromolar/micromolar range, the pyrimidindione derivatives were less active. Compound 2a (N-(4-bromophenyl)-2-[3-cyano-5-(3-methoxyphenyl)-6-methyl-2-oxopyridin-1(2H)-yl]acetamide) was the most active pyridinone derivative and had a 10-fold preference for FPR2 (EC50 = 120 nM) versus FPR1 (EC50 = 1.6 µM). To assess their therapeutic activity, compounds 2a, EC3, and EC10 were evaluated in vivo using a rat model of rheumatoid arthritis. All three compounds increased the pain threshold and reduced pain hypersensitivity in the treated rats versus control rats, although 2a and EC10 were much more effective than EC3. Thus, these FPR agonists represent potential leads to develop for the treatment of inflammatory diseases such as rheumatoid arthritis.


Assuntos
Piridonas/química , Piridonas/farmacologia , Pirimidinonas/química , Pirimidinonas/farmacologia , Receptores de Formil Peptídeo/agonistas , Animais , Artrite Reumatoide/tratamento farmacológico , Artrite Reumatoide/metabolismo , Linhagem Celular Tumoral , Células Cultivadas , Desenho de Fármacos , Humanos , Masculino , Piridonas/uso terapêutico , Pirimidinonas/uso terapêutico , Ratos Sprague-Dawley , Receptores de Formil Peptídeo/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA