Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Ergonomics ; 67(5): 660-673, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-37482538

RESUMO

Back exosuits deliver mechanical assistance to reduce the risk of back injury, however, minimising restriction is critical for adoption. We developed the adaptive impedance controller to minimise restriction while maintaining assistance by modulating impedance based on the user's movement direction and nonlinear sine curves. The objective of this study was to compare active assistance, delivered by a back exosuit via our adaptive impedance controller, to three levels of assistance from passive elastics. Fifteen participants completed five experimental blocks (4 exosuits and 1 no-suit) consisting of a maximum flexion and a constrained lifting task. While a higher stiffness elastic reduced back extensor muscle activity by 13%, it restricted maximum range of motion (RoM) by 13°. The adaptive impedance approach did not restrict RoM while reducing back extensor muscle activity by 15%, when lifting. This study highlights an adaptive impedance approach might improve usability by circumventing the assistance-restriction trade-off inherent to passive approaches.Practitioner summary: This study demonstrates a soft active exosuit that delivers assistance with an adaptive impedance approach can provide reductions in overall back muscle activity without the impacts of restricted range of motion or perception of restriction and discomfort.


Assuntos
Exoesqueleto Energizado , Robótica , Humanos , Remoção , Fenômenos Biomecânicos , Músculo Esquelético/fisiologia , Amplitude de Movimento Articular/fisiologia
2.
Pain Med ; 24(Suppl 1): S175-S186, 2023 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-36794907

RESUMO

OBJECTIVE: Low back pain (LBP) is hallmarked by activity limitations, especially for tasks involving bending. Back exosuit technology reduces low back discomfort and improves self-efficacy of individuals with LBP during bending and lifting tasks. However, the biomechanical efficacy of these devices in individuals with LBP is unknown. This study sought to determine biomechanical and perceptual effects of a soft active back exosuit designed to assist individuals with LBP sagittal plane bending. To understand patient-reported usability and use cases for this device. METHODS: Fifteen individuals with LBP performed two experimental lifting blocks once with and without an exosuit. Trunk biomechanics were measured by muscle activation amplitudes, and whole-body kinematics and kinetics. To evaluate device perception, participants rated task effort, low back discomfort, and their level of concern completing daily activities. RESULTS: The back exosuit reduced peak back extensor: moments by 9%, and muscle amplitudes by 16% when lifting. There were no changes in abdominal co-activation and small reductions maximum trunk flexion compared to lifting without an exosuit. Participants reported lower task effort, back discomfort, and concern about bending and lifting with an exosuit compared to without. CONCLUSIONS: This study demonstrates a back exosuit not only imparts perceptual benefits of reduced task effort, discomfort, and increased confidence in individuals with LBP but that it achieves these benefits through measurable biomechanical reductions in back extensor effort. The combined effect of these benefits implies back exosuits might be a potential therapeutic aid to augment physical therapy, exercises, or daily activities.


Assuntos
Dor Lombar , Humanos , Dor Lombar/terapia , Estudos de Viabilidade , Esforço Físico , Músculos Abdominais , Eletromiografia
3.
Pain Med ; 24(Suppl 1): S48-S60, 2023 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-36315101

RESUMO

OBJECTIVE: Biomechanics represents the common final output through which all biopsychosocial constructs of back pain must pass, making it a rich target for phenotyping. To exploit this feature, several sites within the NIH Back Pain Consortium (BACPAC) have developed biomechanics measurement and phenotyping tools. The overall aims of this article were to: 1) provide a narrative review of biomechanics as a phenotyping tool; 2) describe the diverse array of tools and outcome measures that exist within BACPAC; and 3) highlight how leveraging these technologies with the other data collected within BACPAC could elucidate the relationship between biomechanics and other metrics used to characterize low back pain (LBP). METHODS: The narrative review highlights how biomechanical outcomes can discriminate between those with and without LBP, as well as among levels of severity of LBP. It also addresses how biomechanical outcomes track with functional improvements in LBP. Additionally, we present the clinical use case for biomechanical outcome measures that can be met via emerging technologies. RESULTS: To answer the need for measuring biomechanical performance, our "Results" section describes the spectrum of technologies that have been developed and are being used within BACPAC. CONCLUSION AND FUTURE DIRECTIONS: The outcome measures collected by these technologies will be an integral part of longitudinal and cross-sectional studies conducted in BACPAC. Linking these measures with other biopsychosocial data collected within BACPAC increases our potential to use biomechanics as a tool for understanding the mechanisms of LBP, phenotyping unique LBP subgroups, and matching these individuals with an appropriate treatment paradigm.


Assuntos
Dor Lombar , Humanos , Dor Lombar/diagnóstico , Estudos Transversais , Fenômenos Biomecânicos , Literatura de Revisão como Assunto
4.
Arch Phys Med Rehabil ; 95(4): 686-98, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24139985

RESUMO

OBJECTIVE: To compare temporal activation patterns from 24 abdominal and lumbar muscles between healthy subjects and those who reported recovery from recent low back injury (LBI). DESIGN: Cross-sectional comparative study. SETTING: University neuromuscular function laboratory. PARTICIPANTS: Healthy adult volunteers (N=81; 30 LBI, 51 asymptomatic subjects). INTERVENTIONS: Trunk muscle electromyographic activity was collected during 2 difficulty levels of a supine trunk stability test aimed at challenging lumbopelvic control. MAIN OUTCOME MEASURES: Principal component (PC) analysis was applied to determine differences in temporal and/or amplitude electromyographic patterns between groups. Mixed-model analyses of variance were performed on PC scores that explained more than 89% of the variance (α=.05). RESULTS: Four PCs explained 89% and 96% of the variance for the abdominal and back muscles, respectively, with both muscle groups having similar shapes in the first 3 PCs. Significant interactions or group main effects were found for all PC scores except PC4 for the back extensors. Overall activation amplitudes for both the abdominal and back muscles (PC1 scores) were significantly (P<.05) higher for the LBI group, with both abdominal and back muscles of the LBI group demonstrating an increased response to the leg-loading phase (PC2 scores) compared with the asymptomatic group. Differences were also found between groups in their preparatory activity (PC3 scores), with the LBI group having a higher early relative amplitude of abdominal and back extensor activity. CONCLUSIONS: Despite perceived readiness to return to work and low pain scores, muscle activation patterns remained altered in this LBI group, including reduced synergistic coactivation and increased overall amplitudes as well as greater relative amplitude differences during specific phases of the movement. Electromyographic measures provide objective information to help guide therapy and may assist with determining the level of healing and return-to-work readiness after an LBI.


Assuntos
Músculos Abdominais/fisiopatologia , Eletromiografia , Dor Lombar/fisiopatologia , Músculo Esquelético/fisiopatologia , Adulto , Análise de Variância , Estudos de Casos e Controles , Estudos Transversais , Feminino , Humanos , Dor Lombar/reabilitação , Região Lombossacral , Masculino , Músculo Esquelético/lesões , Análise de Componente Principal , Retorno ao Trabalho
6.
J Mot Behav ; 51(2): 222-238, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-29694298

RESUMO

Theoretical models suggest trunk muscle activation compensates for spinal systems impairments. The purpose of this study was to determine if two populations (older adults and those recovered from a lower back injury (rLBI)) with spinal system impairments have similar muscle activation patterns to each other, but differ from controls. Trunk electromyograms collected from 12 older adults, 16 rLBI, and 19 controls during two dynamic tasks showed that older adults and rLBI had higher activation amplitudes, sustained temporal and more synergistic activation relative to controls. However, differences found between older adults and rLBI suggest that spinal system impairments differed between groups or that recent pain (rLBI) uniquely influenced muscle activation. This sheds light on our understanding of the relationship between spinal system impairments and muscle activation.


Assuntos
Adaptação Fisiológica/fisiologia , Envelhecimento/fisiologia , Lesões nas Costas/fisiopatologia , Músculo Esquelético/fisiologia , Adulto , Idoso , Estudos de Casos e Controles , Eletromiografia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Tronco/fisiologia , Adulto Jovem
7.
Artigo em Inglês | MEDLINE | ID: mdl-33344990

RESUMO

It is proposed that reduced function in one of the spinal systems (active, passive, and neural) outlined by Panjabi could increase the risk of experiencing a low back injury (LBI). Also proposed is that reduced function in any one system can be compensated for by adjusting the time-varying recruitment of trunk muscles. This study addressed whether those with reduced active system function (WEAK), measured as back extensor strength, would have different trunk muscle activation patterns than those with higher function (STRONG), and secondly whether this relationship would be modified following recovery from a LBI. Sixty men participated, 30 recently recovered from LBI (rLBI, 4-12 weeks post injury) and 30 who had not had a LBI in the last year (ASYM). ASYM and rLBI participants were separated into STRONG and WEAK sub-groups if their isometric back extensor strength was above or below their group median, respectively. Trunk electromyograms from 24 muscle sites were recorded during a highly controlled horizontal transfer task. Principal component analysis captured key muscle activation patterns (amplitude and temporal); then analysis of variance models tested for strength or group*strength effects on these patterns consistent with the two main objectives. Significant strength, or group by strength effects were found for 3/4 electromyographic comparisons. In general, the WEAK group required higher activation amplitudes of abdominal and back extensor muscles, and greater temporal responsiveness of back extensor muscles only to the changing external moments than those who were STRONG. Group by strength interactions found that participants in the rLBI group had greater differences between WEAK and STRONG participants for overall muscle activation amplitudes in both abdominal and back extensor muscles. This increase in muscle activation was interpreted as compensation for lower maximum force properties whereas the increased temporal responsiveness captured a greater need to modify the agonist back extensors muscle activation patterns only in response to changes in the dynamic moments. Interactions captured that the recent experience of pain (rLBI) modified the magnitude of adjustment in muscle activation patterns potentially adapting to an increased risk of instability (painful flare) events associated with a deficit (lower strength) of the active system.

8.
Hum Mov Sci ; 38: 262-80, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25457424

RESUMO

While healthy aging is associated with physiological changes that can impair control of trunk motion, few studies examine how spinal muscle responses change with increasing age. This study examined whether older (over 65 years) compared to younger (20-45 years) adults had higher overall amplitude and altered temporal recruitment patterns of trunk musculature when performing a functional transfer task. Surface electromyograms from twelve bilateral trunk muscle (24) sites were analyzed using principal component analysis, extracting amplitude and temporal features (PCs) from electromyographic waveforms. Two PCs explained 96% of the waveform variance. Three factor ANOVA models tested main effects (group, muscle and reach) and interactions for PC scores. Significant (p<.0125) group interactions were found for all PC scores. Post hoc analysis revealed that relative to younger adults, older adults recruited higher agonist and antagonistic activity, demonstrated continuous activation levels in specific muscle sites despite changing external moments, and had altered temporal synergies within abdominal and back musculature. In summary both older and younger adults recruit highly organized activation patterns in response to changing external moments. Differences in temporal trunk musculature recruitment patterns suggest that older adults experience different dynamic spinal stiffness and loading compared to younger adults during a functional lifting task.


Assuntos
Fatores Etários , Envelhecimento , Eletromiografia , Músculo Esquelético/fisiologia , Músculos Abdominais/fisiopatologia , Adulto , Idoso , Antropometria , Feminino , Humanos , Processamento de Imagem Assistida por Computador , Dor Lombar/fisiopatologia , Masculino , Pessoa de Meia-Idade , Movimento , Análise de Componente Principal , Fatores de Tempo , Gravação em Vídeo , Adulto Jovem
9.
Work ; 47(1): 87-100, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24004753

RESUMO

BACKGROUND: Trunk neuromuscular alterations have been found in those with chronic low back pain, but less well studied are whether responses are altered in those deemed recovered following an injury. Furthermore, coordinated trunk muscle responses are deemed important for normal spinal function, but there are no studies of temporal patterns early after a low back injury. Determining whether altered trunk muscle patterns exist early after injury could improve our understanding of recovery by providing an objective assessment of functional recovery and risk of re-injury. OBJECTIVE: To determine if amplitude and temporal characteristics of trunk neuromuscular patterns differ during a dynamic functional task in a group of participants with recent (within 12 weeks) low back injury (LBI), but deemed ready to resume normal activities, when compared to those with no similar history of injury (ASYM). PARTICIPANTS: 35 participants in each group (17 females) were matched for age and body mass index (BMI); (ASYM 36 yrs, BMI 26, LBI 39 yrs, BMI 27). METHODS: Participants performed a controlled lifting task (2.9 kg) in a standing maximum reach position, which altered frontal and sagittal plane moments of force. Electromyographic activity of 24 trunk muscle sites, as well as thoracic and pelvis position via an electromagnetic sensor was collected. Principal component analyses extracted the temporal and amplitude waveform patterns. Mixed model ANOVAs tested for effects (p< 0.05) in the main patterns. Preliminary data regarding re-injury status after 1 year was included. RESULTS: Three principal patterns explained 97% of the variance, with the LBI group demonstrating increased amplitude and a more constant level of activity compared to the ASYM group. The LBI group also demonstrated more thoracic motion in all 3 axes during this highly constrained task. The no re-injury group had lower activation than the re-injury group, but similar temporal patterns. CONCLUSIONS: Despite the perception of readiness to return to work and low pain scores, the temporal and amplitude muscle activation patterns were altered in this LBI group indicating that differences exist compared to a non-low back injured group. The differences are not just relative amplitude differences among muscles but include differences in the temporal response to the flexion moment.


Assuntos
Lesões nas Costas/fisiopatologia , Músculo Esquelético/fisiologia , Recuperação de Função Fisiológica/fisiologia , Tronco/fisiopatologia , Adulto , Eletromiografia , Feminino , Humanos , Remoção , Masculino , Pessoa de Meia-Idade , Recidiva , Análise e Desempenho de Tarefas , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA