Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Hum Hered ; 2021 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-34847553

RESUMO

INTRODUCTION: Although breast and prostate cancers arise in different organs and are more frequent in the opposite sex, multiple studies have reported an association between their family history. Analysis of single nucleotide polymorphism data, based on distant relatives, has revealed a small positive genetic correlation between these cancers explained by common variants. The estimate of genetic correlation based on close relatives reveals the extent to which shared genetic risks are explained by both common and rare variants. This estimate is unknown for breast and prostate cancer. METHOD: We estimated the relative risks, heritability, and genetic correlation of breast cancer and prostate cancer, based on the Minnesota Breast and Prostate Cancer Study, a family study of 141 families ascertained for breast cancer. RESULTS: Heritability of breast cancer was 0.34 (95% credible interval: 0.23-0.49) and 0.65 (95% credible interval: 0.36-0.97) for prostate cancer, and the genetic correlation was 0.23. In terms of odds ratios, these values correspond to a 1.3 times higher odds of breast cancer among probands, given that the brother has prostate cancer. CONCLUSION: This study shows the inherent relation between prostate cancer and breast cancer; an incident of one in a family increases the risk of developing the other. The large difference between estimates of genetic correlation from distant and close relatives, if replicated, suggests that rare variants contribute to the shared genetic risk of breast and prostate cancer. However, the difference could steam from genotype-by-family effects shared between the two types of cancers.

2.
J Dairy Sci ; 103(9): 8433-8442, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32564958

RESUMO

One of the most common and reliable ways of monitoring udder health and milk quality in dairy herds is by monthly cow composite somatic cell counts (CMSCC). However, such sampling can be time consuming, and more automated sampling tools entail extra costs. Machine learning methods for prediction have been widely investigated in mastitis detection research, and CMSCC is normally used as a predictor or gold standard in such models. Predicted CMSCC between samplings could supply important information and be used as an input for udder health decision-support tools. To our knowledge, methods to predict CMSCC are lacking. Our aim was to find a method to predict CMSCC by using regularly recorded quarter milk data such as milk flow or conductivity. The milk data were collected at the quarter level for 8 wk when milking 372 Holstein-Friesian cows, resulting in a data set of 30,734 records with information on 87 variables. The cows were milked in an automatic milking rotary and sampled once weekly to obtain CMSCC values. The machine learning methods chosen for evaluation were the generalized additive model (GAM), random forest, and multilayer perceptron (MLP). For each method, 4 models with different predictor variable setups were evaluated: models based on 7-d lagged or 3-d lagged records before the CMSCC sampling and additionally for each setup but removing cow number as a predictor variable (which captures indirect information regarding cows' overall level of CMSCC based on previous samplings). The methods were evaluated by a 5-fold cross validation and predictions on future data using models with the 4 different variable setups. The results indicated that GAM was the superior model, although MLP was equally good when fewer data were used. Information regarding the cows' level of previous CMSCC was shown to be important for prediction, lowering prediction error in both GAM and MLP. We conclude that the use of GAM or MLP for CMSCC prediction is promising.


Assuntos
Bovinos , Contagem de Células/veterinária , Indústria de Laticínios , Mastite Bovina/diagnóstico , Animais , Contagem de Células/métodos , Feminino , Alemanha , Leite
3.
Mol Biol Evol ; 34(10): 2678-2689, 2017 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-28957504

RESUMO

The ability of a population to adapt to changes in their living conditions, whether in nature or captivity, often depends on polymorphisms in multiple genes across the genome. In-depth studies of such polygenic adaptations are difficult in natural populations, but can be approached using the resources provided by artificial selection experiments. Here, we dissect the genetic mechanisms involved in long-term selection responses of the Virginia chicken lines, populations that after 40 generations of divergent selection for 56-day body weight display a 9-fold difference in the selected trait. In the F15 generation of an intercross between the divergent lines, 20 loci explained >60% of the additive genetic variance for the selected trait. We focused particularly on fine-mapping seven major QTL that replicated in this population and found that only two fine-mapped to single, bi-allelic loci; the other five contained linked loci, multiple alleles or were epistatic. This detailed dissection of the polygenic adaptations in the Virginia lines provides a deeper understanding of the range of different genome-wide mechanisms that have been involved in these long-term selection responses. The results illustrate that the genetic architecture of a highly polygenic trait can involve a broad range of genetic mechanisms, and that this can be the case even in a small population bred from founders with limited genetic diversity.


Assuntos
Galinhas/genética , Herança Multifatorial/genética , Aclimatação/genética , Adaptação Fisiológica/genética , Alelos , Animais , Peso Corporal/genética , Cruzamento , Mapeamento Cromossômico , Cruzamentos Genéticos , Epistasia Genética/genética , Loci Gênicos/genética , Variação Genética/genética , Genética Populacional/métodos , Polimorfismo Genético/genética , Locos de Características Quantitativas , Seleção Genética/genética
4.
Heredity (Edinb) ; 121(6): 631-647, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-29588510

RESUMO

When individuals interact, their phenotypes may be affected not only by their own genes but also by genes in their social partners. This phenomenon is known as Indirect Genetic Effects (IGEs). In aquaculture species and some plants, however, competition not only affects trait levels of individuals, but also inflates variability of trait values among individuals. In the field of quantitative genetics, the variability of trait values has been studied as a quantitative trait in itself, and is often referred to as inherited variability. Such studies, however, consider only the genetic effect of the focal individual on trait variability and do not make a connection to competition. Although the observed phenotypic relationship between competition and variability suggests an underlying genetic relationship, the current quantitative genetic models of IGE and inherited variability do not allow for such a relationship. The lack of quantitative genetic models that connect IGEs to inherited variability limits our understanding of the potential of variability to respond to selection, both in nature and agriculture. Models of trait levels, for example, show that IGEs may considerably change heritable variation in trait values. Currently, we lack the tools to investigate whether this result extends to variability of trait values. Here we present a model that integrates IGEs and inherited variability. In this model, the target phenotype, say growth rate, is a function of the genetic and environmental effects of the focal individual and of the difference in trait value between the social partner and the focal individual, multiplied by a regression coefficient. The regression coefficient is a genetic trait, which is a measure of cooperation; a negative value indicates competition, a positive value cooperation, and an increasing value due to selection indicates the evolution of cooperation. In contrast to the existing quantitative genetic models, our model allows for co-evolution of IGEs and variability, as the regression coefficient can respond to selection. Our simulations show that the model results in increased variability of body weight with increasing competition. When competition decreases, i.e., cooperation evolves, variability becomes significantly smaller. Hence, our model facilitates quantitative genetic studies on the relationship between IGEs and inherited variability. Moreover, our findings suggest that we may have been overlooking an entire level of genetic variation in variability, the one due to IGEs.


Assuntos
Evolução Molecular , Modelos Genéticos , Método de Monte Carlo , Locos de Características Quantitativas
5.
Behav Genet ; 47(1): 88-101, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27757730

RESUMO

Individuals involved in a social interaction exhibit different behavioral traits that, in combination, form the individual's behavioral responses. Selectively bred strains of silver foxes (Vulpes vulpes) demonstrate markedly different behaviors in their response to humans. To identify the genetic basis of these behavioral differences we constructed a large F2 population including 537 individuals by cross-breeding tame and aggressive fox strains. 98 fox behavioral traits were recorded during social interaction with a human experimenter in a standard four-step test. Patterns of fox behaviors during the test were evaluated using principal component (PC) analysis. Genetic mapping identified eight unique significant and suggestive QTL. Mapping results for the PC phenotypes from different test steps showed little overlap suggesting that different QTL are involved in regulation of behaviors exhibited in different behavioral contexts. Many individual behavioral traits mapped to the same genomic regions as PC phenotypes. This provides additional information about specific behaviors regulated by these loci. Further, three pairs of epistatic loci were also identified for PC phenotypes suggesting more complex genetic architecture of the behavioral differences between the two strains than what has previously been observed.


Assuntos
Comportamento Animal , Raposas/genética , Comportamento Social , Animais , Mapeamento Cromossômico , Cromossomos de Mamíferos/genética , Epistasia Genética , Feminino , Masculino , Fenótipo , Análise de Componente Principal , Locos de Características Quantitativas/genética , Característica Quantitativa Herdável
6.
Proc Biol Sci ; 282(1806): 20150156, 2015 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-25833857

RESUMO

Understanding the genetic basis of traits involved in adaptation is a major challenge in evolutionary biology but remains poorly understood. Here, we use genome-wide association mapping using a custom 50 k single nucleotide polymorphism (SNP) array in a natural population of collared flycatchers to examine the genetic basis of clutch size, an important life-history trait in many animal species. We found evidence for an association on chromosome 18 where one SNP significant at the genome-wide level explained 3.9% of the phenotypic variance. We also detected two suggestive quantitative trait loci (QTLs) on chromosomes 9 and 26. Fitness differences among genotypes were generally weak and not significant, although there was some indication of a sex-by-genotype interaction for lifetime reproductive success at the suggestive QTL on chromosome 26. This implies that sexual antagonism may play a role in maintaining genetic variation at this QTL. Our findings provide candidate regions for a classic avian life-history trait that will be useful for future studies examining the molecular and cellular function of, as well as evolutionary mechanisms operating at, these loci.


Assuntos
Tamanho da Ninhada , Variação Genética , Fenótipo , Aves Canoras/fisiologia , Animais , Feminino , Estudo de Associação Genômica Ampla , Masculino , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Aves Canoras/genética , Suécia
7.
PLoS Genet ; 8(8): e1002839, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22876191

RESUMO

The phenotypic effect of a gene is normally described by the mean-difference between alternative genotypes. A gene may, however, also influence the phenotype by causing a difference in variance between genotypes. Here, we reanalyze a publicly available Arabidopsis thaliana dataset [1] and show that genetic variance heterogeneity appears to be as common as normal additive effects on a genomewide scale. The study also develops theory to estimate the contributions of variance differences between genotypes to the phenotypic variance, and this is used to show that individual loci can explain more than 20% of the phenotypic variance. Two well-studied systems, cellular control of molybdenum level by the ion-transporter MOT1 and flowering-time regulation by the FRI-FLC expression network, and a novel association for Leaf serration are used to illustrate the contribution of major individual loci, expression pathways, and gene-by-environment interactions to the genetic variance heterogeneity.


Assuntos
Arabidopsis/genética , Flores/genética , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Folhas de Planta/genética , Proteínas de Transporte de Ânions/genética , Proteínas de Transporte de Ânions/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Sequência de Bases , Bases de Dados Genéticas , Flores/metabolismo , Estudos de Associação Genética , Loci Gênicos , Variação Genética , Genótipo , Proteínas de Domínio MADS/genética , Proteínas de Domínio MADS/metabolismo , Dados de Sequência Molecular , Molibdênio/metabolismo , Fenótipo , Folhas de Planta/metabolismo , Característica Quantitativa Herdável , Biologia de Sistemas
9.
Genet Sel Evol ; 45: 41, 2013 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-24134557

RESUMO

BACKGROUND: Canalization is defined as the stability of a genotype against minor variations in both environment and genetics. Genetic variation in degree of canalization causes heterogeneity of within-family variance. The aims of this study are twofold: (1) quantify genetic heterogeneity of (within-family) residual variance in Atlantic salmon and (2) test whether the observed heterogeneity of (within-family) residual variance can be explained by simple scaling effects. RESULTS: Analysis of body weight in Atlantic salmon using a double hierarchical generalized linear model (DHGLM) revealed substantial heterogeneity of within-family variance. The 95% prediction interval for within-family variance ranged from ~0.4 to 1.2 kg2, implying that the within-family variance of the most extreme high families is expected to be approximately three times larger than the extreme low families. For cross-sectional data, DHGLM with an animal mean sub-model resulted in severe bias, while a corresponding sire-dam model was appropriate. Heterogeneity of variance was not sensitive to Box-Cox transformations of phenotypes, which implies that heterogeneity of variance exists beyond what would be expected from simple scaling effects. CONCLUSIONS: Substantial heterogeneity of within-family variance was found for body weight in Atlantic salmon. A tendency towards higher variance with higher means (scaling effects) was observed, but heterogeneity of within-family variance existed beyond what could be explained by simple scaling effects. For cross-sectional data, using the animal mean sub-model in the DHGLM resulted in biased estimates of variance components, which differed substantially both from a standard linear mean animal model and a sire-dam DHGLM model. Although genetic differences in canalization were observed, selection for increased canalization is difficult, because there is limited individual information for the variance sub-model, especially when based on cross-sectional data. Furthermore, potential macro-environmental changes (diet, climatic region, etc.) may make genetic heterogeneity of variance a less stable trait over time and space.


Assuntos
Peso Corporal/genética , Variação Genética , Salmo salar/genética , Animais , Aquicultura , Família , Heterogeneidade Genética , Genótipo , Modelos Lineares , Modelos Genéticos , Fenótipo , Salmo salar/anatomia & histologia
10.
Genet Sel Evol ; 45: 23, 2013 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-23827014

RESUMO

BACKGROUND: Genetic variation for environmental sensitivity indicates that animals are genetically different in their response to environmental factors. Environmental factors are either identifiable (e.g. temperature) and called macro-environmental or unknown and called micro-environmental. The objectives of this study were to develop a statistical method to estimate genetic parameters for macro- and micro-environmental sensitivities simultaneously, to investigate bias and precision of resulting estimates of genetic parameters and to develop and evaluate use of Akaike's information criterion using h-likelihood to select the best fitting model. METHODS: We assumed that genetic variation in macro- and micro-environmental sensitivities is expressed as genetic variance in the slope of a linear reaction norm and environmental variance, respectively. A reaction norm model to estimate genetic variance for macro-environmental sensitivity was combined with a structural model for residual variance to estimate genetic variance for micro-environmental sensitivity using a double hierarchical generalized linear model in ASReml. Akaike's information criterion was constructed as model selection criterion using approximated h-likelihood. Populations of sires with large half-sib offspring groups were simulated to investigate bias and precision of estimated genetic parameters. RESULTS: Designs with 100 sires, each with at least 100 offspring, are required to have standard deviations of estimated variances lower than 50% of the true value. When the number of offspring increased, standard deviations of estimates across replicates decreased substantially, especially for genetic variances of macro- and micro-environmental sensitivities. Standard deviations of estimated genetic correlations across replicates were quite large (between 0.1 and 0.4), especially when sires had few offspring. Practically, no bias was observed for estimates of any of the parameters. Using Akaike's information criterion the true genetic model was selected as the best statistical model in at least 90% of 100 replicates when the number of offspring per sire was 100. Application of the model to lactation milk yield in dairy cattle showed that genetic variance for micro- and macro-environmental sensitivities existed. CONCLUSION: The algorithm and model selection criterion presented here can contribute to better understand genetic control of macro- and micro-environmental sensitivities. Designs or datasets should have at least 100 sires each with 100 offspring.


Assuntos
Meio Ambiente , Interação Gene-Ambiente , Variação Genética , Modelos Lineares , Modelos Genéticos , Algoritmos , Animais , Bovinos , Simulação por Computador , Método de Monte Carlo , Característica Quantitativa Herdável
11.
BMC Genet ; 13: 63, 2012 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-22827487

RESUMO

A number of recent works have introduced statistical methods for detecting genetic loci that affect phenotypic variability, which we refer to as variability-controlling quantitative trait loci (vQTL). These are genetic variants whose allelic state predicts how much phenotype values will vary about their expected means. Such loci are of great potential interest in both human and non-human genetic studies, one reason being that a detected vQTL could represent a previously undetected interaction with other genes or environmental factors. The simultaneous publication of these new methods in different journals has in many cases precluded opportunity for comparison. We survey some of these methods, the respective trade-offs they imply, and the connections between them. The methods fall into three main groups: classical non-parametric, fully parametric, and semi-parametric two-stage approximations. Choosing between alternatives involves balancing the need for robustness, flexibility, and speed. For each method, we identify important assumptions and limitations, including those of practical importance, such as their scope for including covariates and random effects. We show in simulations that both parametric methods and their semi-parametric approximations can give elevated false positive rates when they ignore mean-variance relationships intrinsic to the data generation process. We conclude that choice of method depends on the trait distribution, the need to include non-genetic covariates, and the population size and structure, coupled with a critical evaluation of how these fit with the assumptions of the statistical model.


Assuntos
Variação Genética , Locos de Características Quantitativas , Interpretação Estatística de Dados , Genótipo , Humanos , Cadeias de Markov , Modelos Genéticos , Método de Monte Carlo , Fenótipo
12.
Evol Appl ; 15(4): 694-705, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35505880

RESUMO

Phenotypic variability of a genotype is relevant both in natural and domestic populations. In the past two decades, variability has been studied as a heritable quantitative genetic trait in its own right, often referred to as inherited variability or environmental canalization. So far, studies on inherited variability have only considered genetic effects of the focal individual, that is, direct genetic effects on inherited variability. Observations from aquaculture populations and some plants, however, suggest that an additional source of genetic variation in inherited variability may be generated through competition. Social interactions, such as competition, are often a source of Indirect Genetic Effects (IGE). An IGE is a heritable effect of an individual on the trait value of another individual. IGEs may substantially affect heritable variation underlying the trait, and the direction and magnitude of response to selection. To understand the contribution of IGEs to evolution of environmental canalization in natural populations, and to exploit such inherited variability in animal and plant breeding, we need statistical models to capture this effect. To our knowledge, it is unknown to what extent the current statistical models commonly used for IGE and inherited variability capture the effect of competition on inherited variability. Here, we investigate the potential of current statistical models for inherited variability and trait values, to capture the direct and indirect genetic effects of competition on variability. Our results show that a direct model of inherited variability almost entirely captures the genetic sensitivity of individuals to competition, whereas an indirect model of inherited variability captures the cooperative genetic effects of individuals on their partners. Models for trait levels, however, capture only a small part of the genetic effects of competition. The estimation of direct and indirect genetic effects of competition, therefore, is possible with models for inherited variability but may require a two-step analysis.

13.
Front Physiol ; 13: 826178, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35250629

RESUMO

The cerebellum has a highly conserved neural structure across species but varies widely in size. The wide variation in cerebellar size (both absolute and in proportion to the rest of the brain) among species and populations suggests that functional specialization is linked to its size. There is increasing recognition that the cerebellum contributes to cognitive processing and emotional control in addition to its role in motor coordination. However, to what extent cerebellum size reflects variation in these behavioral processes within species remains largely unknown. By using a unique intercross chicken population based on parental lines with high divergence in cerebellum size, we compared the behavior of individuals repeatedly exposed to the same fear test (emergence test) early in life and after sexual maturity (eight trials per age group) with proportional cerebellum size and cerebellum neural density. While proportional cerebellum size did not predict the initial fear response of the individuals (trial 1), it did increasingly predict adult individuals response as the trials progressed. Our results suggest that proportional cerebellum size does not necessarily predict an individual's fear response, but rather the habituation process to a fearful stimulus. Cerebellum neuronal density did not predict fear behavior in the individuals which suggests that these effects do not result from changes in neuronal density but due to other variables linked to proportional cerebellum size which might underlie fear habituation.

14.
Genet Res (Camb) ; 93(5): 333-42, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21767456

RESUMO

Dealing with genotype uncertainty is an ongoing issue in genetic analyses of complex traits. Here we consider genotype uncertainty in quantitative trait loci (QTL) analyses for large crosses in variance component models, where the genetic information is included in identity-by-descent (IBD) matrices. An IBD matrix is one realization from a distribution of potential IBD matrices given available marker information. In QTL analyses, its expectation is normally used resulting in potentially reduced accuracy and loss of power. Previously, IBD distributions have been included in models for small human full-sib families. We develop an Expectation-Maximization (EM) algorithm for estimating a full model based on Monte Carlo imputation for applications in large animal pedigrees. Our simulations show that the bias of variance component estimates using traditional expected IBD matrix can be adjusted by accounting for the distribution and that the calculations are computationally feasible for large pedigrees.


Assuntos
Genótipo , Locos de Características Quantitativas , Algoritmos , Análise de Variância , Genoma , Humanos , Método de Monte Carlo , Linhagem
15.
Genet Sel Evol ; 43(1): 3, 2011 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-21241486

RESUMO

BACKGROUND: Linkage mapping is used to identify genomic regions affecting the expression of complex traits. However, when experimental crosses such as F(2) populations or backcrosses are used to map regions containing a Quantitative Trait Locus (QTL), the size of the regions identified remains quite large, i.e. 10 or more Mb. Thus, other experimental strategies are needed to refine the QTL locations. Advanced Intercross Lines (AIL) are produced by repeated intercrossing of F(2) animals and successive generations, which decrease linkage disequilibrium in a controlled manner. Although this approach is seen as promising, both to replicate QTL analyses and fine-map QTL, only a few AIL datasets, all originating from inbred founders, have been reported in the literature. METHODS: We have produced a nine-generation AIL pedigree (n = 1529) from two outbred chicken lines divergently selected for body weight at eight weeks of age. All animals were weighed at eight weeks of age and genotyped for SNP located in nine genomic regions where significant or suggestive QTL had previously been detected in the F(2) population. In parallel, we have developed a novel strategy to analyse the data that uses both genotype and pedigree information of all AIL individuals to replicate the detection of and fine-map QTL affecting juvenile body weight. RESULTS: Five of the nine QTL detected with the original F(2) population were confirmed and fine-mapped with the AIL, while for the remaining four, only suggestive evidence of their existence was obtained. All original QTL were confirmed as a single locus, except for one, which split into two linked QTL. CONCLUSIONS: Our results indicate that many of the QTL, which are genome-wide significant or suggestive in the analyses of large intercross populations, are true effects that can be replicated and fine-mapped using AIL. Key factors for success are the use of large populations and powerful statistical tools. Moreover, we believe that the statistical methods we have developed to efficiently study outbred AIL populations will increase the number of organisms for which in-depth complex traits can be analyzed.


Assuntos
Galinhas/genética , Cruzamentos Genéticos , Locos de Características Quantitativas/genética , Animais , Animais não Endogâmicos , Mapeamento Cromossômico , Genótipo , Desequilíbrio de Ligação/genética
16.
JDS Commun ; 2(6): 345-350, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36337095

RESUMO

Real-time indoor positioning using ultra-wideband devices provides an opportunity for modern dairy farms to monitor the behavior of individual cows; however, missing data from these devices hinders reliable continuous monitoring and analysis of animal movement and social behavior. The objective of this study was to examine the data quality, in terms of missing data, in one commercially available ultra-wideband-based real-time location system for dairy cows. The focus was on detecting major obstacles, or sections, inside open freestall barns that resulted in increased levels of missing data. The study was conducted on 2 dairy farms with an existing commercial real-time location system. Position data were recorded for 6 full days from 69 cows on farm 1 and from 59 cows on farm 2. These data were used in subsequent analyses to determine the locations within the dairy barns where position data were missing for individual cows. The proportions of missing data were found to be evenly distributed within the 2 barns after fitting a linear mixed model with spatial smoothing to logit-transformed proportions (mean = 18% vs. 4% missing data for farm 1 and farm 2, respectively), with the exception of larger proportions of missing data along one of the walls on both farms. On farm 1, the variation between individual tags was large (range: 9-49%) compared with farm 2 (range: 12-38%). This greater individual variation of proportions of missing data indicates a potential problem with the individual tag, such as a battery malfunction or tag placement issue. Further research is needed to guide researchers in identifying problems relating to data capture problems in real-time monitoring systems on dairy farms. This is especially important when undertaking detailed analyses of animal movement and social interactions between animals.

17.
Nat Commun ; 12(1): 6972, 2021 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-34848700

RESUMO

We develop a Bayesian model (BayesRR-RC) that provides robust SNP-heritability estimation, an alternative to marker discovery, and accurate genomic prediction, taking 22 seconds per iteration to estimate 8.4 million SNP-effects and 78 SNP-heritability parameters in the UK Biobank. We find that only ≤10% of the genetic variation captured for height, body mass index, cardiovascular disease, and type 2 diabetes is attributable to proximal regulatory regions within 10kb upstream of genes, while 12-25% is attributed to coding regions, 32-44% to introns, and 22-28% to distal 10-500kb upstream regions. Up to 24% of all cis and coding regions of each chromosome are associated with each trait, with over 3,100 independent exonic and intronic regions and over 5,400 independent regulatory regions having ≥95% probability of contributing ≥0.001% to the genetic variance of these four traits. Our open-source software (GMRM) provides a scalable alternative to current approaches for biobank data.


Assuntos
Estudo de Associação Genômica Ampla , Genômica , Herança Multifatorial/genética , Teorema de Bayes , Estatura , Índice de Massa Corporal , Doenças Cardiovasculares , Diabetes Mellitus Tipo 2 , Técnicas Genéticas , Variação Genética , Genótipo , Humanos , Íntrons , Modelos Estatísticos , Fases de Leitura Aberta , Fenótipo , Software
18.
Genet Sel Evol ; 42: 8, 2010 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-20302616

RESUMO

BACKGROUND: The sensitivity to microenvironmental changes varies among animals and may be under genetic control. It is essential to take this element into account when aiming at breeding robust farm animals. Here, linear mixed models with genetic effects in the residual variance part of the model can be used. Such models have previously been fitted using EM and MCMC algorithms. RESULTS: We propose the use of double hierarchical generalized linear models (DHGLM), where the squared residuals are assumed to be gamma distributed and the residual variance is fitted using a generalized linear model. The algorithm iterates between two sets of mixed model equations, one on the level of observations and one on the level of variances. The method was validated using simulations and also by re-analyzing a data set on pig litter size that was previously analyzed using a Bayesian approach. The pig litter size data contained 10,060 records from 4,149 sows. The DHGLM was implemented using the ASReml software and the algorithm converged within three minutes on a Linux server. The estimates were similar to those previously obtained using Bayesian methodology, especially the variance components in the residual variance part of the model. CONCLUSIONS: We have shown that variance components in the residual variance part of a linear mixed model can be estimated using a DHGLM approach. The method enables analyses of animal models with large numbers of observations. An important future development of the DHGLM methodology is to include the genetic correlation between the random effects in the mean and residual variance parts of the model as a parameter of the DHGLM.


Assuntos
Cruzamento , Heterogeneidade Genética , Modelos Genéticos , Animais , Modelos Lineares , Suínos
19.
Eur J Drug Metab Pharmacokinet ; 45(1): 41-49, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31595429

RESUMO

BACKGROUND AND OBJECTIVES: Levodopa concentration in patients with Parkinson's disease is frequently modelled with ordinary differential equations (ODEs). Here, we investigate a pharmacokinetic model of plasma levodopa concentration in patients with Parkinson's disease by introducing stochasticity to separate the intra-individual variability into measurement and system noise, and to account for auto-correlated errors. We also investigate whether the induced stochasticity provides a better fit than the ODE approach. METHODS: In this study, a system noise variable is added to the pharmacokinetic model for duodenal levodopa/carbidopa gel (LCIG) infusion described by three ODEs through a standard Wiener process, leading to a stochastic differential equations (SDE) model. The R package population stochastic modelling (PSM) was used for model fitting with data from previous studies for modelling plasma levodopa concentration and parameter estimation. First, the diffusion scale parameter (σw), measurement noise variance, and bioavailability are estimated with the SDE model. Second, σw is fixed to certain values from 0 to 1 and bioavailability is estimated. Cross-validation was performed to compare the average root mean square errors (RMSE) of predicted plasma levodopa concentration. RESULTS: Both the ODE and the SDE models estimated bioavailability to be approximately 75%. The SDE model converged at different values of σw that were significantly different from zero. The average RMSE for the ODE model was 0.313, and the lowest average RMSE for the SDE model was 0.297 when σw was fixed to 0.9, and these two values are significantly different. CONCLUSIONS: The SDE model provided a better fit for LCIG plasma levodopa concentration by approximately 5.5% in terms of mean percentage change of RMSE.


Assuntos
Antiparkinsonianos/administração & dosagem , Antiparkinsonianos/farmacocinética , Antiparkinsonianos/uso terapêutico , Levodopa/administração & dosagem , Levodopa/farmacocinética , Doença de Parkinson/tratamento farmacológico , Medicina de Precisão/métodos , Idoso , Antiparkinsonianos/sangue , Disponibilidade Biológica , Carbidopa , Combinação de Medicamentos , Feminino , Humanos , Levodopa/sangue , Levodopa/uso terapêutico , Masculino , Pessoa de Meia-Idade , Modelos Biológicos , Processos Estocásticos
20.
Genetics ; 178(4): 2315-26, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18430952

RESUMO

We present a new flexible, simple, and powerful genome-scan method (flexible intercross analysis, FIA) for detecting quantitative trait loci (QTL) in experimental line crosses. The method is based on a pure random-effects model that simultaneously models between- and within-line QTL variation for single as well as epistatic QTL. It utilizes the score statistic and thereby facilitates computationally efficient significance testing based on empirical significance thresholds obtained by means of permutations. The properties of the method are explored using simulations and analyses of experimental data. The simulations showed that the power of FIA was as good as, or better than, Haley-Knott regression and that FIA was rather insensitive to the level of allelic fixation in the founders, especially for pedigrees with few founders. A chromosome scan was conducted for a meat quality trait in an F(2) intercross in pigs where a mutation in the halothane (Ryanodine receptor, RYR1) gene with a large effect on meat quality was known to segregate in one founder line. FIA obtained significant support for the halothane-associated QTL and identified the base generation allele with the mutated allele. A genome scan was also performed in a previously analyzed chicken F(2) intercross. In the chicken intercross analysis, four previously detected QTL were confirmed at a 5% genomewide significance level, and FIA gave strong evidence (P < 0.01) for two of these QTL to be segregating within the founder lines. FIA was also extended to account for epistasis and using simulations we show that the method provides good estimates of epistatic QTL variance even for segregating QTL. Extensions of FIA and its applications on other intercross populations including backcrosses, advanced intercross lines, and heterogeneous stocks are also discussed.


Assuntos
Galinhas/genética , Segregação de Cromossomos/genética , Cruzamentos Genéticos , Técnicas Genéticas , Locos de Características Quantitativas/genética , Suínos/genética , Alelos , Animais , Peso Corporal , Cromossomos de Mamíferos/genética , Simulação por Computador , Epistasia Genética , Feminino , Genoma , Funções Verossimilhança , Masculino , Análise de Regressão
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA