Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Diabetologia ; 66(11): 2062-2074, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37650924

RESUMO

AIMS/HYPOTHESIS: Glutamate-induced cytotoxicity (excitotoxicity) has been detected in pancreatic beta cells. The cystine/glutamate antiporter System xc- exports glutamate to the extracellular space and is therefore implicated as driving excitotoxicity. As of yet, it has not been investigated whether System xc- contributes to pancreatic islet function. METHODS: This study describes the implications of deficiency of System xc- on glucose metabolism in both constitutive and myeloid cell-specific knockout mice using metabolic tests and diet-induced obesity. Pancreatic islets were isolated and analysed for beta cell function, glutathione levels and ER stress. RESULTS: Constitutive System xc- deficiency led to an approximately threefold decrease in glutathione levels in the pancreatic islets as well as cystine shortage characterised by upregulation of Chac1. This shortage further manifested as downregulation of beta cell identity genes and a tonic increase in endoplasmic reticulum stress markers, which resulted in diminished insulin secretion both in vitro and in vivo. Myeloid-specific deletion did not have a significant impact on metabolism or islet function. CONCLUSIONS/INTERPRETATION: These findings suggest that System xc- is required for glutathione maintenance and insulin production in beta cells and that the system is dispensable for islet macrophage function.


Assuntos
Cistina , Ácido Glutâmico , Camundongos , Animais , Cistina/metabolismo , Ácido Glutâmico/metabolismo , Secreção de Insulina , Antiporters/metabolismo , Camundongos Knockout , Glutationa/metabolismo
2.
Diabetologia ; 66(12): 2292-2306, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37792013

RESUMO

AIMS/HYPOTHESIS: Colony stimulating factor 1 (CSF1) promotes the proliferation, differentiation and survival of macrophages, which have been implicated in both beneficial and detrimental effects on glucose metabolism. However, the physiological role of CSF1 signalling in glucose homeostasis and the potential therapeutic implications of modulating this pathway are not known. We aimed to study the composition of tissue macrophages (and other immune cells) following CSF1 receptor (CSF1R) inhibition and elucidate the metabolic consequences of CSF1R inhibition. METHODS: We assessed immune cell populations in various organs by flow cytometry, and tissue-specific metabolic effects by hyperinsulinaemic-euglycaemic clamps and insulin secretion assays in mice fed a chow diet containing PLX5622 (a CSF1R inhibitor) or a control diet. RESULTS: CSF1R inhibition depleted macrophages in multiple tissues while simultaneously increasing eosinophils and group 2 innate lymphoid cells. These immunological changes were consistent across different organs and were sex independent and reversible after cessation of the PLX5622. CSF1R inhibition improved hepatic insulin sensitivity but concomitantly impaired insulin secretion. In healthy islets, we found a high frequency of IL-1ß+ islet macrophages. Their depletion by CSF1R inhibition led to downregulation of macrophage-related pathways and mediators of cytokine activity, including Nlrp3, suggesting IL-1ß as a candidate insulin secretagogue. Partial restoration of physiological insulin secretion was achieved by injecting recombinant IL-1ß prior to glucose stimulation in mice lacking macrophages. CONCLUSIONS/INTERPRETATION: Macrophages and macrophage-derived factors, such as IL-1ß, play an important role in physiological insulin secretion. A better understanding of the tissue-specific effects of CSF1R inhibition on immune cells and glucose homeostasis is crucial for the development of targeted immune-modulatory treatments in metabolic disease. DATA AVAILABILITY: The RNA-Seq dataset is available in the Gene Expression Omnibus (GEO) under the accession number GSE189434 ( http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE189434 ).


Assuntos
Imunidade Inata , Linfócitos , Camundongos , Animais , Macrófagos/metabolismo , Glucose/metabolismo
3.
Part Fibre Toxicol ; 20(1): 7, 2023 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-36895000

RESUMO

BACKGROUND: Air pollution has emerged as an unexpected risk factor for diabetes. However, the mechanism behind remains ill-defined. So far, the lung has been considered as the main target organ of air pollution. In contrast, the gut has received little scientific attention. Since air pollution particles can reach the gut after mucociliary clearance from the lungs and through contaminated food, our aim was to assess whether exposure deposition of air pollution particles in the lung or the gut drive metabolic dysfunction in mice. METHODS: To study the effects of gut versus lung exposure, we exposed mice on standard diet to diesel exhaust particles (DEP; NIST 1650b), particulate matter (PM; NIST 1649b) or phosphate-buffered saline by either intratracheal instillation (30 µg 2 days/week) or gavage (12 µg 5 days/week) over at least 3 months (total dose of 60 µg/week for both administration routes, equivalent to a daily inhalation exposure in humans of 160 µg/m3 PM2.5) and monitored metabolic parameters and tissue changes. Additionally, we tested the impact of the exposure route in a "prestressed" condition (high-fat diet (HFD) and streptozotocin (STZ)). RESULTS: Mice on standard diet exposed to particulate air pollutants by intratracheal instillation developed lung inflammation. While both lung and gut exposure resulted in increased liver lipids, glucose intolerance and impaired insulin secretion was only observed in mice exposed to particles by gavage. Gavage with DEP created an inflammatory milieu in the gut as shown by up-regulated gene expression of pro-inflammatory cytokines and monocyte/macrophage markers. In contrast, liver and adipose inflammation markers were not increased. Beta-cell secretory capacity was impaired on a functional level, most likely induced by the inflammatory milieu in the gut, and not due to beta-cell loss. The differential metabolic effects of lung and gut exposures were confirmed in a "prestressed" HFD/STZ model. CONCLUSIONS: We conclude that separate lung and gut exposures to air pollution particles lead to distinct metabolic outcomes in mice. Both exposure routes elevate liver lipids, while gut exposure to particulate air pollutants specifically impairs beta-cell secretory capacity, potentially instigated by an inflammatory milieu in the gut.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Humanos , Camundongos , Animais , Poluentes Atmosféricos/toxicidade , Poluentes Atmosféricos/análise , Pulmão , Material Particulado/toxicidade , Emissões de Veículos/toxicidade , Lipídeos
4.
Nat Methods ; 15(1): 57-60, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29200199

RESUMO

Synthetic biologists have advanced the design of trigger-inducible gene switches and their assembly into input-programmable circuits that enable engineered human cells to perform arithmetic calculations reminiscent of electronic circuits. By designing a versatile plug-and-play molecular-computation platform, we have engineered nine different cell populations with genetic programs, each of which encodes a defined computational instruction. When assembled into 3D cultures, these engineered cell consortia execute programmable multicellular full-adder logics in response to three trigger compounds.


Assuntos
Técnicas de Cultura de Células/métodos , Redes Reguladoras de Genes , Software , Biologia Sintética/métodos , Genes Reporter , Humanos
5.
Appetite ; 155: 104792, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-32707265

RESUMO

The initial release of insulin in response to food stimuli acting on receptors in the head and oropharynx is called the cephalic phase of insulin secretion. Insulin has been shown to act centrally to regulate food intake and glucose metabolism and the cephalic phase of insulin secretion may contribute to these functions. Though well documented in laboratory animals, the existence of cephalic phase insulin release in humans has recently come into question. We therefore performed a systematic review and meta-analysis of studies of cephalic phase insulin release in humans. Efficacy outcomes included any change in circulating insulin levels in healthy human volunteers post any food stimulus as compared to baseline or control in a time period of no longer than 10 min. Primary outcome: The overall pooled effect size estimate for cephalic phase insulin release was 0.47 [0.36, 0.58] p-value <0.0001. Secondary outcomes: A random effects meta-analysis with an added moderator for type of stimulus presentation (one, two, four or five sensory qualities) and type of stimulus offered (liquid, solid formulation) also significantly influenced results p = 0.0116 and p = 0.0024 respectively, while sex had no significant effect. Sensitivity Analysis: More restrictive analyses only including studies that used non-ingestive stimuli (p = 0.0001), or studies that reported insulin values within 5 min post stimulus presentation (p < 0.0001) still showed significant positive overall effect size estimates. In summary, our analysis shows that there is evidence for the presence of cephalic phase insulin secretion in humans. Secondary analyses suggest that the type and presentation of stimulus may significantly influence cephalic phase insulin secretion, while sex had no significant effect on cephalic phase insulin secretion.


Assuntos
Glicemia , Insulina , Animais , Alimentos , Humanos , Insulina/metabolismo , Secreção de Insulina
6.
Mycologia ; 108(3): 581-9, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26908649

RESUMO

The fungal vacuole is an organelle, which adopts pleiotropic morphologies and functions. In aging and starving hyphae it is the compartment of degradation and recycling of cellular constituents. Here we identified TSP3, one of three tetraspanins present in the filamentous ascomycete fungus Neurospora crassa, as a vacuolar membrane protein. The protein is detected only in aging and starving cultures and under other conditions, which induce autophagy, such as vegetative incompatibility or the presence of the macrolide antibiotic rapamycin. Mutant analysis revealed that TSP3 is dispensable for growth and development of the fungus under laboratory conditions. Together these findings indicate that tsp3 shares characteristics with idi (induced during incompatibility) genes and might promote vacuolar functions related to autophagy.


Assuntos
Proteínas Fúngicas/metabolismo , Proteínas de Membrana/metabolismo , Neurospora crassa/metabolismo , Tetraspaninas/metabolismo , Vacúolos/metabolismo , Proteínas Fúngicas/genética , Proteínas de Membrana/genética , Neurospora crassa/genética , Neurospora crassa/crescimento & desenvolvimento , Tetraspaninas/genética , Vacúolos/genética
7.
Nat Commun ; 15(1): 7957, 2024 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-39261467

RESUMO

Postprandial IL-1ß surges are predominant in the white adipose tissue (WAT), but its consequences are unknown. Here, we investigate the role of IL-1ß in WAT energy storage and show that adipocyte-specific deletion of IL-1 receptor 1 (IL1R1) has no metabolic consequences, whereas ubiquitous lack of IL1R1 reduces body weight, WAT mass, and adipocyte formation in mice. Among all major WAT-resident cell types, progenitors express the highest IL1R1 levels. In vitro, IL-1ß potently promotes adipogenesis in murine and human adipose-derived stem cells. This effect is exclusive to early-differentiation-stage cells, in which the adipogenic transcription factors C/EBPδ and C/EBPß are rapidly upregulated by IL-1ß and enriched near important adipogenic genes. The pro-adipogenic, but not pro-inflammatory effect of IL-1ß is potentiated by acute treatment and blocked by chronic exposure. Thus, we propose that transient postprandial IL-1ß surges regulate WAT remodeling by promoting adipogenesis, whereas chronically elevated IL-1ß levels in obesity blunts this physiological function.


Assuntos
Adipócitos , Adipogenia , Tecido Adiposo Branco , Proteína beta Intensificadora de Ligação a CCAAT , Interleucina-1beta , Receptores Tipo I de Interleucina-1 , Adipogenia/efeitos dos fármacos , Adipogenia/genética , Animais , Interleucina-1beta/metabolismo , Humanos , Adipócitos/metabolismo , Adipócitos/citologia , Receptores Tipo I de Interleucina-1/metabolismo , Receptores Tipo I de Interleucina-1/genética , Camundongos , Proteína beta Intensificadora de Ligação a CCAAT/metabolismo , Proteína beta Intensificadora de Ligação a CCAAT/genética , Tecido Adiposo Branco/metabolismo , Tecido Adiposo Branco/citologia , Proteína delta de Ligação ao Facilitador CCAAT/metabolismo , Proteína delta de Ligação ao Facilitador CCAAT/genética , Masculino , Camundongos Knockout , Células-Tronco/metabolismo , Células-Tronco/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Diferenciação Celular/efeitos dos fármacos
8.
Nat Commun ; 13(1): 4761, 2022 08 13.
Artigo em Inglês | MEDLINE | ID: mdl-35963866

RESUMO

Defective insulin processing is associated with obesity and diabetes. Prohormone convertase 1/3 (PC1/3) is an endopeptidase required for the processing of neurotransmitters and hormones. PC1/3 deficiency and genome-wide association studies relate PC1/3 with early onset obesity. Here, we find that deletion of PC1/3 in obesity-related neuronal cells expressing proopiomelanocortin mildly and transiently change body weight and fail to produce a phenotype when targeted to Agouti-related peptide- or nestin-expressing tissues. In contrast, pancreatic ß cell-specific PC1/3 ablation induces hyperphagia with consecutive obesity despite uncontrolled diabetes with glucosuria. Obesity develops not due to impaired pro-islet amyloid polypeptide processing but due to impaired insulin maturation. Proinsulin crosses the blood-brain-barrier but does not induce central satiety. Accordingly, insulin therapy prevents hyperphagia. Further, islet PC1/3 expression levels negatively correlate with body mass index in humans. In this work, we show that impaired PC1/3-mediated proinsulin processing, as observed in human prediabetes, promotes hyperphagic obesity.


Assuntos
Diabetes Mellitus , Proinsulina , Estudo de Associação Genômica Ampla , Humanos , Hiperfagia/genética , Insulina/metabolismo , Obesidade/complicações , Obesidade/genética , Obesidade/metabolismo , Proinsulina/genética , Proinsulina/metabolismo , Pró-Proteína Convertase 1/genética
9.
Cell Metab ; 34(7): 991-1003.e6, 2022 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-35750050

RESUMO

The initial cephalic phase of insulin secretion is mediated through the vagus nerve and is not due to glycemic stimulation of pancreatic ß cells. Recently, IL-1ß was shown to stimulate postprandial insulin secretion. Here, we describe that this incretin-like effect of IL-1ß involves neuronal transmission. Furthermore, we found that cephalic phase insulin release was mediated by IL-1ß originating from microglia. Moreover, IL-1ß activated the vagus nerve to induce insulin secretion and regulated the activity of the hypothalamus in response to cephalic stimulation. Notably, cephalic phase insulin release was impaired in obesity, in both mice and humans, and in mice, this was due to dysregulated IL-1ß signaling. Our findings attribute a regulatory role to IL-1ß in the integration of nutrient-derived sensory information, subsequent neuronally mediated insulin secretion, and the dysregulation of autonomic cephalic phase responses in obesity.


Assuntos
Células Secretoras de Insulina , Insulina , Interleucina-1beta , Animais , Glicemia/metabolismo , Insulina/metabolismo , Secreção de Insulina , Células Secretoras de Insulina/metabolismo , Interleucina-1beta/metabolismo , Camundongos , Obesidade/metabolismo
10.
Commun Biol ; 5(1): 370, 2022 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-35440795

RESUMO

The obesity epidemic continues to worsen worldwide. However, the mechanisms initiating glucose dysregulation in obesity remain poorly understood. We assessed the role that colonic macrophage subpopulations play in glucose homeostasis in mice fed a high-fat diet (HFD). Concurrent with glucose intolerance, pro-inflammatory/monocyte-derived colonic macrophages increased in mice fed a HFD. A link between macrophage numbers and glycemia was established by pharmacological dose-dependent ablation of macrophages. In particular, colon-specific macrophage depletion by intrarectal clodronate liposomes improved glucose tolerance, insulin sensitivity, and insulin secretion capacity. Colonic macrophage activation upon HFD was characterized by an interferon response and a change in mitochondrial metabolism, which converged in mTOR as a common regulator. Colon-specific mTOR inhibition reduced pro-inflammatory macrophages and ameliorated insulin secretion capacity, similar to colon-specific macrophage depletion, but did not affect insulin sensitivity. Thus, pharmacological targeting of colonic macrophages could become a potential therapy in obesity to improve glycemic control.


Assuntos
Dieta Hiperlipídica , Resistência à Insulina , Animais , Glicemia/metabolismo , Colo/metabolismo , Dieta Hiperlipídica/efeitos adversos , Controle Glicêmico , Macrófagos/metabolismo , Camundongos , Obesidade/etiologia , Obesidade/metabolismo , Serina-Treonina Quinases TOR/metabolismo
11.
iScience ; 24(11): 103250, 2021 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-34746709

RESUMO

Aging is the prime risk factor for the development of type 2 diabetes. We investigated the role of the interleukin-1 (IL-1) system on insulin secretion in aged mice. During aging, expression of the protective IL-1 receptor antagonist decreased in islets, whereas IL-1beta gene expression increased specifically in the CD45 + islet immune cell fraction. One-year-old mice with a whole-body knockout of IL-1beta had higher insulin secretion in vivo and in isolated islets, along with enhanced proliferation marker Ki67 and elevated size and number of islets. Myeloid cell-specific IL-1beta knockout preserved glucose-stimulated insulin secretion during aging, whereas it declined in control mice. Isolated islets from aged myeloIL-1beta ko mice secreted more insulin along with increased expression of Ins2, Kir6.2, and of the cell-cycle gene E2f1. IL-1beta treatment of isolated islets reduced E2f1, Ins2, and Kir6.2 expression in beta cells. We conclude that IL-1beta contributes the age-associated decline of beta cell function.

12.
Sci Rep ; 10(1): 3035, 2020 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-32080229

RESUMO

Gestational diabetes mellitus (GDM) is one of the most common diseases associated with pregnancy, however, the underlying mechanisms remain unclear. Based on the well documented role of inflammation in type 2 diabetes, the aim was to investigate the role of inflammation in GDM. We established a mouse model for GDM on the basis of its two major risk factors, obesity and aging. In these GDM mice, we observed increased Interleukin-1ß (IL-1ß) expression in the uterus and the placenta along with elevated circulating IL-1ß concentrations compared to normoglycemic pregnant mice. Treatment with an anti-IL-1ß antibody improved glucose-tolerance of GDM mice without apparent deleterious effects for the fetus. Finally, IL-1ß antagonism showed a tendency for reduced plasma corticosterone concentrations, possibly explaining the metabolic improvement. We conclude that IL-1ß is a causal driver of impaired glucose tolerance in GDM.


Assuntos
Diabetes Gestacional/metabolismo , Hiperglicemia/complicações , Hiperglicemia/metabolismo , Interleucina-1beta/antagonistas & inibidores , Animais , Diabetes Gestacional/sangue , Modelos Animais de Doenças , Feminino , Hormônios/sangue , Hiperglicemia/sangue , Interleucina-1beta/metabolismo , Camundongos Endogâmicos C57BL , Gravidez , Esteroides/sangue
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA