RESUMO
OBJECTIVE: To assess whether arterial spin labeling perfusion images of healthy controls can enhance ictal single-photon emission computed tomography analysis and whether the acquisition of the interictal image can be omitted. METHODS: We developed 2 pipelines: The first uses ictal and interictal images and compares these to single-photon emission computed tomography and arterial spin labeling of healthy controls. The second pipeline uses only the ictal image and the analogous healthy controls. Both pipelines were compared to the gold standard analysis and evaluated on data of individuals with epilepsy who underwent ictal single-photon emission computed tomography imaging during presurgical evaluation between 2010 and 2022. Fifty healthy controls prospectively underwent arterial spin labeling imaging. The correspondence between the detected hyperperfusion and the postoperative resection cavity or the presumably affected lobe was assessed using Dice score and mean Euclidean distance. Additionally, the outcomes of the pipelines were automatically assigned to 1 of 5 concordance categories. RESULTS: Inclusion criteria were met by 43 individuals who underwent epilepsy surgery and by 73 non-surgical individuals with epilepsy. Compared to the gold standard analysis, both pipelines resulted in significantly higher Dice scores and lower mean distances (p < 0.05). The combination of both provided localizing results in 85/116 cases, compared to 54/116 generated by the current gold standard analysis and the ictal image alone produced localizing results in 60/116 (52%) cases. INTERPRETATION: We propose a new ictal single-photon emission computed tomography protocol; it finds relevantly more ictal hyperperfusion, and halves the radiation dose in about half of the individuals. ANN NEUROL 2024.
RESUMO
BACKGROUND: The extended acquisition times required for MRI limit its availability in resource-constrained settings. Consequently, accelerating MRI by undersampling k-space data, which is necessary to reconstruct an image, has been a long-standing but important challenge. We aimed to develop a deep convolutional neural network (dCNN) optimisation method for MRI reconstruction and to reduce scan times and evaluate its effect on image quality and accuracy of oncological imaging biomarkers. METHODS: In this multicentre, retrospective, cohort study, MRI data from patients with glioblastoma treated at Heidelberg University Hospital (775 patients and 775 examinations) and from the phase 2 CORE trial (260 patients, 1083 examinations, and 58 institutions) and the phase 3 CENTRIC trial (505 patients, 3147 examinations, and 139 institutions) were used to develop, train, and test dCNN for reconstructing MRI from highly undersampled single-coil k-space data with various acceleration rates (R=2, 4, 6, 8, 10, and 15). Independent testing was performed with MRIs from the phase 2/3 EORTC-26101 trial (528 patients with glioblastoma, 1974 examinations, and 32 institutions). The similarity between undersampled dCNN-reconstructed and original MRIs was quantified with various image quality metrics, including structural similarity index measure (SSIM) and the accuracy of undersampled dCNN-reconstructed MRI on downstream radiological assessment of imaging biomarkers in oncology (automated artificial intelligence-based quantification of tumour burden and treatment response) was performed in the EORTC-26101 test dataset. The public NYU Langone Health fastMRI brain test dataset (558 patients and 558 examinations) was used to validate the generalisability and robustness of the dCNN for reconstructing MRIs from available multi-coil (parallel imaging) k-space data. FINDINGS: In the EORTC-26101 test dataset, the median SSIM of undersampled dCNN-reconstructed MRI ranged from 0·88 to 0·99 across different acceleration rates, with 0·92 (95% CI 0·92-0·93) for 10-times acceleration (R=10). The 10-times undersampled dCNN-reconstructed MRI yielded excellent agreement with original MRI when assessing volumes of contrast-enhancing tumour (median DICE for spatial agreement of 0·89 [95% CI 0·88 to 0·89]; median volume difference of 0·01 cm3 [95% CI 0·00 to 0·03] equalling 0·21%; p=0·0036 for equivalence) or non-enhancing tumour or oedema (median DICE of 0·94 [95% CI 0·94 to 0·95]; median volume difference of -0·79 cm3 [95% CI -0·87 to -0·72] equalling -1·77%; p=0·023 for equivalence) in the EORTC-26101 test dataset. Automated volumetric tumour response assessment in the EORTC-26101 test dataset yielded an identical median time to progression of 4·27 months (95% CI 4·14 to 4·57) when using 10-times-undersampled dCNN-reconstructed or original MRI (log-rank p=0·80) and agreement in the time to progression in 374 (95·2%) of 393 patients with data. The dCNN generalised well to the fastMRI brain dataset, with significant improvements in the median SSIM when using multi-coil compared with single-coil k-space data (p<0·0001). INTERPRETATION: Deep-learning-based reconstruction of undersampled MRI allows for a substantial reduction of scan times, with a 10-times acceleration demonstrating excellent image quality while preserving the accuracy of derived imaging biomarkers for the assessment of oncological treatment response. Our developments are available as open source software and hold considerable promise for increasing the accessibility to MRI, pending further prospective validation. FUNDING: Deutsche Forschungsgemeinschaft (German Research Foundation) and an Else Kröner Clinician Scientist Endowed Professorship by the Else Kröner Fresenius Foundation.
Assuntos
Aprendizado Profundo , Glioblastoma , Humanos , Inteligência Artificial , Biomarcadores , Estudos de Coortes , Glioblastoma/diagnóstico por imagem , Imageamento por Ressonância Magnética , Estudos RetrospectivosRESUMO
Temporal discounting, the tendency to devalue future rewards as a function of delay until receipt, is influenced by time framing. Specifically, discount rates are shallower when the time at which the reward is received is presented as a date (date condition; e.g., June 8, 2023) rather than in delay units (delay condition; e.g., 30 days), which is commonly referred to as the date/delay effect. However, the cognitive and neural mechanisms of this effect are not well understood. Here, we examined the date/delay effect by analysing combined fMRI and eye-tracking data of N = 31 participants completing a temporal discounting task in both a delay and a date condition. The results confirmed the date/delay effect and revealed that the date condition led to higher fixation durations on time attributes and to higher activity in precuneus/PCC and angular gyrus, that is, areas previously associated with episodic thinking. Additionally, participants made more comparative eye movements in the date compared to the delay condition. A lower date/delay effect was associated with higher prefrontal activity in the date > delay contrast, suggesting that higher control or arithmetic operations may reduce the date/delay effect. Our findings are in line with hypotheses positing that the date condition is associated with differential time estimation and the use of more comparative as opposed to integrative choice strategies. Specifically, higher activity in memory-related brain areas suggests that the date condition leads to higher perceived proximity of delayed rewards, while higher frontal activity (middle/superior frontal gyrus, posterior medial frontal cortex, cingulate) in participants with a lower date/delay effect suggests that the effect is particularly pronounced in participants avoiding complex arithmetic operations in the date condition.
Assuntos
Comportamento de Escolha , Desvalorização pelo Atraso , Humanos , Imageamento por Ressonância Magnética , Tecnologia de Rastreamento Ocular , RecompensaRESUMO
The epileptogenic network in temporal lobe epilepsy (TLE) contains structures of the primary and secondary olfactory cortex such as the piriform and entorhinal cortex, the amygdala, and the hippocampus. Olfactory auras and olfactory dysfunction are relevant symptoms of TLE. This study aims to characterize olfactory function in TLE using olfactory testing and olfactory functional magnetic resonance imaging (fMRI). We prospectively enrolled 20 individuals with unilateral TLE (age 45 ± 20 years [mean ± SD], 65% female, 90% right-handed) and 20 healthy individuals (age 33 ± 15 years [mean ± SD], 35% female, 90% right-handed). In the TLE group, the presumed seizure onset zone was left-sided in 75%; in 45% of the individuals with TLE limbic encephalitis was the presumed etiology; and 15% of the individuals with TLE reported olfactory auras. Olfactory function was assessed with a Screening Sniffin' Sticks Test (Burkhart, Wedel, Germany) during a pre-assessment. During a pre-testing, all individuals were asked to rate the intensity, valence, familiarity, and associated memory of five different odors (eugenol, vanillin, phenethyl alcohol, decanoic acid, valeric acid) and a control solution. During the fMRI experiment, all individuals repeatedly smelled eugenol (positively valenced odor), valeric acid (negatively valenced odor), and the control solution and were asked to rate odor intensity on a five-point Likert scale. We acquired functional EPI sequences and structural images (T1, T2, FLAIR). Compared to healthy individuals, individuals with TLE rated the presented odors as more neutral (two-sided Mann-Whitney U tests, FDR-p < 0.05) and less familiar (two-sided Mann-Whitney U tests, FDR-p < 0.05). fMRI data analysis revealed a reduced response contrast in secondary olfactory areas (e.g., hippocampus) connected to the limbic system when comparing eugenol and valeric acid in individuals with TLE when compared with healthy individuals. However, no lateralization effect was obtained when calculating a lateralization index by the number of activated voxels in the olfactory system (two-sided Mann-Whitney U test; U = 176.0; p = 0.525). TLE is characterized by olfactory dysfunction and associated with hypoactivation of secondary olfactory structures connected to the limbic system. These findings contribute to our understanding of the pathophysiology of TLE. This study was preregistered on OSF Registries (www.osf.io).
Assuntos
Epilepsia do Lobo Temporal , Imageamento por Ressonância Magnética , Transtornos do Olfato , Humanos , Epilepsia do Lobo Temporal/fisiopatologia , Epilepsia do Lobo Temporal/diagnóstico por imagem , Feminino , Adulto , Masculino , Pessoa de Meia-Idade , Transtornos do Olfato/etiologia , Transtornos do Olfato/diagnóstico por imagem , Transtornos do Olfato/fisiopatologia , Adulto Jovem , Sistema Límbico/diagnóstico por imagem , Sistema Límbico/fisiopatologiaRESUMO
Background Procedural details of mechanical thrombectomy in patients with ischemic stroke are important predictors of clinical outcome and are collected for prospective studies or national stroke registries. To date, these data are collected manually by human readers, a labor-intensive task that is prone to errors. Purpose To evaluate the use of the large language models (LLMs) GPT-4 and GPT-3.5 to extract data from neuroradiology reports on mechanical thrombectomy in patients with ischemic stroke. Materials and Methods This retrospective study included consecutive reports from patients with ischemic stroke who underwent mechanical thrombectomy between November 2022 and September 2023 at institution 1 and between September 2016 and December 2019 at institution 2. A set of 20 reports was used to optimize the prompt, and the ability of the LLMs to extract procedural data from the reports was compared using the McNemar test. Data manually extracted by an interventional neuroradiologist served as the reference standard. Results A total of 100 internal reports from 100 patients (mean age, 74.7 years ± 13.2 [SD]; 53 female) and 30 external reports from 30 patients (mean age, 72.7 years ± 13.5; 18 male) were included. All reports were successfully processed by GPT-4 and GPT-3.5. Of 2800 data entries, 2631 (94.0% [95% CI: 93.0, 94.8]; range per category, 61%-100%) data points were correctly extracted by GPT-4 without the need for further postprocessing. With 1788 of 2800 correct data entries, GPT-3.5 produced fewer correct data entries than did GPT-4 (63.9% [95% CI: 62.0, 65.6]; range per category, 14%-99%; P < .001). For the external reports, GPT-4 extracted 760 of 840 (90.5% [95% CI: 88.3, 92.4]) correct data entries, while GPT-3.5 extracted 539 of 840 (64.2% [95% CI: 60.8, 67.4]; P < .001). Conclusion Compared with GPT-3.5, GPT-4 more frequently extracted correct procedural data from free-text reports on mechanical thrombectomy performed in patients with ischemic stroke. © RSNA, 2024 Supplemental material is available for this article.
Assuntos
AVC Isquêmico , Acidente Vascular Cerebral , Humanos , Feminino , Masculino , Idoso , AVC Isquêmico/diagnóstico por imagem , AVC Isquêmico/cirurgia , Estudos Retrospectivos , Estudos Prospectivos , Acidente Vascular Cerebral/diagnóstico por imagem , Acidente Vascular Cerebral/cirurgia , TrombectomiaRESUMO
Over the last decade, it has become evident that cerebrospinal fluid (CSF) plays a pivotal role in brain solute clearance through perivascular pathways and interactions between the brain and meningeal lymphatic vessels. Whereas most of this fundamental knowledge was gained from rodent models, human brain clearance imaging has provided important insights into the human system and highlighted the existence of important interspecies differences. Current gold standard techniques for human brain clearance imaging involve the injection of gadolinium-based contrast agents and monitoring their distribution and clearance over a period from a few hours up to 2 days. With both intrathecal and intravenous injections being used, which each have their own specific routes of distribution and thus clearance of contrast agent, a clear understanding of the kinetics associated with both approaches, and especially the differences between them, is needed to properly interpret the results. Because it is known that intrathecally injected contrast agent reaches the blood, albeit in small concentrations, and that similarly some of the intravenously injected agent can be detected in CSF, both pathways are connected and will, in theory, reach the same compartments. However, because of clear differences in relative enhancement patterns, both injection approaches will result in varying sensitivities for assessment of different subparts of the brain clearance system. In this opinion review article, the "EU Joint Programme - Neurodegenerative Disease Research (JPND)" consortium on human brain clearance imaging provides an overview of contrast agent pharmacokinetics in vivo following intrathecal and intravenous injections and what typical concentrations and concentration-time curves should be expected. This can be the basis for optimizing and interpreting contrast-enhanced MRI for brain clearance imaging. Furthermore, this can shed light on how molecules may exchange between blood, brain, and CSF.
Assuntos
Encéfalo , Meios de Contraste , Imageamento por Ressonância Magnética , Humanos , Meios de Contraste/farmacocinética , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Taxa de Depuração Metabólica , Animais , Líquido Cefalorraquidiano/metabolismo , Líquido Cefalorraquidiano/diagnóstico por imagemRESUMO
OBJECTIVE: High-field magnetic resonance imaging (MRI) is a standard in the diagnosis of epilepsy. However, high costs and technical barriers have limited adoption in low- and middle-income countries. Even in high-income nations, many individuals with epilepsy face delays in undergoing MRI. Recent advancements in ultra-low-field (ULF) MRI technology, particularly the development of portable scanners, offer a promising solution to the limited accessibility of MRI. In this study, we present and evaluate the imaging capability of ULF MRI in detecting structural abnormalities typically associated with epilepsy and compare it to high-field MRI at 3 T. METHODS: Data collection was conducted within 3 consecutive weeks at the University Hospital Bonn. Inclusion criteria were a minimum age of 18 years, diagnosed epilepsy, and clinical high-field MRI with abnormalities. We used a .064 T Swoop portable MR Imaging System. Both high-field MRI and ULF MRI scans were evaluated independently by two experienced neuroradiologists as part of their clinical routine, comparing pathology detection and diagnosis completeness. RESULTS: Twenty-three individuals with epilepsy were recruited. One subject presented with a dual pathology. Across the entire cohort, in 17 of 24 (71%) pathologies, an anomaly colocalizing with the actual lesion was observed on ULF MRI. For 11 of 24 (46%) pathologies, the full diagnosis could be made based on ULF MRI. Tumors and posttraumatic lesions could be diagnosed best on ULF MRI, whereas cortical dysplasia and other focal pathologies were the least well diagnosed. SIGNIFICANCE: This single-center series of individuals with epilepsy demonstrates the feasibility and utility of ULF MRI for the field of epileptology. Its integration into epilepsy care offers transformative potential, particularly in resource-limited settings. Further research is needed to position ULF MRI within imaging modalities in the diagnosis of epilepsy.
RESUMO
OBJECTIVE: Interictal blood-brain barrier dysfunction in chronic epilepsy has been demonstrated in animal models and pathological specimens. Ictal blood-brain barrier dysfunction has been shown in humans in vivo using an experimental quantitative magnetic resonance imaging (MRI) protocol. Here, we hypothesized that interictal blood-brain barrier dysfunction is also present in people with drug-resistant epilepsy. METHODS: Thirty-nine people (21 females, mean age at MRI ± SD = 30 ± 8 years) with drug-resistant epilepsy were prospectively recruited and underwent interictal T1-relaxometry before and after administration of a paramagnetic contrast agent. Likewise, quantitative T1 was acquired in 29 people without epilepsy (12 females, age at MRI = 48 ± 18 years). Quantitative T1 difference maps were calculated and served as a surrogate imaging marker for blood-brain barrier dysfunction. Values of quantitative T1 difference maps inside hemispheres ipsilateral to the presumed seizure onset zone were then compared, on a voxelwise level and within presumed seizure onset zones, to the contralateral side of people with epilepsy and to people without epilepsy. RESULTS: Compared to the contralateral side, ipsilateral T1 difference values were significantly higher in white matter (corrected p < .05), gray matter (uncorrected p < .05), and presumed seizure onset zones (p = .04) in people with epilepsy. Compared to people without epilepsy, significantly higher T1 difference values were found in the anatomical vicinity of presumed seizure onset zones (p = .004). A subgroup of people with hippocampal sclerosis demonstrated significantly higher T1 difference values in the ipsilateral hippocampus and in regions strongly interconnected with the hippocampus compared to people without epilepsy (corrected p < .01). Finally, z-scores reflecting the deviation of T1 difference values within the presumed seizure onset zone were associated with verbal memory performance (p = .02) in people with temporal lobe epilepsy. SIGNIFICANCE: Our results indicate a blood-brain barrier dysfunction in drug-resistant epilepsy that is detectable interictally in vivo, anatomically related to the presumed seizure onset zone, and associated with cognitive deficits.
Assuntos
Barreira Hematoencefálica , Epilepsia Resistente a Medicamentos , Imageamento por Ressonância Magnética , Humanos , Barreira Hematoencefálica/fisiopatologia , Barreira Hematoencefálica/patologia , Barreira Hematoencefálica/diagnóstico por imagem , Feminino , Masculino , Adulto , Pessoa de Meia-Idade , Epilepsia Resistente a Medicamentos/fisiopatologia , Epilepsia Resistente a Medicamentos/diagnóstico por imagem , Adulto Jovem , Estudos Prospectivos , Epilepsia/fisiopatologia , Epilepsia/diagnóstico por imagemRESUMO
OBJECTIVES: Estimating the age of injury in pediatric abusive head trauma (AHT) is a challenging task but potentially valuable for the identification of perpetrators. The aims of the study are (1) to describe the temporal development of different imaging features of subdural collections (SDCs), and (2) to provide novel age-diagnostic reference data for forensic-radiological expert reports. METHODS: Using a multi-center approach and a 10-year study period, serial neuroimaging studies of 13 comprehensively investigated AHT cases (8 CT and 26 MRI scans) were analyzed regarding several subdural imaging parameters (SDC appearances, entities, components, and associated findings). Due to confessions by perpetrators, the time points of the trauma were presumed unique and known in all cases facilitating correlation of imaging findings with time. RESULTS: Hyperdense SDCs in CT were found up to 9 d post-injury (p.i.), CSF-like SDCs in CT or MRI as early as from the 3rd hour p.i., and subdural membrane formation as late as from day 283. The heterogeneous variant of the subdural hematohygroma was observed to be the dominant SDC entity between 3 h and 22 d p.i. The tadpole sign was detected in MRI between 3 h and 46 d p.i. CONCLUSION: Certain subdural imaging findings may be helpful for estimating the age of injury in AHT. Subdural membrane formation is demonstrated to be a late finding and the tadpole sign is an early phenomenon p.i. The data corroborated that the sediment but not the supernatant has the potential for being valuable for age-diagnostic aspects. KEY POINTS: Question Reliable evidence-based data on the development of SDCs is sparse but required for expert opinions on pediatric AHT. Findings Reference data on the evolution of the imaging appearance of SDCs and associated phenomena in confirmed cases of AHT are provided. Clinical relevance As there is a great need for estimating the age of injury in criminal and civil proceedings, many clinical radiologists are confronted with the diagnostic and forensic aspects of AHT that are addressed in the present study.
RESUMO
The pharmacokinetics of contrast media (CM) will determine how long safe waiting intervals between successive CT or MRI examinations should be. The Contrast Media Safety Committee has reviewed the data on pharmacokinetics of contrast media to suggest safe waiting intervals between successive contrast-enhanced imaging studies in relation to the renal function of the patient. CLINICAL RELEVANCE STATEMENT: Consider a waiting time between elective contrast-enhanced CT and (coronary) angiography with successive iodine-based contrast media administrations in patients with normal renal function (eGFR > 60 mL/min/1.73 m2) of optimally 12 h (near complete clearance of the previously administered iodine-based contrast media) and minimally 4 h (if clinical indication requires rapid follow-up). KEY POINTS: ⢠Pharmacokinetics of contrast media will guide safe waiting times between successive administrations. ⢠Safe waiting times increase with increasing renal insufficiency. ⢠Iodine-based contrast media influence MRI signal intensities and gadolinium-based contrast agents influence CT attenuation.
Assuntos
Iodo , Insuficiência Renal , Humanos , Meios de Contraste/efeitos adversos , Listas de Espera , Angiografia CoronáriaRESUMO
OBJECTIVES: Hysterosalpingography (HSG) is widely used for evaluating the fallopian tubes; however, controversies regarding the use of water- or oil-based iodine-based contrast media (CM) remain. The aim of this work was (1) to discuss reported pregnancy rates related to the CM type used, (2) to validate the used CM in published literature, (3) to discuss possible complications and side effects of CM in HSG, and (4) to develop guidelines on the use of oil-based CM in HSG. METHODS: A systematic literature search was conducted for original RCT studies or review/meta-analyses on using water-based and oil-based CM in HSG with fertility outcomes and complications. Nine randomized controlled trials (RCTs) and 10 reviews/meta-analyses were analyzed. Grading of the literature was performed based on the Oxford Centre for Evidence-Based Medicine (OCEBM) 2011 classification. RESULTS: An approximately 10% higher pregnancy rate is reported for oil-based CM. Side effects are rare, but oil-based CM have potentially more side effects on the maternal thyroid function and the peritoneum. CONCLUSIONS: 1. HSG with oil-based CM gives approximately 10% higher pregnancy rates. 2. External validity is limited, as in five of nine RCTs, the CM used is no longer on the market. 3. Oil-based CM have potentially more side effects on the maternal thyroid function and on the peritoneum. 4. Guideline: Maternal thyroid function should be tested before HSG with oil-based CM and monitored for 6 months after. CLINICAL RELEVANCE STATEMENT: Oil-based CM is associated with an approximately 10% higher chance of pregnancy compared to water-based CM after HSG. Although side effects are rare, higher iodine concentration and slower clearance of oil-based CM may induce maternal thyroid function disturbance and peritoneal inflammation and granuloma formation. KEY POINTS: ⢠It is unknown which type of contrast medium, oil-based or water-based, is the optimal for HSG. ⢠Oil-based contrast media give a 10% higher chance of pregnancy after HSG, compared to water-based contrast media. ⢠From the safety perspective, oil-based CM can cause thyroid dysfunction and an intra-abdominal inflammatory response in the patient.
Assuntos
Meios de Contraste , Histerossalpingografia , Humanos , Meios de Contraste/efeitos adversos , Histerossalpingografia/métodos , Feminino , Gravidez , Europa (Continente) , Guias de Prática Clínica como Assunto , Iodo/efeitos adversos , Taxa de GravidezRESUMO
The Contrast Media Safety Committee of the European Society of Urogenital Radiology has, together with the Preanalytical Phase Working Group of the EFLM Science Committee, reviewed the literature and updated its recommendations to increase awareness and provide insight into these interferences.
Assuntos
Meios de Contraste , Fase Pré-Analítica , Humanos , Meios de Contraste/efeitos adversos , Química Clínica , Sociedades MédicasRESUMO
Acute physical activity influences cognitive performance. However, the relationship between exercise intensity, neural network activity, and cognitive performance remains poorly understood. This study examined the effects of different exercise intensities on resting-state functional connectivity (rsFC) and cognitive performance. Twenty male athletes (27.3 ± 3.6 years) underwent cycling exercises of different intensities (high, low, rest/control) on different days in randomized order. Before and after, subjects performed resting-state functional magnetic resonance imaging and a behavioral Attention Network Test (ANT). Independent component analysis and Linear mixed effects models examined rsFC changes within ten resting-state networks. No significant changes were identified in ANT performance. Resting-state analyses revealed a significant interaction in the Left Frontoparietal Network, driven by a non-significant rsFC increase after low-intensity and a significant rsFC decrease after high-intensity exercise, suggestive of an inverted U-shape relationship between exercise intensity and rsFC. Similar but trend-level rsFC interactions were observed in the Dorsal Attention Network (DAN) and the Cerebellar Basal Ganglia Network. Explorative correlation analysis revealed a significant positive association between rsFC increases in the right superior parietal lobule (part of DAN) and better ANT orienting in the low-intensity condition. Results indicate exercise intensity-dependent subacute rsFC changes in cognition-related networks, but their cognitive-behavioral relevance needs further investigation.
Assuntos
Cognição , Exercício Físico , Imageamento por Ressonância Magnética , Rede Nervosa , Humanos , Masculino , Imageamento por Ressonância Magnética/métodos , Adulto , Exercício Físico/fisiologia , Rede Nervosa/fisiologia , Rede Nervosa/diagnóstico por imagem , Cognição/fisiologia , Adulto Jovem , Atenção/fisiologia , Encéfalo/fisiologia , Encéfalo/diagnóstico por imagem , Conectoma/métodos , Descanso/fisiologiaRESUMO
PURPOSE: Double-layer design carotid stents have been cast in a negative light since several investigations reported high rates of in-stent occlusions, at least in the acute setting of tandem occlusions. CGuard is a new generation double-layered stent that was designed to prevent periinterventional embolic events. The aim of this study was to analyze the safety and efficacy of the CGuard in emergent CAS and for the acute treatment of tandem occlusions in comparison with the single-layer Carotid Wallstent (CWS) system. METHODS: All patients who underwent CAS with CGuard or CWS after intracranial mechanical thrombectomy (MT) between 11/2018 and 12/2022 were identified from our local thrombectomy registry. Clinical, interventional and neuroimaging data were analyzed. Patency of the stent was assessed within 72 h. Intracranial hemorrhage and modified Rankin score (mRS) at discharge were the main endpoints. RESULTS: In total, 86 stent procedures in 86 patients were included (CWS: 44, CGuard: 42). CGuard had a lower, but not statistically significant rate (p = 0.431) of in-stent occlusions (n = 2, 4.8%) when compared to the CWS (n = 4, 9.1%). Significant in-stent stenosis was found in one case in each group. There was no statistically significant difference in functional outcome at discharge between the two groups with a median mRS for CGuard of 2 (IQR:1-5) vs. CWS 3 (IQR:2-4). CONCLUSION: In our series, the rate of in-stent occlusions after emergent CAS was lower with the dual-layer CGuard when compared to the monolayer CWS. Further data are needed to evaluate the potential benefit of the design in more detail.
Assuntos
Estenose das Carótidas , Stents , Humanos , Masculino , Feminino , Estenose das Carótidas/diagnóstico por imagem , Estenose das Carótidas/cirurgia , Idoso , Estudos Retrospectivos , Desenho de Prótese , Trombectomia/métodos , Pessoa de Meia-Idade , Idoso de 80 Anos ou maisRESUMO
PURPOSE: To evaluate the impact of an AI-based software trained to detect cerebral aneurysms on TOF-MRA on the diagnostic performance and reading times across readers with varying experience levels. METHODS: One hundred eighty-six MRI studies were reviewed by six readers to detect cerebral aneurysms. Initially, readings were assisted by the CNN-based software mdbrain. After 6 weeks, a second reading was conducted without software assistance. The results were compared to the consensus reading of two neuroradiological specialists and sensitivity (lesion and patient level), specificity (patient level), and false positives per case were calculated for the group of all readers, for the subgroup of physicians, and for each individual reader. Also, reading times for each reader were measured. RESULTS: The dataset contained 54 aneurysms. The readers had no experience (three medical students), 2 years experience (resident in neuroradiology), 6 years experience (radiologist), and 12 years (neuroradiologist). Significant improvements of overall specificity and the overall number of false positives per case were observed in the reading with AI support. For the physicians, we found significant improvements of sensitivity on lesion and patient level and false positives per case. Four readers experienced reduced reading times with the software, while two encountered increased times. CONCLUSION: In the reading with the AI-based software, we observed significant improvements in terms of specificity and false positives per case for the group of all readers and significant improvements of sensitivity and false positives per case for the physicians. Further studies are needed to investigate the effects of the AI-based software in a prospective setting.
Assuntos
Aneurisma Intracraniano , Angiografia por Ressonância Magnética , Sensibilidade e Especificidade , Software , Humanos , Aneurisma Intracraniano/diagnóstico por imagem , Angiografia por Ressonância Magnética/métodos , Masculino , Feminino , Pessoa de Meia-Idade , Competência Clínica , Interpretação de Imagem Assistida por Computador/métodos , Inteligência Artificial , Idoso , AdultoRESUMO
Among the 28 reporting and data systems (RADS) available in the literature, we identified 15 RADS that can be used in Magnetic Resonance Imaging (MRI). Performing examinations without using gadolinium-based contrast agents (GBCA) has benefits, but GBCA administration is often required to achieve an early and accurate diagnosis. The aim of the present review is to summarize the current role of GBCA in MRI RADS. This overview suggests that GBCA are today required in most of the current RADS and are expected to be used in most MRIs performed in patients with cancer. Dynamic contrast enhancement is required for correct scores calculation in PI-RADS and VI-RADS, although scientific evidence may lead in the future to avoid the GBCA administration in these two RADS. In Bone-RADS, contrast enhancement can be required to classify an aggressive lesion. In RADS scoring on whole body-MRI datasets (MET-RADS-P, MY-RADS and ONCO-RADS), in NS-RADS and in Node-RADS, GBCA administration is optional thanks to the intrinsic high contrast resolution of MRI. Future studies are needed to evaluate the impact of the high T1 relaxivity GBCA on the assignment of RADS scores.
Assuntos
Imageamento por Ressonância Magnética , Neoplasias da Próstata , Masculino , Humanos , Imageamento por Ressonância Magnética/métodos , Meios de Contraste , Gadolínio , Sistemas de Dados , Estudos RetrospectivosRESUMO
Smooth pursuit eye movements (SPEM) are essential to guide behaviour in complex visual environments. SPEM accuracy is known to be degraded by the presence of a structured visual background and at higher target velocities. The aim of this preregistered study was to investigate the neural mechanisms of these robust behavioural effects. N = 33 participants performed a SPEM task with two background conditions (present and absent) at two target velocities (0.4 and 0.6 Hz). Eye movement and BOLD data were collected simultaneously. Both the presence of a structured background and faster target velocity decreased pursuit gain and increased catch-up saccade rate. Faster targets additionally increased position error. Higher BOLD response with background was found in extensive clusters in visual, parietal, and frontal areas (including the medial frontal eye fields; FEF) partially overlapping with the known SPEM network. Faster targets were associated with higher BOLD response in visual cortex and left lateral FEF. Task-based functional connectivity analyses (psychophysiological interactions; PPI) largely replicated previous results in the basic SPEM network but did not yield additional information regarding the neural underpinnings of the background and velocity effects. The results show that the presentation of visual background stimuli during SPEM induces activity in a widespread visuo-parieto-frontal network including areas contributing to cognitive aspects of oculomotor control such as medial FEF, whereas the response to higher target velocity involves visual and motor areas such as lateral FEF. Therefore, we were able to propose for the first time different functions of the medial and lateral FEF during SPEM.
Assuntos
Córtex Motor , Córtex Visual , Humanos , Acompanhamento Ocular Uniforme , Movimentos Oculares , Movimentos Sacádicos , Córtex Visual/diagnóstico por imagemRESUMO
Hippocampal volumetry is an essential tool in researching and diagnosing mesial temporal lobe epilepsy (mTLE). However, it has a limited ability to detect subtle alterations in hippocampal morphometry. Here, we establish and apply a novel geometry-based tool that enables point-wise morphometric analysis based on an intrinsic coordinate system of the hippocampus. We hypothesized that this point-wise analysis uncovers structural alterations not measurable by volumetry, but associated with histological underpinnings and the neuropsychological profile of mTLE. We conducted a retrospective study in 204 individuals with mTLE and 57 age- and gender-matched healthy subjects. FreeSurfer-based segmentations of hippocampal subfields in 3T-MRI were subjected to a geometry-based analysis that resulted in a coordinate system of the hippocampal mid-surface and allowed for point-wise measurements of hippocampal thickness and other features. Using point-wise analysis, we found significantly lower thickness and higher FLAIR signal intensity in the entire affected hippocampus of individuals with hippocampal sclerosis (HS-mTLE). In the contralateral hippocampus of HS-mTLE and the affected hippocampus of MRI-negative mTLE, we observed significantly lower thickness in the presubiculum. Impaired verbal memory was associated with lower thickness in the left presubiculum. In HS-mTLE histological subtype 3, we observed higher curvature than in subtypes 1 and 2 (all p < .05). These findings could not be observed using conventional volumetry (Bonferroni-corrected p < .05). We show that point-wise measures of hippocampal morphometry can uncover structural alterations not measurable by volumetry while also reflecting histological underpinnings and verbal memory. This substantiates the prospect of their clinical application.
Assuntos
Epilepsia do Lobo Temporal , Humanos , Epilepsia do Lobo Temporal/diagnóstico por imagem , Epilepsia do Lobo Temporal/complicações , Estudos Retrospectivos , Hipocampo/diagnóstico por imagem , Hipocampo/patologia , Lobo Temporal/patologia , Memória , Imageamento por Ressonância Magnética/métodos , Transtornos da Memória/patologia , Esclerose/patologiaRESUMO
Focal cortical dysplasias (FCDs) are malformations of cortical development and one of the most common pathologies causing pharmacoresistant focal epilepsy. Resective neurosurgery yields high success rates, especially if the full extent of the lesion is correctly identified and completely removed. The visual assessment of magnetic resonance imaging does not pinpoint the FCD in 30%-50% of cases, and half of all patients with FCD are not amenable to epilepsy surgery, partly because the FCD could not be sufficiently localized. Computational approaches to FCD detection are an active area of research, benefitting from advancements in computer vision. Automatic FCD detection is a significant challenge and one of the first clinical grounds where the application of artificial intelligence may translate into an advance for patients' health. The emergence of new methods from the combination of health and computer sciences creates novel challenges. Imaging data need to be organized into structured, well-annotated datasets and combined with other clinical information, such as histopathological subtypes or neuroimaging characteristics. Algorithmic output, that is, model prediction, requires a technically correct evaluation with adequate metrics that are understandable and usable for clinicians. Publication of code and data is necessary to make research accessible and reproducible. This critical review introduces the field of automatic FCD detection, explaining underlying medical and technical concepts, highlighting its challenges and current limitations, and providing a perspective for a novel research environment.
Assuntos
Epilepsia , Displasia Cortical Focal , Humanos , Inteligência Artificial , Epilepsia/diagnóstico por imagem , Epilepsia/cirurgia , Neuroimagem , AlgoritmosRESUMO
PURPOSE: Patients with brain metastasis (BM) from solid tumors are in an advanced stage of cancer. BM may occur during a known oncological disease (metachronous BM) or be the primary manifestation of previously unknown cancer (synchronous BM). The time of diagnosis might decisively impact patient prognosis and further treatment stratification. In the present study, we analyzed the prognostic impact of synchronous versus (vs.) metachronous BM occurrence following resection of BM. METHODS: Between 2013 and 2018, 353 patients had undergone surgical therapy for BM at the authors' neuro-oncological center. Survival stratification calculated from the day of neurosurgical resection was performed for synchronous vs. metachronous BM diagnosis. RESULTS: Non-small-cell lung carcinoma (NSCLC) was the most common tumor entity of primary site (43%) followed by gastrointestinal cancer (14%) and breast cancer (13%). Synchronous BM occurrence was present in 116 of 353 patients (33%), metachronous BM occurrence was present in 237 of 353 patients (67%). NSCLC was significantly more often diagnosed via resection of the BM (56% synchronous vs. 44% metachronous situation, p = 0.0001). The median overall survival for patients with synchronous BM diagnosis was 12 months (95% confidence interval (CI) 7.5-16.5) compared to 13 months (95% CI 9.6-16.4) for patients with metachronous BM diagnosis (p = 0.97). CONCLUSIONS: The present study indicates that time of BM diagnosis (synchronous vs. metachronous) does not significantly impact patient survival following surgical therapy of BM. These results suggest that the indication for neurosurgical BM resection should be made regardless of a synchronous or a metachronous time of BM occurrence.