Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Clin Microbiol ; 54(8): 2082-9, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27225408

RESUMO

We performed a longitudinal field study in a swine breeding herd that presented with an outbreak of vesicular disease (VD) that was associated with an increase in neonatal mortality. Initially, a USDA Foreign Animal Disease (FAD) investigation confirmed the presence of Senecavirus A (SVA) and ruled out the presence of exotic agents that produce vesicular lesions, e.g., foot-and-mouth disease virus and others. Subsequently, serum samples, tonsil swabs, and feces were collected from sows (n = 22) and their piglets (n = 33) beginning 1 week after the onset of the clinical outbreak and weekly for 6 weeks. The presence of SVA RNA was evaluated in all specimens collected by reverse transcriptase quantitative PCR (RT-qPCR) targeting a conserved region of the 5' untranslated region (5'-UTR). The serological response (IgG) to SVA was evaluated by the weekly testing of sow and piglet serum samples on a SVA VP1 recombinant protein (rVP1) indirect enzyme-linked immunosorbent assay (ELISA). The rVP1 ELISA detected seroconversion against SVA in clinically affected and non-clinically affected sows at early stages of the outbreak as well as maternal SVA antibodies in offspring. Overall, the absence of vesicles (gross lesions) in SVA-infected animals and the variability of RT-qPCR results among specimen type demonstrated that a diagnostic algorithm based on the combination of clinical observations, RT-qPCR in multiple diagnostic specimens, and serology are essential to ensure an accurate diagnosis of SVA.


Assuntos
Surtos de Doenças , Técnicas de Diagnóstico Molecular/métodos , Picornaviridae/isolamento & purificação , Testes Sorológicos/métodos , Doença Vesicular Suína/diagnóstico , Doença Vesicular Suína/epidemiologia , Animais , Ensaio de Imunoadsorção Enzimática/métodos , Fezes/virologia , Imunoglobulina G/sangue , Estudos Longitudinais , Tonsila Palatina/virologia , Reação em Cadeia da Polimerase em Tempo Real/métodos , Reação em Cadeia da Polimerase Via Transcriptase Reversa/métodos , Soro/virologia , Suínos
2.
Front Vet Sci ; 10: 929160, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37020981

RESUMO

In-barn heat processing of mass swine mortalities to inactivate pathogens could facilitate more carcass disposal options and reduce the risk of pathogen spread in the event of a foreign animal disease (FAD) outbreak. A 12.2 × 12.2 × 2.4 m (W × L × H) heat processing room was created using a temporary wall inside a de-commissioned commercial gestation barn in northwest Iowa. Eighteen swine carcasses (six per group) divided into three weight groups (mean ± SD initial carcass weights: 31.8 ± 3.3, 102.7 ± 8.1, and 226.3 ± 27.6 kg) were randomly assigned a location inside the room. Three carcasses per weight group were placed directly on concrete slats and on a raised platform. One carcass per weight group and placement (n=6) was instrumented with five temperature sensors, inserted into the brain, pleura, peritoneal, ham, and bone marrow of the femur, and a sensor was attached directly to the skin surface. Environmental conditions (ambient and room) and carcass temperatures were collected at 15-min intervals. Carcasses were subjected to an average room temperature of 57.3 ± 1.2°C for 14 days. The average (±SD) reduction from initial weight for the carcasses on slats was 45.0 ± 4.70% (feeder), 33.0 ± 8.30% (market), and 34.0 ± 15.80% (sow), and for the carcasses on a raised platform, it was 39.0 ± 6.80% (feeder), 49.0 ± 11.30% (market), and 45.0 ± 6.70% (sow). There was a significant interaction between carcass placement (slats and raised) and carcass weight loss for the market weight group. When average carcass surface temperature was at 40.6, 43.3, and 46.1°C (data grouped for analysis), the average internal carcass temperature for most measurement locations was significantly different across carcass weight groups and between the carcasses on a raised platform and those on slats. This preliminary analysis of carcass weight loss, leachate production, and temperature variation in carcasses of different sizes can be used for planning and evaluating mass swine mortality management strategies.

3.
Animals (Basel) ; 13(4)2023 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-36830544

RESUMO

Lactogenic immunity is important for the protection of piglets against many pathogens including porcine epidemic diarrhea virus. Circulating neutralizing antibodies levels in sow sera may help determine if a detectable immune response could confer protection to piglets. Neutralizing antibodies can be detected through various diagnostic assays. This study evaluated the diagnostic characteristics of two neutralizing antibody assays for porcine epidemic diarrhea virus neutralizing antibodies in serum of challenged gilts. Four treatment groups, control, non-vaccinated, vaccinated prior to challenge, and vaccinated following challenge, were comprised of 20 gilts. Serum sample were collected from each gilt prior to and following challenge with porcine epidemic diarrhea virus. Samples were evaluated for the presence of neutralizing antibodies via a fluorescent focus neutralization assay and a high-throughput neutralization assay. Diagnostic sensitivity and specificity for the fluorescent focus neutralization and high-throughput neutralization assays for this study were optimized at a cutoff of a dilution of 80 and 80% fluorescent reduction respectively and demonstrated moderate agreement based off the kappa statistic. The focus fluorescent neutralization and high-throughput neutralization assays can be used to monitor the status of neutralizing antibodies within animals or a population of animals. The high-throughput assay has advantages over the focus fluorescent assay in that it has a higher specificity at the indicated cut-off and the nature of the results allows for more discrimination between individual results.

4.
J Am Vet Med Assoc ; 260(12): 1413-1417, 2022 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-35905149

RESUMO

African swine fever virus was first identified and characterized in Africa in the early 1900s, but it has spread exponentially in Europe, Asia, and the Caribbean since 2018. While it is a disease that exclusively affects swine, thus posing no infectious risk to human health, the virus's resiliency and human behavior have facilitated the rapid global dissemination of the virus over the past 4 years. In this Currents in One Health, we will review its epidemiology, viral characteristics, host range, and current prevention strategies; the current perspective on what a response would look like and who would be affected; and if the virus was ever found in the US. Due to the fact that the virus affects all breeds of Sus scrofa, including those used for food and companionship, it is vital for all veterinarians to work together to keep the virus out of the US. It is only through the collaborative efforts of multiple disciplines working locally, nationally, and globally that we can contain the spread of this virus.


Assuntos
Vírus da Febre Suína Africana , Febre Suína Africana , Doenças dos Suínos , Médicos Veterinários , Suínos , Humanos , Animais , Vírus da Febre Suína Africana/fisiologia , Febre Suína Africana/epidemiologia , Febre Suína Africana/prevenção & controle , Europa (Continente) , Região do Caribe
5.
Transl Anim Sci ; 5(4): txab225, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34993422

RESUMO

Coronavirus Disease 2019 (COVID-19) was declared a global pandemic on March 11, 2020 by the World Health Organization and its impact on animal agriculture in the United States was undeniable. By April, COVID-19 resulted in the simultaneous closure or reduced operations of many meat processing plants in the upper Midwest, leading to supply chain disruptions. In Iowa, the leading pork production and processing state, these disruptions caused producer uncertainty, confusion, and stress, including time-sensitive challenges for maintaining animal care. The Iowa Resource Coordination Center (IRCC) was quickly created and launched by the Iowa Department of Agriculture and Land Stewardship (IDALS). The IRCC included public representation from the Iowa Pork Producers Association (IPPA), Iowa Pork Industry Center (IPIC), and Iowa State University Extension and Outreach, and private partners including producers, veterinarians, and technical specialists. Supporting swine welfare, the IRCC provided information on management strategies, dietary alterations to slow pig growth, alternative markets, on-farm euthanasia, and mass depopulation under veterinary oversight. In a crisis, Iowa created a model that reacted to producers' pragmatic, mental and emotional needs. This model could be quickly replicated with an introduction of foreign animal disease.

6.
Transl Anim Sci ; 2(3): 298-310, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32289107

RESUMO

The objectives of this experiment were to evaluate the effects of alternatives to antibiotic growth promoters (AGP), two group sizes, and their interaction on nursery pig performance to serve as a model for future AGP alternative studies. A 41-d experiment was conducted in a commercial wean-to-finish barn; 1,300 piglets weaned at 21 d of age (weaned 2 or 4 d prior to experiment; 6.14 ± 0.18 kg BW; PIC 1050 sows and multiple sire lines) were blocked by sire, sex, and weaning date, then assigned to eight treatments: four dietary treatments each evaluated across two group sizes. The four dietary treatments were: negative control (NC), positive control (PC; NC + in-feed antibiotics), zinc oxide plus a dietary acidifier (blend of fumaric, citric, lactic, and phosphoric acid) (ZA; NC + ZnO + acid), and a Bacillus-based direct-fed-microbial (DFM) plus resistant potato starch (RS) (DR; NC + DFM + RS). The two group sizes were 31 or 11 pigs/pen; floor space was modified so area/pig was equal between the group sizes (0.42 m2/pig). There were 7 pens/diet with 11 pigs/pen and 8 pens/diet with 31 pigs/pen. Data were analyzed as a randomized complete block design with pen as the experimental unit. Diagnostic assessment of oral fluids, serum, and tissue samples was used to characterize health status. Pigs experienced natural challenges of acute diarrhea and septicemia in week 1 and porcine reproductive and respiratory syndrome virus (PRRSV) in weeks 4-6. There was a significant interaction between diet and group size for ADG (P = 0.012). PC increased ADG in large and small groups (P < 0.05) and ZA increased ADG only in large groups (P < 0.05). Small groups had improved ADG compared to large groups when fed NC or DR diets (P < 0.05). Similarly, PC increased ADFI (P < 0.05). Compared to NC, ZA improved ADFI in large groups only (P < 0.05; diet × group size: P = 0.015). Pigs fed PC had greater G:F than NC (P < 0.05), and small groups had greater G:F than large groups (P < 0.05). There was no effect of ZA or DR on G:F. Pigs fed PC required fewer individual medical treatments than NC and pigs fed ZA were intermediate (P = 0.024). More pigs were removed from large than small groups (P = 0.049), and there was no effect of diet on removals (P > 0.10). In conclusion, careful study design, protocol implementation, sample collection, and recording of important information allowed us to characterize the health status of this group of pigs and determine treatment effects on growth performance and morbidity.

7.
J Vet Diagn Invest ; 25(3): 328-35, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23536612

RESUMO

Pen-based oral fluid sampling has proven to be an efficient method for surveillance of infectious diseases in swine populations. To better interpret diagnostic results, the performance of oral fluid assays (antibody- and nucleic acid-based) must be established for pen-based oral fluid samples. Therefore, the objective of the current study was to determine the probability of detecting Porcine reproductive and respiratory syndrome virus (PRRSV) infection in pen-based oral fluid samples from pens of known PRRSV prevalence. In 1 commercial swine barn, 25 pens were assigned to 1 of 5 levels of PRRSV prevalence (0%, 4%, 12%, 20%, or 36%) by placing a fixed number (0, 1, 3, 5, or 9) of PRRSV-positive pigs (14 days post PRRSV modified live virus vaccination) in each pen. Prior to placement of the vaccinated pigs, 1 oral fluid sample was collected from each pen. Thereafter, 5 oral fluid samples were collected from each pen, for a total of 150 samples. To confirm individual pig PRRSV status, serum samples from the PRRSV-negative pigs (n = 535) and the PRRSV vaccinated pigs (n = 90) were tested for PRRSV antibodies and PRRSV RNA. The 150 pen-based oral fluid samples were assayed for PRRSV antibody and PRRSV RNA at 6 laboratories. Among the 100 samples from pens containing ≥1 positive pig (≥4% prevalence) and tested at the 6 laboratories, the mean positivity was 62% for PRRSV RNA and 61% for PRRSV antibody. These results support the use of pen-based oral fluid sampling for PRRSV surveillance in commercial pig populations.


Assuntos
Síndrome Respiratória e Reprodutiva Suína/diagnóstico , Vírus da Síndrome Respiratória e Reprodutiva Suína/isolamento & purificação , Saliva/virologia , Animais , Anticorpos Antivirais/análise , Anticorpos Antivirais/sangue , Ensaio de Imunoadsorção Enzimática/veterinária , Síndrome Respiratória e Reprodutiva Suína/virologia , RNA Viral/análise , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Suínos
8.
J Vet Diagn Invest ; 24(2): 262-9, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22379043

RESUMO

The purpose of the present study was to evaluate the diagnostic performance of a commercial serum antibody enzyme-linked immunosorbent assay (ELISA) modified to detect anti-Porcine reproductive and respiratory syndrome virus (PRRSV) antibodies in pen-based oral fluid specimens. Experimental and field oral fluid samples of defined status in reference to exposure of swine with PRRSV were used to derive the kinetics of detectable concentrations of antibody against PRRSV. Immunoglobulin (Ig)M and IgA were readily detected in oral fluid specimens from populations in which PRRSV infection was synchronized among all individuals but not in samples collected in commecial herds. In contrast, IgG was readily detected at diagnostically useful levels in both experimental and field samples for up to 126 days. Estimates of the IgG oral fluid ELISA performance were based on results from testing positive oral fluid samples (n = 492) from experimentally inoculated pigs (n = 251) and field samples (n = 241) and negative oral fluid samples (n = 367) from experimentally inoculated pigs (n = 84) and field samples (n = 283). Receiver operating characteristic analysis estimated the diagnostic sensitivity and specificity of the assay as 94.7% (95% confidence interval [CI]: 92.4, 96.5) and 100% (95% CI: 99.0, 100.0), respectively, at a sample-to-positive ratio cutoff of ≥0.40. The results of the study suggest that the IgG oral fluid ELISA can provide efficient, cost-effective PRRSV monitoring in commercial herds and PRRSV surveillance in elimination programs.


Assuntos
Anticorpos Antivirais/análise , Ensaio de Imunoadsorção Enzimática/veterinária , Síndrome Respiratória e Reprodutiva Suína/diagnóstico , Vírus da Síndrome Respiratória e Reprodutiva Suína/isolamento & purificação , Kit de Reagentes para Diagnóstico/veterinária , Saliva/virologia , Animais , Anticorpos Neutralizantes/análise , Ensaio de Imunoadsorção Enzimática/métodos , Síndrome Respiratória e Reprodutiva Suína/virologia , Curva ROC , Sensibilidade e Especificidade , Suínos
9.
Prev Vet Med ; 104(3-4): 292-300, 2012 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-22154249

RESUMO

Currently virus surveillance in swine herds is constrained by the cost-effectiveness and efficiency of sampling methods. The objective of this study was to assess the value of using oral fluids collected by barn personnel as a method of surveillance based on PCR testing. Approximately 12,150 pigs in 10 wean-to-finish barns on 10 farms were monitored for the presence of porcine circovirus type 2 (PCV2), porcine reproductive and respiratory syndrome virus (PRRSV), influenza A virus (IAV), and Torque teno virus genogroups 1 (TTV1) and 2 (TTV2) by sampling oral fluid specimens. Oral fluid samples were collected from 6 pens at each site starting at the time of pig placement (∼3 weeks of age) and continuing thereafter at 2-week intervals for a period of 18 weeks. Data were analyzed both on a pen basis and barn basis. Overall, 508 (85%) samples were positive for PCV2, 73 (12%) for PRRSV, 46 (8%) for IAV, 483 (81%) for TTV2, and 155 (26%) for TTV1 during the study period. The estimated arithmetic means of the quantitative PCR-positive oral fluids for PCV2, PRRSV, and IAV were 1×10(4.62), 1×10(4.97), and 1×10(5.49)per ml. With a single exception, all barns were positive for PCV2 and TTV2 at every sampling point in the study. Virus detection varied among barns, particularly for IAV and PRRSV. The pen level, cumulative distribution of agent combinations between all 10 barns were statistically different. The most commonly observed patterns were PCV2+TTV2 (239 pen samples, 40%), PCV2+TTV1+TTV2 (88 pen samples, 15%), and PCV2 alone (66 pen samples, 11%). This "proof-of-concept" project showed that a variety of viruses could be detected either intermittently or continuously in pig populations and demonstrated that barn herd virus status is highly variable, even among barns in the same production system. Oral fluid sampling is a promising approach for increasing the efficiency and cost effectiveness of virus surveillance in swine herds.


Assuntos
Circovirus/isolamento & purificação , Vírus da Influenza A/isolamento & purificação , Vigilância da População/métodos , Vírus da Síndrome Respiratória e Reprodutiva Suína/isolamento & purificação , Doenças dos Suínos/epidemiologia , Doenças dos Suínos/virologia , Torque teno virus/isolamento & purificação , Animais , Anticorpos Antivirais/sangue , Infecções por Circoviridae/epidemiologia , Infecções por Circoviridae/veterinária , Circovirus/imunologia , Infecções por Vírus de DNA/epidemiologia , Infecções por Vírus de DNA/veterinária , Ensaio de Imunoadsorção Enzimática/veterinária , Vírus da Influenza A/imunologia , Infecções por Orthomyxoviridae/epidemiologia , Infecções por Orthomyxoviridae/veterinária , Reação em Cadeia da Polimerase/veterinária , Síndrome Respiratória e Reprodutiva Suína/epidemiologia , Vírus da Síndrome Respiratória e Reprodutiva Suína/imunologia , Saliva/virologia , Análise de Sobrevida , Suínos/sangue , Doenças dos Suínos/diagnóstico , Torque teno virus/imunologia , Estados Unidos/epidemiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA