Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Opt Express ; 31(7): 11431-11446, 2023 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-37155778

RESUMO

We investigate the coexistence of clock synchronization protocols with quantum signals in a common single-mode optical fiber. By measuring optical noise between 1500 nm to 1620 nm we demonstrate a potential for up to 100 quantum, 100 GHz wide channels coexisting with the classical synchronization signals. Both "White Rabbit" and pulsed laser-based synchronization protocols were characterized and compared. We establish a theoretical limit of the fiber link length for coexisting quantum and classical channels. The maximal fiber length is below approximately 100 km for off-the-shelf optical transceivers and can be significantly improved by taking advantage of quantum receivers.

2.
Opt Express ; 24(18): 20080-8, 2016 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-27607617

RESUMO

We provide an overview of Fano resonance and plasmon induced transparency (PIT) as well as on plasmons coupling in planar structures, and we discuss their application in sensing and enhanced spectroscopy. Metal-insulator-metal (MIM) structures, which are known to support symmetric and anti-symmetric surface plasmon polaritons (SPPs) arising from the coupling between two SPPs at the metal-insulator interfaces, exhibit anticrossing behavior of the dispersion relations arising from the coupling of the symmetric SPP and the metal/air SPP. Multilayer structures, formed by a metal film and a high-index dielectric waveguide (WG), separated by a low-index dielectric spacer layer, give narrow resonances of PIT and Fano line shapes. An optimized Fano structure shows a giant field intensity enhancement value of 106 in air at the surface of the high-index dielectric WG. The calculated field enhancement factor and the figure of merit for the sensitivity of the Fano structure in air can be 104 times as large as those of the conventional surface plasmon resonance and WG sensors.

3.
Light Sci Appl ; 13(1): 110, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38724516

RESUMO

Entanglement plays a vital role in quantum information processing. Owing to its unique material properties, silicon carbide recently emerged as a promising candidate for the scalable implementation of advanced quantum information processing capabilities. To date, however, only entanglement of nuclear spins has been reported in silicon carbide, while an entangled photon source, whether it is based on bulk or chip-scale technologies, has remained elusive. Here, we report the demonstration of an entangled photon source in an integrated silicon carbide platform for the first time. Specifically, strongly correlated photon pairs are efficiently generated at the telecom C-band wavelength through implementing spontaneous four-wave mixing in a compact microring resonator in the 4H-silicon-carbide-on-insulator platform. The maximum coincidence-to-accidental ratio exceeds 600 at a pump power of 0.17 mW, corresponding to a pair generation rate of (9 ± 1) × 103 pairs/s. Energy-time entanglement is created and verified for such signal-idler photon pairs, with the two-photon interference fringes exhibiting a visibility larger than 99%. The heralded single-photon properties are also measured, with the heralded g(2)(0) on the order of 10-3, demonstrating the SiC platform as a prospective fully integrated, complementary metal-oxide-semiconductor compatible single-photon source for quantum applications.

4.
J Phys Chem B ; 120(43): 11317-11322, 2016 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-27726372

RESUMO

Holographic storage is one of the most important applications in the field of optics, especially for recording and retrieving data, and information storage by interference patterns in photosensitive materials are no exception in this regard. In this work, we give evidence that holograms recorded by interference of two coherent laser beams in azo dye doped polymer films can be controlled by a third incoherent assisting laser beam. We show that light diffraction can be increased or decreased by an assisting beam depending on the respective orientation of the polarizations of the recording and the assisting beams. We also found that photomanipulation of polarization holograms, prepared by polarization modulation, does not depend on the polarization of the assisting beam, whereas, photomanipulation of holograms prepared by intensity modulation strongly depends on the polarization of the assisting beam. Photoselection is shown to play a major role in the photoassisted diffraction process.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA