RESUMO
Germline mutations in the DNA mismatch repair (MMR) genes cause Lynch syndrome (LS). In this study, we identified and characterized a novel SINE-VNTR-Alu (SVA) insertion in exon 12 of MSH2 in an individual with early-onset colorectal cancer and a very strong LS family history. RT-PCR analysis indicated a larger aberrant MSH2 transcript in one of the family members. MSK-IMPACT next-generation sequencing and long-range PCR analyses revealed an insertion in MSH2 exon 12 at the c.1972 position in an antisense orientation. The insertion was further characterized as an SVA element approximately 3 kb in length, belonging to the SVA_F1 family of retrotransposons. This variant also segregated with LS related cancers in four affected family members in this family. Based on this evidence, this MSH2 SVA insertion is considered pathogenic.
Assuntos
Elementos Alu , Neoplasias Colorretais Hereditárias sem Polipose/genética , Repetições Minissatélites , Proteína 2 Homóloga a MutS/genética , Neoplasias Colorretais Hereditárias sem Polipose/patologia , Humanos , Masculino , Pessoa de Meia-IdadeRESUMO
PURPOSE: Mutations in RAD51D are associated with a predisposition to primary ovarian, fallopian tube, and peritoneal carcinoma. Our study aims to characterize a RAD51D missense variant in a hereditary ovarian cancer family. METHODS: The effects of the RAD51D c.82G>A (p.Val28Met) variant on mRNA splicing were evaluated and characterized using RT-PCR, cloning and DNA sequencing. RESULTS: This variant completely disrupts normal splicing and results in the loss of 3'end of 5'UTR and the entire exon 1 (c.-86_c.82), which presumably leads to loss of the RAD51D protein. The RAD51D c.82G>A (p.Val28Met) variant is clinically significant and classified as likely pathogenic. CONCLUSIONS: Our results indicate that the RAD51D c.82G>A (p.Val28Met) variant contributes to cancer predisposition through disruption of normal mRNA splicing. The identification of this variant in an individual affected with high-grade serous fallopian tube cancer suggests that the RAD51D variant may contribute to predisposition to the ovarian cancer in this family.
Assuntos
Neoplasias Ovarianas , Proteínas de Ligação a DNA/genética , Feminino , Predisposição Genética para Doença , Humanos , Neoplasias Ovarianas/genética , Linhagem , Splicing de RNA/genéticaRESUMO
BACKGROUND: Germline variants in the DNA mismatch repair (MMR) genes (MLH1, MSH2, MSH6, and PMS2) cause Lynch syndrome, an autosomal dominant hereditary cancer susceptibility syndrome. The risk for endometrial cancer is significantly higher in women with MSH6 pathogenic/likely pathogenic (P/LP) variants compared with that for MLH1 or MSH2 variants. METHODS: The proband was tested via a clinical testing, Memorial Sloan Kettering-Integrated Mutation Profiling of Actionable Cancer Targets (MSK-IMPACT). RT-PCR was performed using patient's blood DNA and cDNA was analyzed by DNA sequencing and a cloning approach. RESULTS: We report a 56-year-old female with endometrial cancer who carries a germline variant, MSH6 c.4001G > C, located at the last nucleotide of exon 9. While the pathogenicity of this variant was previously unknown, functional studies demonstrated that this variant completely abolished normal splicing and caused exon 9 skipping, which is expected to lead to a prematurely truncated or abnormal protein. CONCLUSION: Our results indicate that this variant likely contributes to cancer predisposition through disruption of normal splicing, and is classified as likely pathogenic.
Assuntos
Neoplasias Colorretais Hereditárias sem Polipose , Neoplasias do Endométrio , Síndromes Neoplásicas Hereditárias , Humanos , Feminino , Pessoa de Meia-Idade , Neoplasias Colorretais Hereditárias sem Polipose/genética , Proteína 2 Homóloga a MutS/genética , Proteínas de Ligação a DNA/genética , Proteína 1 Homóloga a MutL/genética , Neoplasias do Endométrio/genética , Células Germinativas/patologiaRESUMO
PURPOSE: To determine the genetic predisposition underlying pancreatic acinar cell carcinoma (PACC) and characterize its genomic features. METHODS: Both somatic and germline analyses were performed using an Food and Drug Administration-authorized matched tumor/normal sequencing assay on a clinical cohort of 28,780 patients with cancer, 49 of whom were diagnosed with PACC. For a subset of PACCs, whole-genome sequencing (WGS; n = 12) and RNA sequencing (n = 6) were performed. RESULTS: Eighteen of 49 (36.7%) PACCs harbored germline pathogenic variants in homologous recombination (HR) and DNA damage response (DDR) genes, including BRCA1 (n = 1), BRCA2 (n = 12), PALB2 (n = 2), ATM (n = 2), and CHEK2 (n = 1). Thirty-one PACCs displayed pure, and 18 PACCs harbored mixed acinar cell histology. Fifteen of 31 (48%) pure PACCs harbored a germline pathogenic variant affecting HR-/DDR-related genes. BRCA2 germline pathogenic variants (11 of 31, 35%) were significantly more frequent in pure PACCs than in pancreatic adenocarcinoma (86 of 2,739, 3.1%; P < .001), high-grade serous ovarian carcinoma (67 of 1,318, 5.1%; P < .001), prostate cancer (116 of 3,401, 3.4%; P < .001), and breast cancer (79 of 3,196, 2.5%; P < .001). Genomic features of HR deficiency (HRD) were detected in 7 of 12 PACCs undergoing WGS, including 100% (n = 6) of PACCs with germline HR-related pathogenic mutations and 1 of 6 PACCs lacking known pathogenic alterations in HR-related genes. Exploratory analyses revealed that in PACCs, the repertoire of somatic driver genetic alterations and the load of neoantigens with high binding affinity varied according to the presence of germline pathogenic alterations affecting HR-/DDR-related genes and/or HRD. CONCLUSION: In a large pan-cancer cohort, PACC was identified as the cancer type with the highest prevalence of both BRCA2 germline pathogenic variants and genomic features of HRD, suggesting that PACC should be considered as part of the spectrum of BRCA-related malignancies.
Assuntos
Carcinoma de Células Acinares , Neoplasias Pancreáticas , Masculino , Humanos , Carcinoma de Células Acinares/genética , Neoplasias Pancreáticas/genética , Proteína BRCA2/genética , Proteína BRCA1/genética , Mutação em Linhagem Germinativa , Predisposição Genética para Doença , Recombinação Homóloga , Genômica , Neoplasias PancreáticasRESUMO
TP53 is one of the most ubiquitously altered genes in human cancer. The biological impact of rare variants, particularly those located within noncoding regions, remains poorly understood. From interrogation of clinical massively parallel sequencing data from over 55,000 tumors, which included 23,330 tumors with known TP53 mutations, TP53 intron 4 nucleotide substitutions at position c.375+5G were identified in 45 tumors (0.2% of TP53-mutated cancers), comprising cancers of different organ sites. Loss-of-heterozygosity or a second-hit somatic TP53 mutation was observed in 34 of 40 (85%) informative cases. RT-PCR analysis showed the c.375+5G>T variant to be associated with aberrantly spliced TP53 mRNA transcripts with concomitant loss of the normal transcript. Immunohistochemical staining for p53 was performed on a representative subset of tumors with TP53 c.375+5G variants (n = 14), all of which showed loss of protein expression (100%; n = 13 complete loss, n = 1 subclonal loss). Our data are consistent with classification of TP53 c.375+5G variants as deleterious intronic mutations that interfere with proper mRNA splicing, ultimately resulting in loss of expression of functional p53 protein. The clinical scenario of a tumor with loss of p53 immunohistochemical staining, yet lacking a detectable TP53 exonic mutation, should therefore prompt consideration of splice-altering intronic variants.
Assuntos
Splicing de RNA , Proteína Supressora de Tumor p53 , Humanos , Íntrons/genética , Mutação , Proteína Supressora de Tumor p53/genéticaRESUMO
PURPOSE: Lynch syndrome is defined by germline pathogenic mutations involving DNA mismatch repair (MMR) genes and linked with the development of MMR-deficient colon and endometrial cancers. Whether breast cancers developing in the context of Lynch syndrome are causally related to MMR deficiency (MMRd), remains controversial. Thus, we explored the morphologic and genomic characteristics of breast cancers occurring in Lynch syndrome individuals. EXPERIMENTAL DESIGN: A retrospective analysis of 20,110 patients with cancer who underwent multigene panel genetic testing was performed to identify individuals with a likely pathogenic/pathogenic germline variant in MLH1, MSH2, MSH6, or PMS2 who developed breast cancers. The histologic characteristics and IHC assessment of breast cancers for MMR proteins and programmed death-ligand 1 (PD-L1) expression were assessed on cases with available materials. DNA samples from paired tumors and blood were sequenced with Memorial Sloan Kettering-Integrated Mutation Profiling of Actionable Cancer Targets (≥468 key cancer genes). Microsatellite instability (MSI) status was assessed utilizing MSISensor. Mutational signatures were defined using SigMA. RESULTS: A total of 272 individuals with Lynch syndrome were identified, 13 (5%) of whom had primary breast cancers. The majority of breast cancers (92%) were hormone receptor-positive tumors. Five (42%) of 12 breast cancers displayed loss of MMR proteins by IHC. Four (36%) of 11 breast cancers subjected to tumor-normal sequencing showed dominant MSI mutational signatures, high tumor mutational burden, and indeterminate (27%) or high MSISensor scores (9%). One patient with metastatic MMRd breast cancer received anti-PD1 therapy and achieved a robust and durable response. CONCLUSIONS: A subset of breast cancers developing in individuals with Lynch syndrome are etiologically linked to MMRd and may benefit from anti-PD1/PD-L1 immunotherapy.
Assuntos
Neoplasias da Mama , Neoplasias Colorretais Hereditárias sem Polipose , Neoplasias da Mama/genética , Neoplasias Colorretais Hereditárias sem Polipose/genética , Neoplasias Colorretais Hereditárias sem Polipose/patologia , Reparo de Erro de Pareamento de DNA/genética , Feminino , Mutação em Linhagem Germinativa , Humanos , Instabilidade de Microssatélites , Proteína 1 Homóloga a MutL/genética , Estudos RetrospectivosRESUMO
In the current study, the temporal distribution of both soil water and soil NO3-N under several conservation agriculture (CA) practices during the wheat crop growth were characterized by HYDRUS-2D model. Treatments comprised of conventional tillage (CT), permanent broad beds (PBB), zero tillage (ZT), PBB with residue (PBB+R) and ZT with residue (ZT+R). Hydraulic inputs of the model, comprising the measured value of Kfs, α and n, obtained as the output of Rosetta Lite model were optimized through inverse modeling. Model predicted the daily change in soil water content (SWC) of the profile during the simulated period (62-91 DAS) with good accuracy (R2 = 0.75; root mean squared error (RMSE) = 0.038). In general, soil water balance simulated from the model showed 50% lower cumulative drainage, 50% higher cumulative transpiration along with higher soil water retention, in PBB+R than CT. Reported values of the first-order rate constants, signify nitrification of urea to NH4-N (µa) (day-1) nitrification of NH4-N to NO3-N (µn) (day-1) and the distribution coefficient of urea (Kd-in cm3 mg-1) were optimized through inverse modeling. Later they were used as solute transport reaction input parameters of the model, to predict the daily change in NO3-N of the profile with better accuracy (R2 = 0.83; RMSE = 4.62). Since NH4-N disappears fast, it could not be measured frequently. Therefore, not enough data could be generated for their use in the calibration and validation of the model. Results of simulation of daily NO3-N concentration indicated a higher concentration of NO3-N in the surface layer and its leaching losses beyond the root zone were relatively lesser in PBB+R, than CT, which resulted in less contamination of the belowground water. Thus, the study clearly recommended PBB+R to be adopted for wheat cultivation in maize-wheat cropping system, as it enhances the water and nitrogen availability in the root zone and reduce their losses beyond the root zone.
Assuntos
Agricultura/métodos , Compostos de Amônio/análise , Nitratos/análise , Solo/química , Triticum , Água/análise , Nitrogênio , Raízes de PlantasRESUMO
The original publication of this paper contains a mistake.
RESUMO
In this paper, we have proposed and analysed a mathematical model to figure out possible ways to rescue a damaged eco-epidemiological system. Our strategy of rescue is based on the realization of the fact that chaotic dynamics often associated with excursions of system dynamics to extinction-sized densities. Chaotic dynamics of the model is depicted by 2D scans, bifurcation analysis, largest Lyapunov exponent and basin boundary calculations. 2D scan results show that µ, the total death rate of infected prey should be brought down in order to avoid chaotic dynamics. We have carried out linear and nonlinear stability analysis and obtained Hopf-bifurcation and persistence criteria of the proposed model system. The other outcome of this study is a suggestion which involves removal of infected fishes at regular interval of time. The estimation of timing and periodicity of the removal exercises would be decided by the nature of infection more than anything else. If this suggestion is carefully worked out and implemented, it would be most effective in restoring the health of the ecosystem which has immense ecological, economic and aesthetic potential. We discuss the implications of this result to Salton Sea, California, USA. The restoration of the Salton Sea provides a perspective for conservation and management strategy.
Assuntos
Simulação por Computador , Conservação dos Recursos Naturais/estatística & dados numéricos , Ecossistema , Dinâmica não Linear , California , LagosRESUMO
The mathematical models proposed and studied in the present paper provide a unified framework to understand complex dynamical patterns in vole populations in Europe and North America. We have extended the well-known model provided by Hanski and Turchin by incorporating the diffusion term and spatial heterogeneity and performed several mathematical and numerical analyses to explore the dynamics in space and time of the model. These models successfully predicted the observed rodent dynamics in these regions. An attempt has been made to bridge the gap between the field and theoretical studies carried out by Turchin and Hanski (1997) and Turchin and Ellner (2000). Simulation experiments, mainly two-dimensional parameter scans, show the importance of spatial heterogeneity in order to understand the poorly understood fluctuations in population densities of voles in Fennoscandia and Northern America. This study shed new light upon the dynamics of voles in these regions. The nonlinear analysis of vole data suggests that the dynamical shift is from stability to chaos. Diffusion driven model systems predict a new type of dynamics not yet observed in the field studies of vole populations carried out so far. This has been termed as chaotic in time and regular in space (CTRS). We observed CTRS dynamics in several simulation experiments. This directs us to expect that dynamics of this animal would be de-correlated in time and simultaneously mass extinctions might be possible at many spatial locations.