Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Anal Bioanal Chem ; 413(20): 5169-5179, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34195876

RESUMO

Antidepressant drugs are widely used for the treatment of common mental or other psychiatric disorders such as depression, which affect about 121 million people worldwide. This widespread use has contributed to the input of these pharmaceuticals and their metabolites into the environment. The aim of this work was to develop an analytical method to quantify the most widely used antidepressant drugs, selective serotonin reuptake inhibitors (SSRI), and their main metabolites in the environment. For this, a new and reliable miniaturized extraction method based on dispersive SPE cleanup procedure for extraction of SSRI followed by derivatization with n-heptafluorobutyrylimidazole, and detection by GC-MS was developed. The methodology, including a first-order one-compartment model, was then applied to a bioconcentration study in zebrafish (Danio rerio) eleutheroembryos. The results showed low bioaccumulation of these compounds; however, a biotransformation evidence of the parent compounds into their metabolites was observed after 6 h of exposure. These results indicate the need to integrate metabolic transformation rates to fully model and understand the bioaccumulation patterns of SSRI and their metabolites. Graphical abstract.


Assuntos
Inibidores Seletivos de Recaptação de Serotonina/metabolismo , Animais , Embrião não Mamífero/metabolismo , Monitoramento Ambiental , Poluentes Ambientais , Reprodutibilidade dos Testes , Inibidores Seletivos de Recaptação de Serotonina/química , Peixe-Zebra
2.
Environ Res ; 162: 135-143, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29306661

RESUMO

Microplastics contamination of the aquatic environment is considered a growing problem. The ingestion of microplastics has been documented for a variety of aquatic animals. Studies have shown the potential of microplastics to affect the bioavailability and uptake route of sorbed co-contaminants of different nature in living organisms. Persistent organic pollutants and metals have been the co-contaminants majorly investigated in this field. The combined effect of microplastics and sorbed co-contaminants in aquatic organisms still needs to be properly understood. To address this, we have subjected zebrafish to four different feeds: A) untreated feed; B) feed supplemented with microplastics (LD-PE 125-250µm of diameter); C) feed supplemented with 2% microplastics to which a mixture of PCBs, BFRs, PFCs and methylmercury were sorbed; and D) feed supplemented with the mixture of contaminants only. After 3 weeks of exposure fish were dissected and liver, intestine, muscular tissue and brain were extracted. After visual observation, evaluation of differential gene expression of some selected biomarker genes in liver, intestine and brain were carried out. Additionally, quantification of perfluorinated compounds in liver, brain, muscular tissue and intestine of some selected samples were performed. The feed supplemented with microplastics with sorbed contaminants produced the most evident effects especially on the liver. The results indicate that microplastics alone does not produce relevant effects on zebrafish in the experimental conditions tested; on the contrary, the combined effect of microplastics and sorbed contaminants altered significantly their organs homeostasis in a greater manner than the contaminants alone.


Assuntos
Plásticos , Poluentes Químicos da Água , Animais , Organismos Aquáticos , Metais/toxicidade , Plásticos/toxicidade , Poluentes Químicos da Água/toxicidade , Peixe-Zebra
3.
Environ Res ; 164: 430-443, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29573718

RESUMO

When microplastics pollute fish habitats, it may be ingested by fish, thereby contaminating fish with sorbed contaminants. The present study investigates how combinations of halogenated contaminants and microplastics associated with feed are able to alter toxicokinetics in European seabass and affect the fish. Microplastic particles (2%) were added to the feed either with sorbed contaminants or as a mixture of clean microplastics and chemical contaminants, and compared to feed containing contaminants without microplastics. For the contaminated microplastic diet, the accumulation of polychlorinated biphenyls (PCBs) and brominated flame retardants (BFRs) in fish was significantly higher, increasing up to 40 days of accumulation and then reversing to values comparable to the other diets at the end of accumulation. The significant gene expression results of liver (cyp1a, il1ß, gstα) after 40 days of exposure indicate that microplastics might indeed exacerbate the toxic effects (liver metabolism, immune system, oxidative stress) of some chemical contaminants sorbed to microplastics. Seabass quickly metabolised BDE99 to BDE47 by debromination, probably mediated by deiodinase enzymes, and unlike other contaminants, this metabolism was unaffected by the presence of microplastics. For the other PCBs and BFRs, the elimination coefficients were significantly lower in fish fed the diet with contaminants sorbed to microplastic compared to the other diets. The results indicate that microplastics affects liver detoxification and lipid distribution, both of which affect the concentration of contaminants.


Assuntos
Bass , Retardadores de Chama , Bifenilos Policlorados , Poluentes Químicos da Água , Animais , Bass/metabolismo , Plásticos/toxicidade , Toxicocinética , Poluentes Químicos da Água/toxicidade
4.
J Appl Toxicol ; 37(3): 253-264, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-27283969

RESUMO

In this study we evaluated the exposure effects of mixtures of five polycyclic aromatic hydrocarbons (PAHs); namely, benzo[a]anthracene, benzo[a]pyrene, benzo[b]fluoranthene, benzo[k]fluoranthene and chrysene on zebrafish embryos. Supplementation of the exposure media with 0.45% dimethyl sulfoxide and 50 ppm of Tween 20 could guarantee the solubilization and stabilization of the PAHs up to 24 h without affecting the embryos development. The exposure effects were tested by detecting the differential expression of a number of genes related to the aryl hydrocarbon receptor gene battery. Effects were detectable already after 6 h of exposure. After 24 h of exposure, all PAHs, except for benzo[a]anthracene, acted as potent inducers of the gene cyp1a1. Benzo[k]fluoranthene was the major inducer; the effect caused by the mixture at the lower concentration tested (1 ng ml-1 ) was dominated by its presence. However, in the mixture at the highest concentration tested (10 ng ml-1 ) it caused less induction and was not dominant. No significant bioaccumulation values were detected on embryos exposed to the PAHs tested in this study; however, the results obtained, indicated that PAHs undergo a very rapid metabolization inside the embryos, and that those biotransformation products yield changes on the expression of genes involved in the aryl hydrocarbon receptor pathway. Future work should focus on identification of the PAH metabolization products and on the effect of these metabolites on toxicity. Copyright © 2016 John Wiley & Sons, Ltd.


Assuntos
Embrião não Mamífero/efeitos dos fármacos , Desenvolvimento Embrionário/efeitos dos fármacos , Hidrocarbonetos Policíclicos Aromáticos/toxicidade , Poluentes Químicos da Água/toxicidade , Peixe-Zebra , Animais , Relação Dose-Resposta a Droga , Embrião não Mamífero/metabolismo , Desenvolvimento Embrionário/genética , Expressão Gênica/efeitos dos fármacos , Hidrocarbonetos Policíclicos Aromáticos/química , Hidrocarbonetos Policíclicos Aromáticos/metabolismo , Poluentes Químicos da Água/química , Poluentes Químicos da Água/metabolismo , Peixe-Zebra/embriologia
5.
Appl Microbiol Biotechnol ; 99(8): 3479-90, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25586576

RESUMO

A critical feature of probiotic microorganisms is their ability to colonize the intestine of the host. Although the microbial potential to adhere to the human gut lumen has been investigated in in vitro models, there is still much to discover about their in vivo behaviour. Zebrafish is a vertebrate model that is being widely used to investigate various biological processes shared with humans. In this work, we report on the use of the zebrafish model to investigate the in vivo colonization ability of previously characterized probiotic lactic acid bacteria. Lactobacillus plantarum Lp90, L. plantarum B2 and Lactobacillus fermentum PBCC11.5 were fluorescently tagged by transfer of the pRCR12 plasmid, which encodes the mCherry protein and which was constructed in this work. The recombinant bacteria were used to infect germ-free zebrafish larvae. After removal of bacteria, the colonization ability of the strains was monitored until 3 days post-infection by using a fluorescence stereomicroscope. The results indicated differential adhesion capabilities among the strains. Interestingly, a displacement of bacteria from the medium to the posterior intestinal tract was observed as a function of time that suggested a transient colonization by probiotics. Based on fluorescence observation, L. plantarum strains exhibited a more robust adhesion capability. In conclusion, the use of pRCR12 plasmid for labelling Lactobacillus strains provides a powerful and very efficient tool to monitor the in vivo colonization in zebrafish larvae and to investigate the adhesion ability of probiotic microorganisms.


Assuntos
Trato Gastrointestinal/microbiologia , Genes Reporter , Lactobacillus plantarum/crescimento & desenvolvimento , Limosilactobacillus fermentum/crescimento & desenvolvimento , Proteínas Luminescentes/análise , Peixe-Zebra/microbiologia , Animais , Limosilactobacillus fermentum/genética , Lactobacillus plantarum/genética , Proteínas Luminescentes/genética , Microscopia de Fluorescência , Dados de Sequência Molecular , Plasmídeos , Análise de Sequência de DNA , Coloração e Rotulagem/métodos , Fatores de Tempo , Proteína Vermelha Fluorescente
6.
J Appl Toxicol ; 34(5): 562-75, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24395442

RESUMO

A variety of consumer products containing silver nanoparticles (Ag NPs) are currently marketed. However, their safety for humans and for the environment has not yet been established and no standard method to assess their toxicity is currently available. The objective of this work was to develop an effective method to test Ag NP toxicity and to evaluate the effects of ion release and Ag NP size on a vertebrate model. To this aim, the zebrafish animal model was exposed to a solution of commercial nanosilver. While the exposure of embryos still surrounded by the chorion did not allow a definite estimation of the toxic effects exerted by the compound, the exposure for 48 h of 3-day-old zebrafish hatched embryos afforded a reliable evaluation of the effects of Ag NPs. The effects of the exposure were detected especially at molecular level; in fact, some selected genes expressed differentially after the exposure. The Ag NP toxic performance was due to the combined effect of Ag(+) ion release and Ag NP size. However, the effect of NP size was particularly detectable at the lowest concentration of nanosilver tested (0.01 mg l(-1)) and depended on the solubilization media. The results obtained indicate that in vivo toxicity studies of nanosilver should be performed with ad hoc methods (in this case using hatched embryos) that might be different depending on the type of nanosilver. Moreover, the addition of this compound to commercial products should take into consideration the Ag NP solubilization media.


Assuntos
Embrião não Mamífero/efeitos dos fármacos , Nanopartículas/química , Prata/toxicidade , Peixe-Zebra/embriologia , Animais , Coloides , Relação Dose-Resposta a Droga , Embrião não Mamífero/ultraestrutura , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Dose Letal Mediana , Microscopia Eletrônica de Varredura , Prata/química , Prata/farmacocinética , Soluções , Distribuição Tecidual , Peixe-Zebra/genética
7.
EFSA J ; 22(7): e8874, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39010862

RESUMO

The food enzyme asparaginase (l-asparagine amidohydrolase; EC 3.5.1.1) is produced with the genetically modified Aspergillus niger strain ASP by DSM Food Specialties B.V. The genetic modifications do not give rise to safety concerns. The food enzyme was considered free from viable cells of the production organism and its DNA. The food enzyme is intended to be used in the prevention of acrylamide formation in foods and in the processing of yeast and yeast products. Dietary exposure to the food enzyme-total organic solids (TOS) was estimated to be up to 0.792 mg TOS/kg body weight (bw) per day in European populations. Genotoxicity tests did not indicate a safety concern. The systemic toxicity was assessed by means of a repeated dose 90-day oral toxicity study in rats. The Panel identified a no observed adverse effect level at the highest dose tested of 1038 mg TOS/kg bw per day, which when compared with the estimated dietary exposure, resulted in a margin of exposure of at least 1311. A search for the similarity of the amino acid sequence of the food enzyme to known allergens was made and no match was found. The Panel considered that the risk of allergic reactions upon dietary exposure cannot be excluded, but the likelihood is low. Based on the data provided, the Panel concluded that this food enzyme does not give rise to safety concerns, under the intended conditions of use.

8.
EFSA J ; 21(4): e07913, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37082428

RESUMO

The food enzyme phospholipase A2 (phosphatidylcholine 2-acylhydrolase, EC 3.1.1.4) is obtained from porcine pancreas by Sanyo Fine Co., Ltd. It is intended to be used in three food manufacturing processes: egg processing, flavouring production and yeast processing. In the absence of sufficient data provided by the applicant to characterise the source of food enzyme, its production and chemical characterisation, coupled with insufficient information about food manufacturing processes to which the food enzyme is applied, the Panel was unable to assess the safety of the food enzyme.

9.
EFSA J ; 21(7): e08152, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37485253

RESUMO

The food enzyme pectinesterase (pectin pectylhydrolase; EC 3.1.1.11) is produced with the genetically modified Aspergillus niger strain PME by DSM Food Specialties B.V. The genetic modifications do not give rise to safety concerns. The food enzyme is free from viable cells of the production organism and its recombinant DNA. It is intended to be used in fruit and vegetable processing, for juice production and fruit and vegetable processing for products other than juices. Dietary exposure to the food enzyme-total organic solids (TOS) was estimated to be up to 0.095 mg TOS/kg body weight (bw) per day in European populations. The toxicity studies were carried out with a xylanase obtained from A. niger strain XEA. The Panel considered this food enzyme as a suitable substitute for the pectinesterase to be used in the toxicological studies, because both production strains are derived from the same recipient strain, the location of the inserts is comparable, no partial inserts were present and the production methods are essentially the same. Genotoxicity tests did not indicate a safety concern. The systemic toxicity was assessed by means of a repeated dose 90-day oral toxicity study in rats. The Panel identified a no observed adverse effect level (NOAEL) of 1,852 mg TOS/kg bw per day, the highest dose tested, resulting in a margin of exposure of at least 19,495. A search for the similarity of the amino acid sequence of the food enzyme to known allergens was made and two matches with pollen allergens were found. The Panel considered that, under the intended conditions of use, the risk of allergic reactions upon dietary exposure to this food enzyme, particularly in individuals sensitised to pollen allergens, cannot be excluded. The Panel concluded that this food enzyme does not give rise to safety concerns under the intended conditions of use.

10.
EFSA J ; 21(2): e07840, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36846396

RESUMO

The food enzyme containing endo-polygalacturonase ((1-4)-α-d-galacturonan glycanohydrolase; EC 3.2.1.15) and cellulase (4-(1,3;1,4)-ß-d-glucan 4-glucanohydrolase; EC 3.2.1.4) activities is produced with the non-genetically modified Talaromyces cellulolyticus strain NITE BP-03478 by Meiji Seika Pharma Co., Ltd. It is intended to be used in eight food manufacturing processes: baking processes, brewing processes, fruit and vegetable processing for juice production, wine and wine vinegar production, fruit and vegetable processing for products other than juices, fruit and vegetable processing for refined olive oil production, coffee bean demucilation and grain treatment for starch production. Since residual amounts of total organic solids (TOS) are removed during three food processes (refined olive oil production, coffee bean demucilation and grain treatment for starch production), dietary exposure was not calculated for these food processes. For the remaining five food processes, dietary exposure was estimated to be up to 3.193 mg TOS/kg body weight (bw) per day in European populations. Genotoxicity tests did not raise a safety concern. The systemic toxicity was assessed by means of a repeated dose 90-day oral toxicity study in rats. The Panel identified a no observed adverse effect level of 806 mg TOS/kg bw per day, which when compared with the estimated dietary exposure, resulted in a margin of exposure of at least 252. A search for the similarity of the amino acid sequences of the food enzyme to known allergens was made and six matches with pollen allergens were found. The Panel considered that, under the intended conditions of use, the risk of allergic reactions by dietary exposure cannot be excluded, especially in individuals sensitised to pollen. Based on the data provided, the Panel concluded that this food enzyme does not give rise to safety concerns under the intended conditions of use.

11.
EFSA J ; 21(2): e07843, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36846397

RESUMO

The food enzyme catalase (hydrogen-peroxide:hydrogen-peroxide oxidoreductase; EC 1.11.1.6) is produced with the non-genetically modified Aspergillus niger strain CTS 2093 by Shin Nihon Chemical Co., Ltd. It is considered free from viable cells of the production organism. The food enzyme is intended to be used in eight food manufacturing processes: baking processes, cereal-based processes, coffee processing, egg processing, vegetable processing for juice production, processing of tea, herbal and fruit infusions, herring roe processing and milk processing for cheese production. Dietary exposure to the food enzyme-total organic solids (TOS) was estimated to be up to 3.61 mg TOS/kg body weight (bw) per day in European populations. In addition, it is used in the production of acacia gum with the highest dietary exposure at the 95th percentile of 0.018 mg TOS/kg bw per day in infants, when acacia gum is used as a food additive. Genotoxicity tests did not indicate a safety concern. The systemic toxicity was assessed by means of a repeated dose 90-day oral toxicity study in rats. The Panel identified a no observed adverse effect level of 56 mg TOS/kg bw per day, the mid-dose tested, which, when compared with the estimated dietary exposure, resulted in a margin of exposure of 16. A search for similarity of the amino acid sequence of the food enzyme to known allergens was made and one match with a respiratory allergen was found. The Panel considered that, under the intended conditions of use, the risk of allergic reactions by dietary exposure cannot be excluded, but the likelihood for this to occur is low. Based on the data provided, the Panel considered the margin of exposure as insufficient to exclude safety concerns under the intended conditions of use.

12.
EFSA J ; 21(11): e08400, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38027447

RESUMO

The food enzyme phospholipase A2 (phosphatidylcholine 2-acylhydrolase, EC 3.1.1.4) is produced with the genetically modified Aspergillus niger strain PLA by DSM Food Specialties B.V. The genetic modifications do not give rise to safety concerns. The food enzyme is free from viable cells of the production organism and its DNA. It is intended to be used in the processing of egg and egg products, in the processing of fats and oils by degumming and for the production of modified lecithins (lysolecithin). As residual total organic solids (TOS) are removed in the refined fats and oils during degumming, dietary exposure was calculated only for the remaining two food manufacturing processes. For egg processing, the dietary exposure was estimated to be up to 1.712 mg TOS/kg body weight (bw) per day in European populations. Wet gum can be used to produce lysolecithin with the highest dietary exposure of 1.61 mg TOS/kg bw per day in children at the 95th percentile when used as a food additive. Genotoxicity tests did not raise a safety concern. The systemic toxicity was assessed by a repeated dose 90-day oral toxicity study in rats. The Panel identified a no observed adverse effect level of 1350 mg TOS/kg bw per day, the highest dose tested, which, when compared with the estimated overall dietary exposure, resulted in a margin of exposure of at least 851. A search for the similarity of the amino acid sequence of the food enzyme to those of known allergens was made and no match was found. The Panel considered that the risk of allergic reactions by dietary exposure cannot be excluded, but the likelihood is low. Based on the data provided, the Panel concluded that this food enzyme does not give rise to safety concerns under the intended conditions of use.

13.
Can J Microbiol ; 58(3): 350-8, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22364492

RESUMO

The crossing of Saccharomyces strains by spore conjugation is one of the ways to obtain new starter cultures for the fermentation industry. One of the major difficulties of this practice is the identification of the newly formed hybrids. In this work we describe an effective molecular method for the validation of Saccharomyces intraspecific crosses. The method described is based in the hypothesis that hybrids constructed by spore conjugation contain the sum of the genomes of both parental strains. As a consequence, the conjugation of spores of two yeasts showing different genomic fingerprinting profiles will result in a hybrid culture that will show the sum of both profiles. We demonstrated that the detection of polymorphism in two genes containing minisatellite-like sequences, either SED1 or AGA1, is suitable for this purpose. Using this strategy we were able to validate 15 crosses out of 162 hybridization attempts.


Assuntos
Microbiologia Industrial/métodos , Repetições Minissatélites/genética , Saccharomyces cerevisiae/fisiologia , Moléculas de Adesão Celular/genética , Glicoproteínas de Membrana/genética , Polimorfismo Genético , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
14.
EFSA J ; 20(1): e07008, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35058993

RESUMO

The food enzyme trypsin (EC 3.4.21.4) is extracted from porcine pancreas by Ningbo Linzyme Biosciences Co., Ltd. It is intended to be used for the hydrolysis of whey proteins for use in infant formulae and follow-on formulae. Based on maximum use levels and the maximum permitted protein content in infant formula, dietary exposure to the food enzyme-total organic solids (TOS) was estimated to be 16.8 mg TOS/kg body weight (bw) per day for infants. In the toxicological evaluation, clinical studies with pancreatic enzymes were considered. Hypersensitivity to the pharmaceuticals was identified as the major side effect. However, allergic reactions to porcine pancreatic enzymes in hydrolysed foods have not been reported. The Panel considered that a risk of allergic sensitisation to this food enzyme after consumption of products prepared by hydrolysis of milk proteins could not be excluded in infants, but it considered the likelihood to be low. Based on the origin of the food enzyme from an edible tissue of pigs, the data provided by the applicant, the information from the evaluation of clinical studies based on pancreatic enzymes and the estimated dietary exposure, the Panel concluded that the trypsin from porcine pancreas does not give rise to safety concerns under the intended conditions of use.

15.
EFSA J ; 20(5): e07279, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35515339

RESUMO

The food enzyme dextranase (6-α-d-glucan 6-glucanohydrolase, EC 3.2.1.11) is produced with the non-genetically modified Collariella gracilis strain AE-DX by Amano Enzyme Inc. The food enzyme is considered free from viable cells of the production organism. The food enzyme is intended to be used in refined sugar production from sugar beet or sugar cane. Since residual amounts of total organic solids (TOS) are removed by crystallisation during the production of refined white sucrose, dietary exposure was not considered necessary for refined sugars. However, beet molasses and cane syrups, by-products from sugar production, could enter the food chain. Based on the maximum use levels recommended, dietary exposure was estimated to be up to 0.39 mg TOS/kg body weight (bw) per day via the consumption of unrefined sugars. Genotoxicity tests did not indicate a safety concern. The systemic toxicity was assessed by means of a repeated dose 90-day oral toxicity study in rats. The Panel identified a lowest observed adverse effect level (LOAEL) of 940.5 mg TOS/kg bw per day, the lowest dose tested, which when compared with the estimated dietary exposure, results in a margin of exposure of more than 800. A search for similarity of the amino acid sequence of the food enzyme to known allergens was made and no matches were found. The Panel considered that, under the intended conditions of use, the risk of allergic sensitisation and elicitation reactions by dietary exposure cannot be excluded, but the likelihood for this to occur is considered to be low. Based on the data provided, the Panel concluded that this food enzyme does not give rise to safety concerns under the intended conditions of use.

16.
EFSA J ; 20(10): e07573, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36254194

RESUMO

The food enzyme ß-galactosidase (EC 3.2.1.23) is produced with the non-genetically modified Neobacillus sp. strain AE-LT by Amano Enzyme Inc. The strain is not cytotoxic and does not harbour any known virulence factor or antimicrobial resistance gene. The presence of viable cells of the production strain in the food enzyme could not be excluded, but the likelihood of this being a hazard is considered low. The food enzyme is intended to be used for lactose hydrolysis in milk processing and the manufacture of galacto-oligosaccharides (GOS). The dietary exposure to the food enzyme-total organic solids (TOS) was estimated to be up to 2.971 mg TOS/kg body weight (bw) per day in European populations. Genotoxicity tests did not raise a safety concern. The systemic toxicity was assessed by means of a repeated dose 90-day oral toxicity study in rats. The Panel identified a no observed adverse effect level of 1,223 mg TOS/kg bw per day, the highest dose tested, which when compared with the estimated dietary exposure, results in a margin of exposure of at least 412. A search for similarity of the amino acid sequence of the food enzyme to known allergens was made and no match was found. The Panel considered that, under the intended conditions of use, the risk of allergic reactions by dietary exposure cannot be excluded, but the likelihood for this to occur is low. Based on the data provided, the Panel concluded that this food enzyme does not give rise to safety concerns under the intended conditions of use.

17.
EFSA J ; 20(8): e07471, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35978612

RESUMO

The food enzyme with aspergillopepsin I (EC 3.4.23.18) and aspergillopepsin II (EC 3.4.23.19) activities is produced with a non-genetically modified Aspergillus niger var. macrosporus strain PTG8398 by Meiji Seika Pharma Co., Ltd. The food enzyme was considered free from viable cells of the production organism. It is intended to be used in wine production. Based on the maximum use levels, dietary exposure to the food enzyme-total organic solids (TOS) was estimated to be up to 0.14 mg TOS/kg body weight (bw) per day in European populations. Genotoxicity tests did not indicate a safety concern. The systemic toxicity was assessed by means of a repeated dose 90-day oral toxicity study in rats. The Panel identified a no observed adverse effect level of 919 mg TOS/kg bw per day, the highest dose tested which, when compared with the estimated dietary exposure, results in a margin of exposure above 6,700. A search for similarity of the amino acid sequence of the food enzyme to known allergens was made and four matches with respiratory allergens were found. The Panel considered that, under the intended conditions of use, the risk of allergic sensitisation and elicitation reactions by dietary exposure cannot be excluded, but the likelihood for this to occur is considered low. Based on the data provided, the Panel concluded that this food enzyme does not give rise to safety concerns, under the intended conditions of use.

18.
EFSA J ; 20(1): e07009, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35079278

RESUMO

The food enzyme catalase (EC 1.11.1.6) is obtained from porcine liver by Laboratorios Arroyo S.A. It is intended to be used in a broad range of food processes. The Panel noted that the manufacturing process involved the use of a solvent not permitted in the production of food ingredients which include food enzymes. In addition, the evidence provided showed that the manufacturing process could not be guaranteed to inactivate viruses originating from the starting material, including the human zoonotic pathogen Hepatitis E virus. Consequently, the Panel concluded that the use of catalase extracted from porcine liver may present a health risk.

19.
EFSA J ; 20(3): e07181, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35281637

RESUMO

The food enzyme glucose oxidase (ß-D-glucose:oxygen 1-oxidoreductase; EC 1.1.3.4) is produced with the genetically modified Aspergillus niger strain DP-Aze23 by Danisco US, Inc. The genetic modifications do not give rise to safety concerns. The food enzyme is considered free from viable cells of the production organism and its DNA. It is intended to be used in baking processes, cereal-based processes and egg processing. Based on the maximum use levels, dietary exposure to the food enzyme-total organic solids (TOS) was estimated to be up to 0.05 mg TOS/kg body weight (bw) per day in European populations. Genotoxicity tests did not indicate a safety concern. The systemic toxicity was assessed by means of a repeated dose 90-day oral toxicity study in rats. The Panel identified a no observed adverse effect level of 19.55 mg TOS/kg bw per day, the highest dose tested, which, when compared with the estimated dietary exposure, results in a margin of exposure above 380. A search for similarity of the amino acid sequence of the food enzyme to known allergens was made and one match was found. The Panel considered that, under the intended conditions of use, the risk of allergic sensitisation and elicitation reactions by dietary exposure cannot be excluded, but the likelihood for this to occur is considered to be low. Based on the data provided, the Panel concluded that this food enzyme does not give rise to safety concerns, under the intended conditions of use.

20.
EFSA J ; 20(7): e07370, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35795294

RESUMO

The food enzyme α-amylase (4-α-d-glucan glucanhydrolase; EC 3.2.1.1) is produced with the genetically modified Bacillus licheniformis strain NZYM-BC by Novozymes A/S. The genetic modifications do not give rise to safety concerns. The production strain was shown to qualify for the qualified presumption of safety (QPS) status. The food enzyme was free from viable cells of the production organism and its DNA. It is intended to be used in six food manufacturing processes, namely starch processing for the production of glucose syrups and other starch hydrolysates, distilled alcohol production, brewing processes, cereal-based processes, refined and unrefined sugar production and fruit and vegetable processing for juice production. Since the residual amounts of total organic solids (TOS) are removed by distillation and by the purification steps applied during the production of glucose syrups, dietary exposure was not calculated for these two food manufacturing processes. For the remaining four processes, the dietary exposure to the food enzyme-TOS was estimated to be up to 0.05 mg TOS/kg body weight per day in European populations. Genotoxicity tests did not raise safety concern. The similarity of the amino acid sequence of the food enzyme to those of known allergens was searched and one match was found. The Panel considered that, under the intended conditions of use, the risk of allergic sensitisation and elicitation reactions by dietary exposure cannot be excluded, but the likelihood was considered to be low. Based on the data provided, the Panel concluded that this food enzyme does not give rise to safety concerns under the intended conditions of use.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA