RESUMO
The parallel evolution of similar ecotypes in response to comparable environmental conditions is believed to reveal the importance of divergent selection in phenotypic diversifying processes. Systems characterized by the presence of multiple replicate populations expressing resource polymorphism thus provide an ideal opportunity to address the occurrence and factors affecting the parallel evolution of ecotypes. Previous studies have shown that brook charr (Salvelinus fontinalis) exhibit resource polymorphism in some Canadian Shield lakes, where a littoral ecotype feeds mainly on zoobenthos and a pelagic ecotype feeds mostly on zooplankton. Using morphological traits and geometric morphometric analyses on 18 native brook charr populations, we explicitly tested (i) whether brook charr ecotypes show parallel evolution across populations (i.e. the same morphological traits discriminate ecotypes among lakes) and (ii) whether interspecific competition decreases the amplitude of morphological differentiation between ecotypes, if any, because brook charr experience some level of competitive exclusion from the littoral habitat in the presence of creek chub or white sucker. We observed a low level of parallel evolution, where the littoral ecotype was overall stouter with longer fins and smaller eyes than the pelagic ecotype. Interspecific competition had no clear impacts on the amplitude of morphological differentiation. We also observed that inter-lake morphological differences are greater than between ecotypes within lakes, suggesting an important effect of local environmental factors on population morphology. Early-stage of diversification as well as phenotypic plasticity and morphological integration could explain why resource polymorphism is still subtle in brook charr populations.
Assuntos
Somatotipos , Truta , Animais , Canadá , Ecologia , Fenótipo , Truta/genéticaRESUMO
Ecological opportunity occurs when a resource becomes available through a decrease of interspecific competition and another species colonizes the vacant niche through phenotypic plasticity and intraspecific competition. Brook charr exhibit a resource polymorphism in some Canadian Shield lakes, where a littoral ecotype feeds mainly on zoobenthos and a pelagic ecotype feeds mostly on zooplankton. The objectives of this study were to test that (i) resource polymorphism is common in these brook charr populations, (ii) the presence creek chub and white sucker, two introduced species competing with brook charr for littoral resources, will decrease the phenotypic divergence between the two brook charr ecotypes, and (iii) the ecological release from introduced species will increase population and/or individual niche widths in brook charr. The study was based on 27 lakes and five indicators of resource use (stomach content, liver δ13C, muscle astaxanthin concentration, pyloric caecum length, and gill raker length). Our results indicate that within-lake differences in resource use by both ecotypes are common and stable through time. When facing interspecific competition, both littoral and pelagic brook charr incorporated more pelagic prey into their diet but maintained the amplitude of their differences in resource use, which contradicts our second prediction. Finally, we did not find any significant effect of introduced species on population and individual niche widths of brook charr. We suggest that the difference in feeding mode among distantly related competitors could prevent the complete exclusion of a species from a given niche and explain the lack of response to the ecological release.
Assuntos
Lagos , Truta , Animais , Canadá , Espécies Introduzidas , ZooplânctonRESUMO
Both biotic and abiotic factors have been invoked to explain the large variations observed in the prevalence and abundance of parasites in aquatic ecosystems. However, we have only a poor knowledge of the potential interplay among these factors in natural systems. It is, therefore, important to analyze the effects of multiple potential environmental drivers together to get an integrated view of their influence on the prevalence and abundance of parasites. To this end, we selected two genera of digenean trematode parasites that require at least two hosts to complete their life cycle and use two different transmission strategies. Crepidostomum moves through a trophic pathway via consumption of infected prey by the host, while Apophallus infects its hosts via direct penetration of their skin. This study was conducted in 23 Canadian Shield lakes exhibiting orthogonal gradients of biotic (fish species richness and biomass) and abiotic (morphometry, physico-chemical) variables. We quantified prevalence and abundance of these parasites in the skin and intestine of brook charr (Salvelinus fontinalis). Our results show that biotic factors are key drivers of parasite abundance and prevalence, with Apophallus being negatively associated with the fish species richness-biomass gradient, and Crepidostomum responding more to identity of host than to the diversity gradient. Among the abiotic variables, lake area was found to be positively related to both prevalence and abundance in Apophallus. Our results suggest that taking into account the interplay of both biotic and abiotic factors is crucial for understanding patterns of parasite transmission success in boreal lakes.
Assuntos
Trematódeos , Truta , Animais , Canadá , Ecossistema , Interações Hospedeiro-Parasita , LagosRESUMO
The alteration of environmental conditions has two major outcomes on the demographics of living organisms: population decline of the common species and extinction of the rarest ones. Halting the decline of abundant species as well as the erosion of biodiversity require solutions that may be mismatched, despite being rooted in similar causes. In this study, we demonstrate how rank abundance distribution (RAD) models are mathematical representations of a dominance-diversity dilemma. Across 4,375 animal communities from a range of taxonomic groups, we found that a reversed RAD model correctly predicts species richness, based solely on the relative dominance of the most abundant species in a community and the total number of individuals. Overall, predictions from this RAD model explained 69% of the variance in species richness, compared to 20% explained by simply regressing species richness on the relative dominance of the most abundant species. Using the reversed RAD model, we illustrate how species richness is co-limited by the total abundance of a community and the relative dominance of the most common species. Our results highlight an intrinsic trade-off between species richness and dominance that is present in the structure of RAD models and real-world animal community data. This dominance-diversity dilemma suggests that withdrawing individuals from abundant populations might contribute to the conservation of species richness. However, we posit that the positive effect of harvesting on biodiversity is often offset by exploitation practices with negative collateral consequences, such as habitat destruction or species bycatches.